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Abstract: A metal-free porphyrazine derivative with peripheral phthalimide substituents was met-
allated with a nickel(II) ion. The purity of the nickel macrocycle was confirmed using HPLC, and
characterized by MS, UV–VIS, and 1D (1H, 13C) and 2D (1H–13C HSQC, 1H–13C HMBC, 1H–1H
COSY) NMR techniques. The novel porphyrazine was combined with various carbon nanomaterials,
such as carbon nanotubes—single walled (SWCNTs) and multi-walled (MWCNTs), and electrochemi-
cally reduced graphene oxide (rGO), to create hybrid electroactive electrode materials. The carbon
nanomaterials’ effect on the electrocatalytic properties of nickel(II) cations was compared. As a result,
an extensive electrochemical characterization of the synthesized metallated porphyrazine derivative
on various carbon nanostructures was carried out using cyclic voltammetry (CV), chronoamperom-
etry (CA), and electrochemical impedance spectroscopy (EIS). An electrode modified with carbon
nanomaterials GC/MWCNTs, GC/SWCNTs, or GC/rGO, respectively, was shown to have a lower
overpotential than a bare glassy carbon electrode (GC), allowing for the measurement of hydrogen
peroxide in neutral conditions (pH 7.4). It was shown that among the tested carbon nanomaterials, the
modified electrode GC/MWCNTs/Pz3 exhibited the best electrocatalytic properties in the direction
of hydrogen peroxide oxidation/reduction. The prepared sensor was determined to enable a linear
response to H2O2 in concentrations ranging between 20–1200 µM with the detection limit of 18.57 µM
and sensitivity of 14.18 µA mM−1 cm−2. As a result of this research, the sensors produced here may
find use in biomedical and environmental applications.

Keywords: porphyrazine; nickel; carbon nanomaterials; voltammetry; H2O2 sensor; electrocatalysis

1. Introduction

Hydrogen peroxide is a molecule that has gained a lot of attention due to its significant
role in biological signaling and as a side product of some of the oxidative processes in cell
metabolism [1]. It is also an important factor in industry and manufacturing, including
textiles, foodstuffs, and mining [2]. Hydrogen peroxide can be detected and monitored by
a series of methods: spectral analysis, colorimetry, fluorescence and luminescence analyses,
and various chromatographic, titrimetric, and electrochemical methods [3,4]. Among these
methods, electrochemical sensing offers certain advantages, such as a low manufacturing
cost of the sensors and high sensitivity and selectivity. Unfortunately, current sensors often
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suffer from slow kinetics and are vulnerable to interference induced by other electroactive
substances in real-life samples. Hence, the development of functional hybrid nanomaterials
for the determination of hydrogen peroxide is a challenging task.

Many macrocyclic compounds have been tested for their ability to modify sensors.
A comparison between different phthalocyanine complexes showed that a Ni(II)-based
complex was sensitive to vapor phase electron donor sensing [5], and NiPc was confirmed
to be an efficient component in devices detecting biologically important molecules [6,7].
Although the electrochemical properties of nickel(II)-containing porphyrazines (Pzs), espe-
cially sulfanyl porphyrazines, are promising, they are rarely studied [8,9]. Porphyrazines
are tetrapyrrolic molecules that offer unique spectral, biological, and electrochemical fea-
tures [10]. Among them, sulfanyl porphyrazines were found in recent years to exhibit
interesting optical [11], photochemical [12,13], photocatalytic [14–16], biological [17–19],
and electronic properties [20,21]. Their advantages include a relative ease of preparation,
good solubility, and electrochemical activity [22,23]. As for the latter, porphyrinoids are
well-known as potent electrocatalysts suitable for the electrochemical determination of
many compounds and molecules, including H2O2, dopamine, and L-cysteine, which are
known to be important for the proper functioning of the human body [24–26]. The afore-
mentioned electrocatalytic features are strongly related to the metal ion in the central cavity
of the macrocycle (e.g., Mn, Co, Fe, Ni). Various porphyrinoids can be covalently linked or
immobilized on the surface of carbon nanostructures, including SWCNTs, MWCNTs, or
graphene layers. An effective and simple strategy to boost the electrocatalytic properties of
carbon nanomaterials is the non-covalent (adsorptive) attachment of a porphyrinoid macro-
cycle. The π-conjugative structure of carbon-based nanomaterials facilitates its interaction
with porphyrinoids due to the strong π–π electronic interactions.

Taking all the above into account, the aim of this study was to fabricate an ampero-
metric sensor for hydrogen peroxide detection. This was achieved by synthesizing a Ni(II)
complex of a phthalimide-decorated sulfanyl porphyrazine, which was used to modify
the electrode alongside different carbon nanomaterials, including multi-walled carbon
nanotubes, single-walled carbon nanotubes, and reduced graphene oxide, among others.
Based on the obtained electrochemical data, the developed sensor seems to be a promising
candidate for potential biological hydrogen peroxide sensing. The proposed hybrid nano-
materials can be considered as a long-term and prospective platform for electrocatalytic
hydrogen peroxide determination.

2. Materials and Methods
2.1. Synthetic Procedure for the Preparation of Metallated Porphyrazine

2,3,7,8,12,13,17,18-Octakis[(N-ethylphthalimide)thio]porphyrazinato magnesium(II)
(Pz1) and 2,3,7,8,12,13,17,18-octakis[(N-ethylphthalimide)thio]porphyrazine (Pz2) were
synthesized following an earlier reported procedure [27].

2,3,7,8,12,13,17,18-Octakis[(N-ethylphthalimide)thio]porphyrazinato nickel(II) (Pz3)
Nickel(II) acetate tetrahydrate (76 mg, 0.305 mmol) and Pz2 (120 mg, 0.061 mmol)

were stirred in N,N-dimethylformamide (DMF, 15 mL) at 75 ◦C for 24 h. Next, after cooling
to room temperature, the reaction mixture was filtered through Celite and washed with
dichloromethane (150 mL). The combined filtrates were evaporated to dryness, and a dark
blue residue was subjected to column chromatography: first, in the normal phase (eluents:
dichloromethane/methanol, 100:1 to 20:1, v/v); then, on alumina (eluents: methanol, then
methanol/dichloromethane 9:1 to 1:1, v/v) to give compound Pz3 as a dark blue film (20 mg,
16% yield). Rf (dichloromethane/methanol, 100:1, v/v) 0.15. UV–VIS (dichloromethane)
λmax nm (log ε) 303 (4.54), 352 (4.56), 667 (4.58). 1H NMR (400 MHz, CDCl3) δ, ppm: 7.27
(dd, J = 5.5, 3.0 Hz; C2, C5, ArH), 7.12 (dd, J = 5.5, 3.0 Hz; 16H, C3, C4, ArH), 4.34 (t,
J = 6.5 Hz, 16H, SCH2), 4.19 (t, J = 6.5 Hz, 16H, NCH2). 13C NMR (100 MHz, CDCl3) δ,
ppm: 167.8 (C=O), 148.6 (C2, C4, pyrrole C), 140.5 (C2, C3, pyrrole C), 133.7 (C3, C4, ArC),
131.5 (C1, C6, ArC), 122.9 (C2, C5, ArC), 38.3 (NCH2), 32.0 (SCH2). MS (MALDI) m/z: found
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2011.1876, [M+H]+ C96H65N16NiO16S8 requires 2011.1878. HPLC purity 98.5–100.0% (see
Supplementary Materials).

2.2. Fabrication of GC/MWCNTs, GC/MWCNTs/Pz3, GC/SWCNTs, GC/SWCNTs/Pz3, GC/rGO,
and GC/rGO/Pz3 Modified Electrodes

All materials and reagents used for the electrochemical testing are described in detail
in the Supplementary Materials, which also includes information about the apparatus
and electrodes.

Prior to each electrochemical experiment, the GC electrode was polished on a pol-
ishing cloth with an aqueous suspension of Al2O3 (Buehler, 50 nm average diameter),
and any impurities were subsequently removed using an ultrasonic bath containing an
acetone/water solution (1:1, v/v). Afterwards, the cleaned surface of the GC electrode
was drop-cast with 2 µL of either MWCNTs or SWCNTs dispersion (1 mg mL−1 in DMF),
followed by oven-drying of the electrode at 60 ◦C until the solvent evaporated. In the case
of the graphene oxide-modified electrode, initially 2 µL of the graphene oxide aqueous
dispersion were drop-cast onto the electrode surface and evaporated under the same condi-
tions. Then graphene oxide (GO) was electrochemically reduced to reduced graphene oxide
(rGO) in a KH2PO4/K2HPO4 buffer (pH 7.4) in the potential ranging from 0.4 to −1.3 V
(scanning rate 50 mV s−1). The electrochemical reduction of GO to rGO on the surface of
the GC electrode is shown in Figure S4. The resulting GC/MWCNTs, GC/SWCNTs, and
GC/rGO electrodes were dipped into the Pz3 solution in dichloromethane (1 mg mL−1).
The porphyrazines were non-covalently immobilized by soaking the respective electrodes
in the Pz3 solution. All electrodes were positioned in the desired electrolyte to conduct
electrochemical testing. The glass cell holding the electrolyte was deoxygenated prior to the
experiments with N2 gas. All electrochemical tests were performed at room temperature
(around 25 ◦C).

3. Results and Discussion
3.1. Synthesis and Physicochemical Characterization

Phthalimide-substituted magnesium(II) Pz (1) and its metal-free derivative (2) were
prepared using a previously reported three-step synthetic pathway [27]. Next, by modifying
a procedure from the literature [28], a Ni2+ cation was introduced into the Pz2 macrocyclic
core by heating Pz2 and nickel(II) acetate tetrahydrate in DMF, which led to the formation
of nickel(II) symmetrical porphyrazine Pz3 (Scheme 1). The compounds obtained were
isolated chromatographically and their properties evaluated by spectral methods—mass
spectrometry and UV–VIS spectroscopy. NMR experiments were performed to confirm
the structure of Pz3. The 1H and 13C NMR resonances were unambiguously assigned
using a combination of one-dimensional (1H, 13C) and two-dimensional (1H–13C HSQC,
1H–13C HMBC and 1H–1H COSY) experiments. A detailed analysis of the NMR spectra
can be found in Figures S1–S3 and Table S1. The signals at 4.34 ppm were assigned to the
SCH2 groups based on their correlation with the C2 and C3 pyrrole carbons at 140.5 ppm
in the 1H–13C HMBC spectrum. The correlations between carbonyl carbon signals at
167.8 ppm and hydrogen atom signals at 4.19 ppm and 7.27 ppm allowed to assign the
NCH2 hydrogen atoms of the ethylsulfanyl linker and phthalimide protons, respectively.
The identification of aromatic proton resonances of the phthalimide moieties, as well
as protons of the ethylene groups, was supported by the two-dimensional experiments
(Table S1). Furthermore, HPLC assessment of Pz3, performed in three different eluent
systems, confirmed the purity of the new macrocycle as exceeding 98%, with detection
simultaneously at 380 nm and 670 nm (see Supplementary Materials).

The UV–VIS spectra of nickel(II) porphyrazine Pz3 revealed the absorption maxima at
667 nm in dichloromethane and N,N-dimethylformamide, and 668 nm in dimethylsulfoxide
(Figure 1). The calculated values of logarithms of the molar absorption coefficients (log ε)
for these bands were 4.58 for dichloromethane and N,N-dimethylformamide and 4.57 in the
case of dimethylsulfoxide (Table S2). The comparison of the absorption spectra of Pz3 with
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that of the previously obtained magnesium(II) porphyrazine 1 and demetallated analog 2
is shown in Figure 1b [27]. Notably, the Q-band absorption of nickel(II) porphyrazine Pz3
was slightly hypsochromically shifted and much less intense than that of the magnesium(II)
derivative 1 (the absorption maximum in dichloromethane reached 667 nm for Pz3 and
674 nm for Pz1, while the log ε values equaled 4.58 and 4.83 for Pz3 and Pz1, respectively).
However, for both complexes, the Q-band was sharp and single in contrast to the broad
and divided band of the demetallated derivative 2 (Figure 1b) [27].
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Scheme 1. Synthesis of Pz3. Reaction conditions: (i) TFA, 25 ◦C, 0.5 h; (ii) Ni(OAc)2 × 4H2O, DMF,
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3.2. Electrochemical Study of Pz3 Deposited on MWCNTs, SWCNTs, and rGO

The voltammetric responses of the assigned hybrid electrodes are shown in Figure 2
for the three distinct carbon nanomaterials (MWCNTs, SWCNTs, and rGO) on which the
produced porphyrazine was individually immobilized. To determine the electrochemi-
cal activity, voltammetric measurements were made in a buffered (pH 7.4) water-based
electrolyte. For the bare GC electrode and MWCNTs-modified electrode, the cyclic voltam-
perograms acquired between −1.0 and 0.8 V vs. Ag/AgCl show conventional capacitive
characteristics. The peak couples observed for GC/SWCNTs and GC/rGO at ca. 0.0 V can
be ascribed to surface-confined processes involving oxygen groups attached to the surface,
especially since rGO is not fully reduced and can contain various oxygen-based groups,
such as quinones. After the immobilization of Pz3, only slight changes of CV response can
be observed. However, no additional redox peaks are present. Unlike GC/SWCNTs/Pz3
and GC/rGO/Pz3, the MWCNTs/Pz3 presents significant redox features formed in the
cathodic and anodic range. These redox pairs line up with the electrochemical transition of
the phthalimides substituents. In our previous work, we observed the redox transition of
the phtalimide groups at ca. −0.4 V in phosphate buffer electrolyte [27]. The minor peak
at ca. 0.4 V should then be assigned to the oxidation of Ni2+ to Ni3+. The obtained data
suggest that Pz3 exhibits electrochemical activity only on the surface of MWCNTs. The
loading of nickel can be calculated based on the charge corresponding to the voltammetric
peak at ca. 0.4 V. After the integration of the anodic peak corresponding to the Ni2+ to
Ni3+ transition, we estimated the metal loadings to be 11.1 ng. We can tentatively assume
that the aromatic system of phthalimide offers additional π–π interactions between the
porphyrazine and the MWCNT, thus attaching the Pz3 more firmly on the surface of the
modified electrode, resulting in efficient electron transfer.
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Figure 2. Cyclic voltammograms of hybrid materials recorded in phosphate buffer (pH 7.4). Scan
rate 50 mV s−1. The black line (a) corresponds to the GC electrode without Pz3, and the blue line (b)
to the GC electrode with Pz3, respectively for: (A) GC; (B) GC/MWCNTs; (C) GC/SWCNTs; and
(D) GC/rGO.
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Cyclic voltamperometry measurements were performed at scanning rates ranging
from 10 to 100 mV s−1 to evaluate the kinetics of electron transport on the surface of the
electrodes modified with GC/MWCNTs/Pz3 (Figure 3). Peak currents increased linearly
with scanning rate, pointing to redox activities occurring at the surface. Surface-limited
redox characterization is made possible by the π–π stacking of the conjugated porphyrazine
macroring with the highly delocalized π-bonding network of carbon nanomaterials.
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Figure 3. (A) Cyclic voltammograms of GC/MWCNTs/Pz3 modified electrodes in phosphate buffer
(pH 7.4) at 10–100 mV s−1 scan rate. (B) Dependence of the scanning rate on the peak current Ip.

Comparative CVs for the hybrid materials functionalized with Pz3 (MWCNTs/Pz3,
SWCNTs/Pz3, and rGO/Pz3) employed in this study are shown in Figure 4 in the presence
of the [Fe(CN)6]3−/4− redox couple. As seen in Figure 4A, for the GC/Pz3 electrode, a
decrease in peak current was observed in relation to the bare GC electrode. In addition, a
significant increase of peak-to-peak separation from 84 to 155 mV was observed at GC/Pz3
when compared to bare GC. This suggests hampered electron transfer kinetics at GC/Pz3,
probably due to the insulating nature of Pz3. The modification of the MWCNTs resulted in
an increase in the peak currents (compared to the bare GC electrode). It is well-known that
MWCNTs have a highly porous structure and good electron transfer characteristics [29].
After the addition of porphyrazine to the GC/MWCNTs system, the peak-to-peak sep-
aration increased slightly. Additionally, the peak currents of the [Fe(CN)6]3−/4− redox
couple remained almost unchanged for MWCNTs/Pz3. Such behavior suggests that Pz3
can strongly interact with the surface of MWCNTs via π–π stacking. As a result, electron
transfer kinetics at MWCNTs/Pz3 are fast, which is crucial for electrocatalytic sensing
applications. In the case of the GC/SWCNTs/Pz3 modified electrode, there was a de-
crease in both the peak current and capacitance in relation to the GC/SWCNTs electrode
(Figure 4B). The same dependence can be observed for the GC/rGO and GC/rGO/Pz3
modified electrodes (Figure 4C). Deterioration of the electrochemical properties at these
two electrodes was thus observed. Table 1 summarizes the separation peak values for all
tested electrodes.

Table 1. Comparison of separation peaks for all tested electrodes.

Electrode Peak Separation [mV] Electrode Peak Separation [mV]

GC 84 GC/SWCNTs 82

GC/Pz3 155 GC/SWCNTs/Pz3 89

GC/MWCNTs 69 GC/rGO 42

GC/MWCNTs/Pz3 76 GC/rGO/Pz3 87
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red line), GC/rGO (c, green line), GC/rGO/Pz3 (d, blue line). All CVs were recorded in a phospahate
buffer (pH 7.4) containing 1 mM [Fe(CN)6]3− at a scan rate of 10 mV s−1. (D–F) Nyquist diagrams of
respectively modified electrodes in a phospahate buffer (pH 7.4) containing 1 mM [Fe(CN)6]3−/4−.

The electroactive surface area was calculated by applying the Randles–Sevcik equa-
tion [30]:

Ip = 2.69· · · 105 AD1/2 n3/2 Cv1/2 (1)

where, Ip represents peak current [A]; A is the electroactive surface area of the electrode
[cm2]; D represents diffusion coefficient (7.3 × 10−6 cm2 s−1 for [Fe(CN)6]3−); n is the
transferred electron number (n = 1); v represents the scan rate [V s−1]; and C is the analyte
concentration [mol cm−3]. Table 2 presents the results of the calculated electroactive surface
areas for the modified electrodes. We can conclude that by modifying the surface of the
GC electrode with the studied nanomaterials, its surface area increases. However, covering
nanomaterials with Pz3 causes a decrease in porosity, and a decrease in the electroactive
surface of the electrodes is also observed.

Table 2. Comparison of electroactive surface areas for the modified electrodes.

Electrode Electroactive Surface Area [cm2] Electrode Electroactive Surface Area [cm2]

GC 0.0198 GC/SWCNTs 0.3090

GC/Pz3 0.0178 GC/SWCNTs/Pz3 0.2503

GC/MWCNTs 0.0577 GC/rGO 0.0998

GC/MWCNTs/Pz3 0.0494 GC/rGO/Pz3 0.0763

The EIS measurements (Nyquist plots) for all the tested electrodes are shown in
Figure 4D–F. The high-frequency area (semicircle in Nyquist plots) is responsible for the
charge transfer resistance on the electrode surface. The relatively large semicircle ob-
served for the GC and GC/Pz3 electrodes (black and red lines, respectively) indicates
slow electron transfer. The absence of a semicircle in Figure 4D for the GC/MWCNTs
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and GC/MWCNTs/Pz3 electrodes indicates fast electron transfer, which in turn improves
the electrocatalytic properties. The results are in good agreement with the cyclic voltam-
mograms displayed in Figure 4A–C. In addition, for the electrodes GC/SWCNTs and
GC/SWCNTs/Pz3, as well as GC/rGO and GC/rGO/Pz3, smaller semicircles were ob-
served in comparison to bare GC and GC/Pz3.

3.3. The Influence of Hydrogen Peroxide on the GC, GC/Pz3, GC/MWCNTs, GC/MWCNTs/Pz3,
GC/SWCNTs, GC/SWCNTs/Pz3, GC/rGO, and GC/rGO/Pz3 Electrodes

It is acknowledged that porphyrazines with transition metal ion centers are interesting
candidates for the electrocatalysis of hydrogen peroxide oxidation/reduction [23]. Thus,
the electrocatalytic performance of nickel(II)-containing porphyrazine (Pz3) was investi-
gated in the presence of H2O2 ( Figure 5). The efficiency of the constructed hybrid platforms
(GC/MWCNTs/Pz3, GC/SWCNTs/Pz3, and GC/rGO/Pz3) was compared with those of
bare GC, GC/Pz3, GC/MWCNTs, GC/SWCNTs, and GC/rGO electrodes. The reduction
of H2O2 may occur on unmodified GC at a very negative overpotential (Figure 5A), while
the measured reductive current was rather small; an even smaller reduction current was
observed in the case of the GC/Pz3 electrode (Figure 5B). When a GC/MWCNTs electrode
was employed, a slight improvement in the H2O2 redox behavior was observed (Figure 5C).
In this case, both cathodic and anodic current waves were seen. Significant electrocatalytic
activity was observed for the hybrid electrode of GC/MWCNTs/Pz3. Figure 5D (curve
b) illustrates how the redox peaks were greatly enhanced when 2 mM H2O2 was added.
At GC/MWCNTs/Pz3, hydrogen peroxide was shown to be reduced and oxidized using
a small overpotential and high current. This result indicates that GC/MWCNTs/Pz3 is
a suitable electrode for hydrogen peroxide electrocatalysis. A well-defined H2O2 anode
peak current was also observed, suggesting that GC/MWCNTs/Pz3 has good electrocat-
alytic performance. Regarding electrode modifications, a comparison of SWCNTs and rGO
(Figure 5E,G) with SWCNTs/Pz3 and rGO/Pz3 (Figure 5F,H) showed only a slight amplifi-
cation of the peak cathode and anode currents, which indicates that SWCNTs and rGO are
not promising platforms for Pz3 immobilization in the context of H2O2 electrocatalysis.
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Figure 5. Cyclic voltammograms recorded for (A) bare GC, (B) GC/Pz3, (C) GC/MWCNTs,
(D) GC/MWCNTs/Pz3, (E) GC/SWCNTs, (F) GC/SWCNTs/Pz3, (G) GC/rGO, and
(H) GC/rGO/Pz3. Experiments were performed in a phosphate buffer (pH 7.4) before (a,
black line) and after (b, blue line) adding 2 mM of hydrogen peroxide. A scan rate of 10 mV s−1

was used.

3.4. Chronoamperometric Measurements of GC/MWCNTs/Pz3, GC/SWCNTs/Pz3, and
GC/rGO/Pz3 Electrodes in the Presence of H2O2

Furthermore, under stirring conditions, chronoamperometric measurements were
made for GC/MWCNTs/Pz3, GC/SWCNTs/Pz3, and GC/rGO/Pz3. The oxidation of
H2O2 at the electrodes was driven by the applied anodic potential of +0.6 V. Figure 6A
shows the increase of the amperometric signal after the addition of small amounts of H2O2.
The GC/MWCNTs/Pz3 electrode expressed linearity within 20–1200 µM of H2O2. For
GC/SWCNTs/Pz3, linearity was seen in the H2O2 concentration range of 10 to 980 µM.
For the GC/rGO/Pz3 electrode, linearity was noted in the range of analyte concentrations
from 20 to 750 µM. Figure 6B,E,H also show the amperometry results recorded for the
electrode modified with only carbon-based nanomaterials—MWCNTs, SWCNTs, and
rGO, respectively. In connection with the above, it was shown that the linearity in the
widest range of hydrogen peroxide concentrations was recorded for the GC/MWCNTs/Pz3
electrode. In addition, in the case of carbon nanomaterials (SWCNTs and rGO), a decrease
in the current signal was observed after Pz3 adsorption (Figure 6F,I). The estimated limits of
detection (LODs) were 18.57, 9.42, and 9.15 µM for GC/MWCNTs/Pz3, GC/SWCNTs/Pz3
and GC/rGO/Pz3, respectively, when the signal-to-noise ratio of 3 was taken into account.
The limits of quantification (LOQs), which were 56.27, 28.56, and 58.04 µM, respectively,
were also compared.

In Table 3, the performance of the investigated electrodes for hydrogen peroxide
electroanalysis is compared with other electrodes found in the literature.
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Figure 6. Chronoamperometric analysis of H2O2 determination for (A) GC/MWCNTs/Pz3,
(B) GC/MWCNTs, (D) GC/SWCNTs/Pz3, (E) GC/SWCNTs, (G) GC/rGO/Pz3, and (H) GC/rGO
electrodes at stirring conditions. The operation potential was +0.6 V. (C–I) The dependence of the am-
perometric current responses on the concentration of hydrogen peroxide for the modified electrodes.

Table 3. Analytical parameters of the studied electrodes as compared to other reported H2O2 sensors.

Electrode Composition Sensitivity [µA mM−1 cm−2] LOD[µM] Linear Range[µM] Ref.

GC/MWCNTs/FePz 636 0.20 1−90 [23]

GC/MWCNTs/CoPz 640 0.18 1−90 [23]

GCE/CoSn(OH)6-Nafion 0.019 1.00 4−400 [31]

AgNPs/GC 169 2.00 5−50 [32]

Au/AuNW/HRP 0.031 5.00 18−500 [33]

HRP-Pd/f-GE 92.82 0.05 0.025−3.5 [34]

MWCNTs/LS/NAg 252 1.17 6−486 [35]

PBNPs (100 nm)-SPE 0.164 20.00 20−700 [36]

MWCNT-PEDOT 943 50.00 100−9800 [37]

Ag-exGRc-Cl/StS 115 5.00 100−8000 [38]

GC/MWCNTs/Pz3 14.18 18.57 20−1200 This work

GC/SWCNTs/Pz3 18.38 9.42 10−980 This work

GC/rGO/Pz3 13.11 9.15 20−750 This work

Abbreviations: FePz—2,3,7,8,12,13,17,18-octakis[(N-ethylphthalimide)thio]porphyrazinato iron(II); CoPz—
2,3,7,8,12,13,17,18-octakis[(N-ethylphthalimide)thio]porphyrazinato cobalt(II); AgNPs—silver nanoparticles;
AuNW—silver nanowires; HRP—horseradish peroxidase; LS—lignosulfonate; PBNPs—Prussian blue nanopar-
ticles; SPE—screen printed electrode; PEDOT—poly(3,4-ethylendioxythiophene); exGRc—oxidized carbonate
green rust particles; StS—stainless steel.
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To assess the selectivity of the GC/MWCNTs/Pz3 electrode, the amperometric re-
sponse was monitored in the presence of different interferents that can commonly occur in
a variety of bodily fluids (in this work: glucose, fructose, lactose, maltose, saccharose, caf-
feine, and sodium chloride) at +0.6 V with stirring (Figure 7). While H2O2 addition gave a
fast current response, none of the inserted interferents resulted in a current reply. Therefore,
the obtained sensor has a satisfactory selectivity. In addition, analogous tests were carried
out for the modified electrodes: GC/SWCNTs/Pz3 and GC/rGO/Pz3. The results of these
analyses are shown in Figure S5. As in the case of the GC/MWCNTs/Pz3 electrode, no
interference effect was observed. A decrease in the current signal was observed over time.
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Figure 7. Chronoamperometric responses recorded at the GC/MWCNTs/Pz3 sensor upon addition of
100 µM H2O2 and selected interferents. The applied potential was +0.6 V. The supporting electrolyte
was phosphate buffer (pH 7.4).

4. Conclusions

In this study, a new phthalimide-substituted sulfanyl porphyrazine derivative pos-
sessing an Ni(II) ion in the core was obtained via chemical synthesis. The formation of this
molecule was confirmed using spectral techniques, including NMR spectroscopy, mass
spectrometry, and UV–VIS spectrophotometry. Additionally, detailed UV–VIS spectral
studies were performed. The Pz3 was subsequently used to etch glassy carbon electrodes,
modified earlier with either multi-walled carbon nanotubes, single-walled carbon nan-
otubes, or reduced graphene oxide. Among the studied carbon nanomaterials, it was
found that multi-walled carbon nanotubes constitute a suitable matrix for the immobiliza-
tion of Pz3 porphyrazine on the surface of the GC electrode. It has been shown that the
GC/MWCNTs/Pz3 modified electrode has excellent electrocatalytic properties in the detec-
tion of hydrogen peroxide oxidation/reduction (LOD: 18.57 µM; linear range: 20–1200 µM)
and may be regarded as a potential sensor of this important molecule. The results ob-
tained in this study show that a determination of the appropriate conductive material
for electrode modification is crucial to achieving the synergistic effect and satisfactory
electrocatalytic properties.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13050862/s1. Figure S1: NMR data of Pz3. Table S1: 1H
and 13C NMR data obtained for Pz3. Figure S2: 1H NMR spectrum of Pz3 (400 MHz, chloroform-d1,
298 K). Figure S3: 13C NMR spectrum recorded for Pz3 (100 MHz, chloroform-d1, 298 K). Table S2:
UV–VIS absorption maxima (λAbs) and logarithms of molar absorption coefficients (logε) of Pz3 in
selected organic solvents. Figure S4: Electrochemical reduction of GC/GO to GC/rGO in phosphate
buffer (PB, pH 7.4) in the potential range from 0.4 to −1.3 V (scanning rate 50 mV s−1). Figure S5:
Chronoamperometric responses recorded at (A) GC/SWCNTs/Pz3 and (B) GC/rGO/Pz3 sensor
upon addition of 100 µM H2O2 and selected interferents. The applied potential was +0.6 V. The
supporting electrolyte was PB (pH 7.4).
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Sikorski, M.; et al. Sulfanyl Porphyrazines: Molecular Barrel-like Self-Assembly in Crystals, Optical Properties and in Vitro
Photodynamic Activity towards Cancer Cells. Dye. Pigment. 2017, 136, 898–908. [CrossRef]

20. Medina, D.-P.; Fernández-Ariza, J.; Urbani, M.; Sauvage, F.; Torres, T.; Rodríguez-Morgade, M.S. Tuning the Acceptor Unit of
Push–Pull Porphyrazines for Dye-Sensitized Solar Cells. Molecules 2021, 26, 2129. [CrossRef]

21. Fernández-Ariza, J.; Urbani, M.; Rodríguez-Morgade, M.S.; Torres, T. Panchromatic Photosensitizers Based on Push–Pull,
Unsymmetrically Substituted Porphyrazines. Chem. A Eur. J. 2018, 24, 2618–2625. [CrossRef] [PubMed]

22. Mlynarczyk, D.T.; Ziental, D.; Kolasinski, E.; Sobotta, L.; Koczorowski, T.; Mielcarek, J.; Goslinski, T. Nipagin-Functionalized
Porphyrazine and Phthalocyanine—Synthesis, Physicochemical Characterization and Toxicity Study after Deposition on Titanium
Dioxide Nanoparticles P25. Molecules 2021, 26, 2657. [CrossRef] [PubMed]

23. Falkowski, M.; Leda, A.; Rebis, T.; Piskorz, J.; Popenda, L.; Hassani, M.; Mlynarczyk, D.T.; Marszall, M.P.; Milczarek, G. A
Synergistic Effect of Phthalimide-Substituted Sulfanyl Porphyrazines and Carbon Nanotubes to Improve the Electrocatalytic
Detection of Hydrogen Peroxide. Molecules 2022, 27, 4409. [CrossRef] [PubMed]
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