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Abstract: In the last decade, researchers have focused on the recycling of agro-food wastes for the pro-
duction of value-added products. This eco-friendly trend is also observed in nanotechnology, where
recycled raw materials may be processed into valuable nanomaterials with practical applications.
Regarding environmental safety, replacing hazardous chemical substances with natural products
obtained from plant wastes is an excellent opportunity for the “green synthesis” of nanomaterials.
This paper aims to critically discuss plant waste, with particular emphasis on grape waste, methods
of recovery of active compounds, and nanomaterials obtained from by-products, along with their
versatile applications, including healthcare uses. Moreover, the challenges that may appear in this
field, as well as future perspectives, are also included.

Keywords: grape waste; phytochemicals; nanotechnology; metal nanoparticle; healthcare
applications

1. Introduction

Due to population growth, rapid modernization, and globalization, the amount of
food waste from industries and households is increasing. Agro-industrial waste is usually
discarded in landfills, contributing to environmental issues. The volume of food waste
generated globally is higher than 1.3–1.4 billion tons and is expected to increase up to
2.6 billion tons by 2025 [1], with an economic loss of about USD 400 billion [2]. Hence, it is
necessary to implement different approaches to transform agro-industrial and food waste
into value-added products [3].

Recently, the interest in obtaining natural ingredients from food waste has increased
significantly. These components could be transformed into value-added products, such
as food ingredients, nutraceutical compounds, or biodiesel, utilized by a broad range of
industries [4]. Importantly, agricultural waste, instead of ending up in landfills and gener-
ating environmental hazards, can be cost-effectively turned into sustainable resources [5–7].
The valorization of plant- and animal-origin by-products provides opportunities to obtain
value-added products, thus minimizing the environmental impact and promoting and
commercializing new materials rich in bioactive compounds [8–10]. An example of such an
approach is the utilization of wastes generated by grape production and the wine industry.

The practice of viticulture plays a significant role in the effective development of
production sectors aiming to obtain grapes specific for each industry. Grapevine pruning,
necessary for balancing growth and development, is the primary source of viticulture
waste. Since viticulture is one of the most common agricultural practices worldwide, it
leads to a significant accumulation of biomass waste, such as shoots, canes, and leaves,
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amounting to between 6–18 million tons annually [11]. Over time, wine has become one
of the most consumed drinks globally, according to the International Organization of
Vine and Wine [12], reaching a consumption rate of almost 230 million hectoliters in 2021.
However, massive amounts of grape pomace are generated as a result of the winemaking
process. Grape pomace is made up of different ratios of seeds, skins, stalks, and wine lees,
depending on the grape variety, fermentation, and pressing processes [13]. The valuable
resources available in grapevine waste biomass and grape by-products, such as cellulose,
hemicellulose, lignin, minerals, and bioactive compounds [14], can be used in different
industries, contributing to the development of an efficient circular economy.

Nanobiotechnology is based on applying nano-techniques in the fields of biological
and medical sciences to improve human health and quality of life. From its beginning in
1959, the development of nanotechnology as a multidisciplinary field of science has led
to the discovery of a significant number of nanomaterials with practical applications in
the pharmaceutical industry and medical sciences. These include innovative drugs and
drug-delivery systems, biosensors, bioimaging gene-delivery techniques, and innovative
nutraceuticals [15].

The recovery of bioactive compounds and their valorization in different industries
creates an excellent opportunity to reduce environmental impact, promote the circular econ-
omy, reduce food waste, and obtain novel ingredients with potential health benefits [16].
Therefore, this paper aims to critically discuss plant waste, with particular emphasis put
on grape waste, methods of recovery of active compounds, nanomaterials obtained from
by-products, and their versatile applications, including healthcare uses. Moreover, the
challenges that may appear in this field, as well as future perspectives, are also included.

2. Recovery of Active Compounds from Grape Waste and Their Beneficial Effects

Agriculture-originating wastes contain a mixture of natural products, including phe-
nolic compounds, carbohydrates, polysaccharides, and lignocellulose. Recovery of these
compounds involves specific treatments, but results in a significant reduction of economic
costs affecting other industries, along with reduced environmental impact [17].

Agro-wastes result from the processing crop or animal products for human use and
include the by-products and leftovers from the food processing industry [18]. Pomace,
peels, molasses, or shells can be considered recyclable wastes, which, after the application of
appropriate pretreatment methods, can be processed into various products or raw materials
for use in other industries. These methods are often material-specific, each presenting
advantages and disadvantages (Table 1). As a modern pretreatment method, ohmic heating
(OH) was studied by Pereira et al. [19] for the aqueous extraction of total soluble matter and
phenolic compounds from red grapes. Given the thermal nature of OH to generate internal
heat, it was possible to establish a direct flash-heating extraction without promoting the
thermal degradation of the molecules of interest, obtaining a recovery yield two times
greater than that of the control sample (1348.8 µg/g compared with 756.2 µg/g) [19].

Table 1. Short presentation of advantages and disadvantages of the pretreatment methods.

Pretreatment Advantages Disadvantages Matrix for Which the Pretreatment Is
Applicable Reference

Hydrothermal Does not involve chemical
reagents Decreased yield of lignin recovery Materials with a poor lignin content [20]

Irradiation Depolymerization of cellulose
and solubilization of lignin. High costs Woody materials with a high content of

lignin [21]

Alkaline pre-treatment Solubilization of different
compounds with high yields

Large amounts of water required
for removing chemical

compounds
Large amounts of reagents

required

Wastes containing lignin [22]

Supercritical CO2
Low temperatures suitable for

degradable compounds
Expensive process; special

conditions required Material with high lignin content [23]

Biological method Environment-friendly, low
consumption of energy

Process is mild, with a slow rate of
hydrolysis

Material with high lignin, cellulose,
and polysaccharides content [24]
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Grapes are one of the most widely grown fruits in the world. There are three distinct
purposes of grape production: grapes for the wine industry, table grapes, and dried grapes
(raisins) (Figure 1) [25].

The morphology of grapevine consists of vegetative and reproductive organs. The
first category includes leaves, tendrils, shoots, trunks, and roots. The second is represented
by clusters with flowers or grapes [26].

Different levels of bioactive compounds are found in various plant parts of the
grapevine that are commonly considered and treated as viticultural waste. Scientific studies
of grapevine leaves indicated a relatively low content of hydroxycinnamic acids, stilbenes,
and hydroxybenzoic acids. Conversely, a high concentration of flavonols, representing the
most abundant phenolic compounds, was found [27]. Thus, phytochemicals often found
in grapevine leaves, presented in decreasing quantitative order, are as follows: quercetin-
3-O-glucuronide > quercetin-3-O-galactoside > quercetin- 3-O-glucoside > caftaric acid >
quercetin-3-O-rhamnoside > kaempferol-3-O-glucoside > kaempferol-3-O-glucuronide >
coutaric acid > myricetin-3-O-glucoside > quercetin-3-O-rutinoside > and kaempferol-3-O-
rutinoside [28]. In the case of shoots, bioactive compounds found in concentrations of over
500 mg/kg, listed in decreasing quantity, are: trans-resveratrol > (+)-trans-ε-viniferin >
catechin > sinapic acid > isohopeaphenol > vitisin B > trans-piceatannol > trans-ω-viniferin
> hopeaphenol > procyanidin B1 [29]. Furthermore, the stilbene compounds are found
in the roots and trunks of the grapevine, namely: (+)-trans-ε-viniferin, (+)-cis-ε-viniferin,
isohopeaphenol, α-viniferin, and trans-resveratrol [30].
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Grape pomace, the solid residue formed after the pressing and fermentation of grapes,
is the most representative waste from winemaking [31]. This winey residue is mainly
comprised of grape seeds, skins, pulp, and stalks [32]. Its quantity depends on the variety
of grapes, the nature of the soil, and the processes and equipment used in the winemaking
process [33]. The Italian Central Statistics Institute reported that more than 80% of the
total production of grapes is intended for the winemaking process. It corresponds to more
than 7 million tons of grapes per year, yielding about 1 million tons of pomace [34]. It was
shown that the total polyphenolic content in the grape pomace is between 5 and 6 g of
gallic acid equivalents (GAE)/100 g [35]. Proteins constitute 5–14 g/100 g of pomace, and
lipids make up 1–13 g/100 g [36], whereas cellulose, hemicellulose, and lignin comprise
7–9 g/100 g, 6–22 g/100 g and 11–23 g/100 g, respectively [37]. The bioactive compounds
often found in grape pomace, but varying in different grape fractions, are phenolic acids,
stilbenes, flavonols, anthocyanins, and proanthocyanidins. Proanthocyanidins and flavan-
3-ols, especially (+)-catechin, (−)-epicatechin, procyanidin B1, and procyanidin B2, are the
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primary compounds in grape seeds [38,39]. At the same time, grape skins show high levels
of anthocyanins [40], flavonols, such as quercetin, myricetin, and kaempferol [41], along
with the most important grape stilbene, namely resveratrol [42].

The beneficial human health properties of the compounds mentioned above are well
known. The anti-inflammatory effect of Negrano grape pomace polyphenols was demon-
strated on intestinal cells by controlling the crucial mediators of the oxidative and inflam-
matory process, namely pro-inflammatory cytokines, chemokines, adhesion molecules, and
matrix metalloproteinases. Calabriso et al. [43] extracted the powdered grape pomace with
methanol/ethanol (80:20, v/v) and subjected the extract to phytochemical and biological
analysis. Different levels of gallic acid, catechin, and quercetin were found, but the most
representative bioactive compounds were oenin and epicatechin, amounting to 4.9 and
3.7 mg/g, respectively. The extract dose-dependently inhibited the release of interleukin
(IL)-6, monocyte chemoattractant protein (MCP)-1, and matrix metalloproteinases (MMP)-9
and MMP-2 from enterocyte-like cells. Additionally, gene expression of pro-inflammatory
markers, namely IL-1β, TNF-α, macrophage colony-stimulating factor (M-CSF), C-X-C
motif ligand (CXCL)-10, intercellular adhesion molecule (ICAM)-1, vascular cell adhesion
molecule (VCAM)-1, and cyclooxygenase (COX)-2 was decreased [43]. In a study conducted
by Leal et al. [44], polyphenolic compounds belonging to hydroxybenzoic and hydrox-
ycinnamic acids, flavanols, stilbenes, and anthocyanins were identified and quantified.
Catechin was the primary compound in grape stem extracts, with a 0.44–2.03 mg/g dry
weight. The extracts showed significant antioxidant activity and antimicrobial properties
against S. aureus and E. faecalis. They also exerted anti-inflammatory activity by inhibiting
the production of NO at non-toxic cellular concentrations and by inhibiting tyrosinase
and elastase activity, thus suggesting the possible application of these extracts in cosmetic
products [44]. Furthermore, Sangiovanni et al. [45] indicated that grapevine leaf extracts
could inhibit and alleviate gastric inflammation by affecting the NF-κB pathway. The
aqueous extract of vine leaves was characterized by the HPLC-DAD method, showing
the presence of flavonols, caffeic acid derivatives, and anthocyanins. The contents of total
phenolics of 146.3 mg GAE/g and 4.3 mg/g of anthocyanins (expressed as cyanidin-3-
glucoside equivalents) were reported. The inhibitory effect of the extracts on IL-8 secretion
was examined in gastric and intestinal epithelial cells after gastrointestinal digestion [45].
Thus, the grape pomace polyphenols may exert multiple health-promoting properties,
potentially decreasing or preventing gut chronic inflammatory diseases and improving
vascular endothelial function [43,45].

Numerous extraction methods were developed to recover valuable bioactive com-
pounds from viticulture and winery wastes for application in different industries and
circular economies [46]. The traditional methods, including Soxhlet extraction, macer-
ation, or reflux extraction, require large amounts of solvent and energy, making these
methods unsuitable for obtaining extracts for commercial uses [47,48]. However, modern
techniques, such as supercritical carbon extraction, ultrasound-assisted extraction, acceler-
ated solvent extraction, pressurized fluid extraction, and microwave-assisted extraction,
have gained new valences in recent years. They provide numerous advantages, including
short extraction time, small amounts of solvents, increased yields of extraction, and cost-
effectiveness [49]. Moreover, methods based on the electric field require less processing time
and energy consumption and are suitable for reducing the degradation of heat-sensitive
compounds [50]. A schematic representation of the advantages and disadvantages of these
methods is presented in Figure 2.
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The ultrasound assisted extraction of grape pomace polyphenols was performed at
100 ◦C for tannins, and at 150 ◦C for tannin-anthocyanin fraction. Interestingly, a decrease in
polyphenol yield was observed at longer extraction times and higher temperatures, before
and after the enological fermentation of pomace [51]. The pulsed electric field extraction is
one of the most efficient techniques used to enhance the yield of target compounds and
improve the quality of juices [52]. For the hydroethanolic extracts of grape seeds, Boussetta
et al. observed an increase in the yield of total phenolic content from 16.7% to 84.2% after
the application of electrical treatments [53]. Combining pulsed electric field extraction with
ultrasound technology, Ntourtoglou et al. promoted the extraction of volatile compounds
and polyphenols from grape stems [54].

Among other miscellaneous extraction techniques, pulsed ohmic heating and high-
pressure processing are also known to be suitable for the extraction of thermolabile com-
pounds [13]. The yield of anthocyanins from red grape pomace ethanolic extract obtained
with the assistance of the high hydrostatic pressure was 50% at 600 MPa and 70 ◦C [55].
The antioxidant effect was not directly correlated with the highest amount of anthocyanins,
which were optimally extracted at 100% ethanol, 50 ◦C, and 600 MPa. However, the extrac-
tion yields were about 23% higher than those under control conditions. For extracting target
compounds from grape wastes, the primary objective of the technologies used was to gain
a faster extraction rate with an increased extraction and recovery yield, with lower energy
and solvent consumption. It was observed through the analysis of antioxidant activity
and the total phenolic content that the extraction kinetics were enhanced by increasing the
temperature and maintaining the optimal solvent condition [56].

Besides phenolic compounds, dietary fibers represent another class of interest for
recovery from grapes wastes. Their beneficial effects on human health, such as reducing
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the risk of cardiovascular diseases; protection against cancer, diabetes, and blood choles-
terol; or the prevention of obesity, were described [57]. The main products resulting from
grape processing are rich sources of dietary fibers: grape skins are lignocellulosic materials
containing hemicellulosic sugars that, after hydrolysis, produce solutions containing a
wide variety of xylose and glucose monomers [58], whereas grape pomace is a source
of monosaccharides [59]. Different studies reported the content of dietary fibers from
50 to more than 80% of dry matter, with no significant differences between red and white
grapes [60,61]. Thus, the interest in recovering such compounds is increasing, and the
development and optimization of recovery technologies is an excellent alternative for ob-
taining value-added products. The most commonly used method is conventional hot water
extraction, with low energy resource and solvent requirements, and which can be upgraded
using modern techniques, such as ultrasound technologies, or by applying enzymes to
help disrupt the cell wall structure [62]. Another highly efficient and environmentally
friendly pretreatment technology is the steam explosion method, which can be used as a
pretreatment method to obtain bioactive compounds. Cui et al. demonstrated that steam
explosion could convert insoluble dietary fiber from grape pomace into soluble dietary fiber,
while increasing oil-holding and sodium nitrite binding capacity at optimal conditions of
0.8 MPa for 3 min [63]. Micronization can affect dietary fiber’s solubility and hydration
properties, enhancing the release of phenolics [64]. Moreover, enzymatic treatment can
disrupt the grape pomace cell wall by breaking glycosidic linkages from polysaccharide
chains into mono- and oligosaccharides [65].

Lipids, found in grape seeds, are also of great interest. The recovery of fatty acids,
tocopherols, tocotrienols, and phytosterols from grape seed oil is one of the most popu-
lar applications [66]. Linoleic, oleic, and palmitic acids were found in Bulgarian grape
varieties [67], whereas myristic, palmitoleic, margaric, arachidic, nanodecylic, paullinic,
behenic, and lignoceric acids were obtained from grape cultivars in China [68]. Their recov-
ery involves obtaining grape seed oil, generally using traditional cold screw pressing [69],
solid-liquid extraction using different solvents, supercritical fluid extraction, ultrasound
extraction, [70] or enzymatic hydrolysis [71].

3. Potential Applications of Grape Wastes
3.1. Phenolic Compounds Obtained from Grape Wastes Used for Nanotechnological Formulations

Plant-derived materials are expected to become effective therapeutic modalities for
disease treatment, drug delivery, or other applications (environmental, food packaging,
etc.) that can increase the quality of life. Nanomaterials such as metallic nanoparticles can
be synthesized by bottom-up and top-down approaches from molecules or atoms to bulk
precursors (Figure 3).

The top-down approach covers the destructive methods used to reduce the bulk mate-
rial to nanoparticles (mechanical milling, nanolithography, laser ablation, sputtering, and
thermal decomposition), whereas the bottom-up approach, or the constructive techniques,
are used to build up the material from atoms (sol-gel method, spinning, chemical vapor
deposition, pyrolysis, ionizing radiation assisted synthesis, biosynthesis) [72]. The synthe-
sis methods gathered under the term “biosynthesis,” or “green methods,” are of particular
interest for obtaining nontoxic nanoparticles [73]. Under the large biosynthesis class, the
most encountered methods use bacteria, fungi, or plant extracts, along with the precur-
sors, instead of conventional chemicals for bio reduction and capping purposes. Metal
nanoparticles obtained by biosynthesis using plants represent noble metal nanoparticles
or common metallic nanoparticles. Different types of plant extracts can be used in order
to obtain various compositions, sizes, shapes, and controlled polydispersity [74]. These
methods reduce the use of hazardous chemical reagents and have been proven to be safe
and economically sustainable alternatives. Despite the advantages, a critical step in syn-
thesising metal nanoparticles mediated by plant extracts is their stabilization, mainly to
prevent agglomeration and oxidation processes. Phytoconstituents recovered from grape
waste extracts can act as reducing and capping agents, allowing for the control of the size
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and morphology of the obtained nanoparticles [75]. Figure 4 presents the preparation
methods of different nanomaterials, including the exemplary application of grape waste.
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3.1.1. Metallic Nanoparticles

The use of natural compounds in biological synthesis is an excellent alternative to
classical (physical or chemical) methods used in nanomaterial production [76]. Fruit wastes
represent a significant source of municipal waste. These waste have been evaluated as
reducing and capping agents in the synthesis of nanoparticles (NPs). Due to the abundance
of phenolic compounds, fruit waste extracts possess the property of high nucleophilicity and
can interact with metallic ions through chelation [77]. Moreover, they can reduce metallic
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salts to metallic nanoparticles [78]. Figure 5 presents the synthesis of metal nanoparticles
based on phytoconstituents from grape waste.
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The exact mechanism of the reduction of metallic ions to metallic nanoparticles using
plant extracts is still under debate. The proposed approaches are based on the use of differ-
ent active compounds, including polyphenols, flavonoids, and other bio-active compounds
found in plant material (Figure 6).
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Due to the complex composition of plant extracts, it is impossible to assign a particular
active compound as the primary reducing agent; it is probable that a combination of various
biomolecules found in natural extracts plays a reducing and stabilizing role in a synergic
manner [79]. Obtaining these nanomaterials meets the demand for resource recycling with
practical benefits, no matter what source is used (medicinal and aromatic plants, agro-
food waste, or non-eatable plants), depending on the availability of material acquisition
and considering the simplicity of the extraction process [78,79]. The concentration of the
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recovered compounds, which has a powerful influence on nanomaterial formation, can be
a factor.

The green materials (obtained without hazardous chemicals) can be used for different
applications: medical, environmental, or industrial. Phytoconstituents (such as phenolic
compounds) can form metal-based nanoparticles, alloy nanoparticles, or metal oxide
nanoparticles. However, different parameters, such as pH, contact time, solvent, reaction
temperature, and method adopted, which can tailor the preparation and final application
of nanomaterials, must be considered.

Natural compounds obtained from waste can be used to sustainably maintain the
postharvest quality of the same type of plant that generated the waste. This was pre-
sented in the case of grape seed extract (GSE). To maintain the quality of fresh grapes,
Zhao et al. [80] developed a formulation using grape seed extract-silver nanoparticles for
food packaging. The developed composite of chitosan/AgNP-grape seed extract signif-
icantly reduced decay percentage, total yeast and mold counts, and weight loss, while
maintaining the titratable acidity of grapes. GSE was used as a capping and reducing
agent in the synthesis of AgNP. The material was used successfully against Escherichia coli
O157:H7 and Listeria monocytogenes [80]. For the same purpose, Soto et al. [81] used grape
peel leftovers from winemaking. They proposed the green synthesis of silver nanoparti-
cles with antimicrobial activity against foodborne pathogens [81]. Montagner et al. [82]
developed a hydroalcoholic extraction method to obtain high concentrations of bioactive
compounds from ground grape seeds of the Merlot variety originating from wine produc-
tion residues. Following the phytochemical tests, the authors reported a total phenolic
content ranging from 418.30 to 1473.86 µg of GAE/mL of extract, 387.08–1000.63 µg of cate-
chin equivalent per ml of extract for flavonoids, and 0.14–0.59% for catechins. These grape
seed extracts were also proposed for reuse in developing nanotechnological products with
high added value, such as new functional food ingredients and sustainable packaging [82].
In another study, gold nanoparticles (AuNPs) were phytosynthesized; the reducing agent,
in this case was the aqueous pomace extract. The results demonstrated that AuNPs exhibit
antioxidant and tyrosinase inhibitory properties, as was evaluated using ABTS and enzy-
matic assay. In addition, in vitro assays demonstrated the ability of these NPs to alleviate
H2O2-induced growth inhibition, exhibiting scavenging activity against intracellular reac-
tive oxygen species. The ability of AuNPs to screen solar radiation due to the organic layer
present on their surface was confirmed for up to 200 min. All these data suggested that
AuNPs, obtained with pomace extracts, can be proposed in nanomedicine and cosmetics
as an anti-aging ingredient for skin care products [83]. Silver nanoparticles developed by
Saratele et al. presented significant free radical scavenging activity against DPPH (IC50,
50.0 ± 2.25 µg/mL) and ABTS radicals (IC50, 38.46 ± 1.14 µg/mL), as well as the inhibition
of carbohydrate hydrolyzing enzymes, along with antibacterial properties [84]. Moreover,
grape pomace tannins were found to form silver nanoparticles, showing antidiabetic and
antioxidant potential, as well as antimicrobial activity [85]. Table 2 presents the application
of grape waste in NP formulations.
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Table 2. Different applications of materials obtained using green methods.

Nanomaterial Plant Waste/Type of
Extract Extraction Method Nanomaterial Properties Application Reference

Food packaging application

AgNP GSE/fresh juice -

spherical; 23.8 nm and
12.1 nm

zeta
potential—−37.9 mV

crystallite size—9.9 nm

Antimicrobial effect against A.
niger ATCC16404 and P.

chrysogenum T16
Materials were used as

coatings to maintain the
postharvest quality of grapes

[80]

GPE/classical
temperature

extraction

100 mL of deionized
water and heated at 60 ◦C

for 10 min
spherical; 3 to 14 nm

Antimicrobial effect against
Escherichia coli O157:H7 and

Listeria monocytogenes
[81]

Environmental protection

AgNP GSE/fresh juice - average size of the
AgNPs—54.8 nm

Reductive degradation of
Direct Orange 26 in the

presence of NaBH4

[86]

Vitis labrusca pomace

150 mL of a
hydroalcoholic solution

(50% v/v);
the mixture was

centrifuged for 5 min at
5000 rpm and filtered

spherical and polyhedral
shapes;

2.9–55 nm

Inhibition—75.3% for
Staphylococcus aureus and

15.2% for Enterococcus faecalis
in wastewater

[87]

Medical application

ZnO NPs Grape peels/aqueous
extract

water extract (1:10),
50 ◦C, 1 h

nanocones, average
size—19.36 nm

Bactericidal activity against S.
aureus and P. aeruginosa;

MIC—40 µg/mL;
zone of inhibition (mm)—2–6

[88]

AuNP
Grape

pomace/aqueous
extract

2 g of grape waste in
50 mL of deionized

water, boiled for 5 min

30 nm wide, having a
cubic Au phase

antioxidants and tyrosinase
inhibitors; sun protection

cream
[83]

AgNP
Grape

pomace/ethanolic
extract

solid phase:
ethanol—1:20 20–35 nm

Antioxidant and antibacterial
properties (Escherichia coli and

Staphylococcus aureus)
[84]

AgNP
Grape

pomace/aqueous
extract

aqueous-based solution
at 80 ◦C for 4 h

face centered cubic (FCC)
crystal structure;

15 to 20 nm

Antidiabetic, antioxidant
potential, and antimicrobial

activity
[85]

Nanocellulose/
grape seed

extract/AgNPs

Grape seed extracts
-commercial -

charred residue of
TNC/GSE/AgNPs

film—33.49%
optical transmittance of

80–93%
oxygen permeability

(OP)—
1.027 cm3 m−2·24 h−1

·0.1 MPa−1

E. coli—zone of inhibition
(mm)—2

S. aureus—zone of inhibition
(mm)—6

[89]

Chitosan/alginate
nanoparticles

Grape pomace
extract

enzymatic extraction
followed by freeze-drying

(xylanase produced by
Aspergillus niger 3T5B8

and Viscozyme®

enzymatic commercial
cocktail—(from

Novozymes Bagsvaerd,
Denmark)

zeta potential (mV):
−15 to −25.2

nanoparticle size—400
and 1000 nm

2-log reduction of L.
monocytogenes, P. aeruginosa

and S. enteritidis, and a 1-log
reduction of E. coli

[90]

AgNP—silver nanoparticles; GSE—grape seed extracts; GPL—grape peel extract; MIC—minimum inhibitory
concentration.

3.1.2. Polymeric Nanocomposites

Nanocomposites are of particular interest because of their special composition based
on nano-sized reinforcing agents. These agents were proven to be effective in enhancing the
barrier and mechanical properties of biopolymers due to their high matrix/filler interfacial
area, with the internal layer of the composite materials usually acting as a “transport
vector,” releasing the active compounds [91]. These composite materials possess valuable
properties, such as lower toxicity risks, biocompatibility, biodegradability, recyclability,
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and tunable surface features, for use in healthcare applications. Wu et al. [89] reported
that nanocellulose/grape seed extract/AgNPs composite film has a lower antibacterial
effect against E. coli than that observed against S. aureus (diameter of inhibition zone
(mm)—approx. 2 mm and 6 mm, respectively). These results were probably attributable to
the structural differences in the cell wall of bacteria, with E. coli (Gram-negative bacteria)
having a multilayer structure, based on a peptidoglycan layer, a lipoprotein layer, and a
phospholipid or lipopolysaccharide layer, thus not allowing for the optimal penetration of
AgNPs [89]. Grape pomace extract (GPE) produced by enzymatic extraction followed by
freeze-drying, encapsulated into chitosan and alginate nanoparticles, was demonstrated
by Costa et al. [90] to be a good candidate for oral delivery applications. They presented
permeability studies across a Caco-2/HT29-MTX co-culture model, demonstrating that the
encapsulation of GPE decreased the permeability of xylobiose, thus offering a beneficial
retention time in the intestine and potentially improving the prebiotic potential of grape
pomace extract [90].

In addition, these materials can be used as main ingredients in the food packaging
industry. Biopolymers, such as starch, represent a challenge for food packaging because
bacteria may metabolize them. With an enhanced demand for biodegradable packaging,
there is a need to functionalize the biopolymers with bioactive compounds to prevent
bacterial and fungal attacks [92]. Xu et al. incorporated grape pomace extract into tapioca
starch active nanocomposite films for ready-to-eat chicken meats, proving an antibacterial
activity against L. monocytogenes inoculated onto the meat samples during the 10-day
storage period at 4 ◦C [93].

3.1.3. Lipidic Materials

Lipid membranes uploaded with different target compounds are used as an innovative
drug carrier for more effective and efficient ways to treat various diseases, such as cancers,
inflammations, or immune-related diseases. This natural, environmentally friendly, safe,
and affordable formulation, suitable for healthcare applications, can be developed with
limited economic and environmental costs.

Perra et al. [94] studied the polyphenols extracted from grape pomace for their possible
incorporation into phospholipid vesicles for intestinal delivery. The grape pomace was
subjected to a slow extraction by maceration with ethanol, and phytochemical analysis
identified malvidin-3-glucoside (55.8 mg/100 g), quercetin (67.0 mg/100 g), procyanidin B2
(98.1 mg/100 g), and gallic acid (43.2 mg/100 g) as major bioactive compounds. The grape
pomace extract and soy lecithin were subsequently used as the basic components of the
formulations. The researchers claim that phospholipid vesicles loaded with pomace grape
extracts successfully protected Caco-2 cells (model of human colon-rectal intestinal epithe-
lial cells) against oxidative stress, representing a promising delivery system for disease
prevention and treatment [94]. Moreover, Manconi et al. [95] reported polymer-associated
liposomes loaded with the grape pomace extract as a potential candidate for protection
against oxidative stress in Caco-2 cells. Phenolics obtained from red grapes offered protec-
tion from degradation in the gastrointestinal environment, thus allowing the extract to exert
its beneficial effect against oxidative stress at a cellular level [95]. Manca et al. demonstrated
that polyphenols from grape pomace obtained from hydroalcoholic ultrasound extract and
incorporated in liposomes are highly cytocompatible and can promote the proliferation
of keratinocytes and fibroblasts [96]. In the case of a food product based on proteins and
polyphenolic compounds, e.g., dairy beverages containing fruit juices, the interactions
between these molecules may damage the product by causing precipitation and giving the
product an astringent taste. This problem can be solved by the encapsulation of phenolics
in the chitosan-coated liposomes, weakening the interactions between components [97].
The extract from seeds recovered from grape pomace, containing bioactive compounds
such as epicatechins, catechin, gallic acid, quercetin, and procyanidins, was incorporated
into phospholipid vesicles for intestinal delivery. The addition of maltodextrin allowed for
remarkable resistance to acidic pH and high ionic strength, retaining the physicochemical
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stability of the nanovesicle, and counteracting the hydrogen peroxide-induced oxidative
damage in Caco-2 cells [98]. Those nanovesicles (transferosomes and hyalurosome) im-
proved the efficacy of different bioactive compounds or phytocomplexes.

3.2. Other Target Compounds from Grape Waste for Different Applications

The pharmaceutical and cosmetic industries are the primary beneficiaries of value-
added products recovered from grape waste. However, grape wastes can also be used
for other applications. The food industry can utilize wastes in different forms, including
liquid, concentrate, or powder, focusing on all kinds of extracts exhibiting high antioxidant
capacity, antibacterial properties, and delayed lipid oxidation [99]. Target compounds
recovered from grape pomace can be used as food protectors due to their antioxidant
ability to prevent lipid oxidation in fish-based products [100] and as replacers for synthetic
antioxidants in pork meat [101] or lamb products [102]. Fibers obtained from pomace
can reduce the rate of hydration and gluten development. Šporin et al. reported that
incorporating grape pomace into flour (6%, 10%, and 15%, w/w flour basis) could increase
wheat dough development and improve its rheological properties due to the changes in
the dietary fiber content [103]. The soluble fibers may act as stabilizers in functional foods,
preventing water mobility by forming a three-dimensional network with water, especially in
dairy products [104]. Dietary fiber from grape waste has the property of gelling, thickening,
and improving air incorporation in creamy products, such as ice creams [36]. Winery
by-products have extensive uses, from possible prebiotic functions [105] to increasing the
shelf life of seafood [106].

4. Challenges and Perspectives for Grape by-Products

Grape by-products are rich in phenolic compounds, but their recovery may sometimes
be challenging. Grape secondary metabolites are perishable in the presence of oxygen, high
temperature, elevated pH, and solvents, so the extraction parameters are decisive factors
for their proper recovery [107]. Depending on their final application, the solvent used for
extraction must be GRAS (generally recognized as safe), without showing any toxic effects.
The use of non-toxic solvents with high-affinity levels and the optimization of extraction
conditions can eliminate the toxicity problem, reduce extraction time, and lower the costs
required to obtain the active ingredients [108]. The main challenge in the recovery strategy
is developing methods with the capacity to simultaneously extract several ingredients.
Due to the instability of the active ingredients, nano- and microencapsulation techniques
are promising alternatives in this context. Biomass-derived nanomaterials are considered
to have great potential for a diversity of applications due to new technologies being
intensely developed.

Besides the beneficial health effects of grape waste-enriched nanomaterials, the toxico-
logical issues should also be taken into consideration, the most important of which is the
release of antimicrobials from enriched wound dressing materials or food packaging into
the environment. There is also a high risk for the transfer of active ingredients from food
packaging into food, leading to oral exposure and possible changes in natural intestinal
microflora. Similarly, using silver or gold in nanomaterials can result in the release of metal
ions and their transfer into the central nervous system [109]. Therefore, extensive studies
are required to confirm the safety of all new applications before they are introduced for
wide use.

The full implementation of the herein-described methods and approaches requires
improving the knowledge of individual processes, from the characterization of wastes
and their extraction to the final application. Implementing these processes on a pilot scale
could also be the subject for further studies. The proper management of residues from
the agro-food sector can turn valuable wastes into raw materials for other industries, thus
increasing the economic competitiveness and resilience of the agro-industrial sector.



Nanomaterials 2023, 13, 836 13 of 18

5. Conclusions

Plant-derived waste materials are expected to become effective therapeutic modali-
ties for disease treatment, drug delivery, and other industrial or environmental applica-
tions. Agricultural or industrial waste-enriched nanomaterials can be obtained as metallic
nanoparticles, polymeric nanocomposites, or lipidic nanopolymers. Metallic nanoparticles
can be synthesized by bottom-up and top-down approaches. Fruit wastes represent a signif-
icant source of municipal waste and have been evaluated as reducing and capping agents
in the synthesis of metallic nanoparticles. Due to their composition rich in phenolic com-
pounds, these extracts possess the property of high nucleophilicity and can interact with
metallic ions through chelation. The obtained metallic nanomaterials present antidiabetic,
antioxidant, and antimicrobial properties, as well as the inhibition of carbohydrate hy-
drolyzing enzymes. Polymeric nanocomposites are of particular value due to their unique
composition, based on nano-sized reinforcing agents, which have proven to be effective in
enhancing biopolymer barriers and mechanical properties. These composite materials have
desirable properties, such as lower toxicity risks, biocompatibility, biodegradability, recycla-
bility, and tunable surface features, making them ideal for healthcare applications. The last
class of discussed nanomaterials is lipid membranes, which, when uploaded with different
compounds, can be used as innovative drug carriers targeting cancer, inflammation, or
immune-related diseases. The development of these natural, environmentally friendly, safe,
and affordable formulations, suitable for healthcare applications, can be achieved with
limited economic and environmental costs. The primary applications of grape waste-based
nanomaterials are pharmaceutics and cosmetics; nevertheless, the food industry, as well as
the medical component and device industries, are also potential beneficiaries.
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