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Abstract: In this study, the electrical properties of Al2O3 film were analyzed and optimized to improve
the properties of the passivation layer of CMOS image sensors (CISs). During Al2O3 deposition
processing, the O2 plasma exposure time was adjusted, and H2 plasma treatment as well as post-
metallization annealing (PMA) were performed as posttreatments. The flat-band voltage (Vfb) was
significantly shifted (∆Vfb = 2.54 V) in the case of the Al2O3 film with a shorter O2 plasma exposure
time; however, with a longer O2 plasma exposure time, Vfb was slightly shifted (∆Vfb = 0.61 V) owing
to the reduction in the carbon impurity content. Additionally, the as-deposited Al2O3 sample with
a shorter O2 plasma exposure time had a larger number of interface traps (interface trap density,
Dit = 8.98 × 1013 eV−1·cm−2). However, Dit was reduced to 1.12 × 1012 eV−1·cm−2 by increasing the
O2 plasma exposure time and further reduced after PMA. Consequently, we fabricated an Al2O3 film
suitable for application as a CIS passivation layer with a reduced number of interface traps. However,
the Al2O3 film with increased O2 plasma exposure time deteriorated owing to plasma damage after
H2 plasma treatment, which is a method of reducing carbon impurity content. This deterioration was
validated using the C–V hump and breakdown characteristics.

Keywords: high-k gate dielectric; Al2O3; H2 plasma treatment; interface trap; plasma-enhanced
atomic layer deposition

1. Introduction

Recently, the importance of CMOS image sensor (CIS) technology has rapidly increased
owing to its relevance in mobile products and autonomous driving. As electronic products
become ever-smaller in size, smaller CIS devices are also required. Therefore, CIS devices
must be scaled, similar to other semiconductor devices. The pixel size of the CIS image
sensor has been rapidly scaled, limiting the number of photons entering the pixel. In
addition, as a result of scaling, light reflection occurred, causing light loss and cross-talk
issues [1]. Therefore, a backside illumination-type CIS device that illuminates the rear side
of the device was developed [2]. However, the backside illumination structure is adversely
affected by dark currents and noise. Hence, in order to decrease dark current and increase
quantum efficiency, research on the development of high-k materials for application as a
CIS passivation dielectric layer is necessary.

Al2O3, which is a high-k dielectric material, has a wide energy bandgap and high
thermal stability; therefore, it is suitable for application as a passivation dielectric film for
CIS [3,4]. In addition, unlike other dielectric films, Al2O3 has negative fixed charges and
shows excellent passivation characteristics [5]. In most semiconductor devices such as
complementary metal oxide semiconductors (CMOSs), fixed charges act as defects [6]. Thus,
many studies have been conducted to control these negative fixed charges [7]. However, in
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the CIS device, a passivation dielectric layer is required to contain high fixed charges for
field effect passivation. Therefore, Al2O3 is a suitable dielectric material as a passivation
layer of CIS. However, a dielectric film with fewer impurities is required for fabricating
a more precise CIS device, and defects in Al2O3 must be further cured. In particular,
for application as a dielectric film, the interface trap density (Dit) should be reduced to
increase the amount of light absorbed. There are several causes of trap generation in the
interface area between Al2O3 dielectric and substrate. If the Al2O3 dielectric is deposited
on the silicon substrate, the hydroxyl group (-OH) and Si are bonded, which may act as an
interface trap [8]. In another case, carbon impurities generated during the Al2O3 deposition
process act as interface traps.

Carbon impurities were generated after the Al2O3 film was deposited via plasma-
enhanced atomic layer deposition (PEALD) using trimethylaluminum as a precursor [9].
These impurities act as traps inside the Al2O3 and in the interface region. Previously,
residual carbon was removed using the H2 plasma treatment of an Al2O3 film [10]. The
quality of the dielectric and interface areas increased with a decrease in carbon impurity
contents. In addition, posttreatments provided sufficient fixed charges for the Al2O3
dielectric to be used as the passivation layer of the CIS [11,12]. However, a low Dit is
required for next-generation CIS devices. Although well-known defects, such as oxygen
vacancies, have been investigated [13], limited studies have been conducted to reduce
residual carbon contents, except by changing the precursor [14].

In this study, the oxygen plasma exposure time was adjusted during Al2O3 deposition
to reduce the residual carbon content. The increased O2 plasma exposure time sufficiently
decreased the Dit of the Al2O3 gate stack. Consequently, it showed a considerably lower
Dit compared with that of the sample processed via rapid thermal annealing and H2
plasma treatment on Al2O3, which exhibited the lowest Dit in a previous study [10]. In
particular, Dit was the lowest after post-metallization annealing (PMA) to Al2O3 samples
with increased O2 plasma exposure time. In addition, a positive shift in flat-band voltage
(∆Vfb) was prevented by reducing carbon generation. However, Dit increases when H2
plasma treatment is performed after Al2O3 deposition. Plasma damage and residual
hydrogen impurities were caused by excessive H2 plasma treatment on Al2O3 dielectric
and were validated using the C–V hump occurring in the capacitance vs. voltage (C–VG)
measurement curve.

2. Experimental Materials and Methods

As shown in Figure 1, an Al2O3 film was deposited on a Si substrate at 275 ◦C using
PEALD. Substrate included moderately doped p-type Si (1–30 Ω·cm, (100)) with a doping
concentration of ~1.3 × 1016 cm−3. Prior to deposition of the Al2O3 layer, Si substrates were
cleaned by dipping in a NH4OH:H2O2:H2O mixture (1:1:5 by volume), known as Standard
Clean 1 (SC1), for 10 min at 70 ◦C, followed by dipping in dilute HF (100:1) for 1 min
to remove native oxides. For deposition of Al2O3 dielectric, a commercial 200 mm wafer
plasma-enhanced vapor deposition (PECVD; Quros Plus 200) was used. As a precursor,
Trimethylaluminum (TMA, Al(CH3)3) (Up chemical co. Ltd., Pyeongtaek, Gyeonggi-do,
Republic of Korea; 99.9999%) was supplied. For sequential surface reactions, O2 plasma
was supplied with TMA. The O2 plasma exposure times were 3 and 7 s. During the
deposition, an Al(CH3)3 container temperature of 25 ◦C, an Ar purge flow rate of 500 sccm,
an O2 flow rate of 100 sccm and a chamber pressure of 0.4 mTorr were used. Al electrode
with a diameter of 300 µm and an area of 7.06 × 104 µm2 was deposited on the Al2O3
dielectric using an e-beam evaporator. The thickness of the Al2O3 film was measured
using transmission electron microscopy (TEM; JEM-2100F; JEOL KOREA LTD., Seoul,
Republic of Korea) and ellipsometry (M-2000; J. A. Woollam Co., Anyang, Gyeonggi-do,
Republic of Korea). After Al2O3 deposition, H2 plasma treatment and PMA were performed
separately depending on the sample (Table 1). H2 plasma treatment was performed with a
H2 gas flow rate ratio {[H2] = ([H2] + [Ar])} of 0.89 in a PECVD chamber for 15 min. PMA
was performed at 400 ◦C under a N2 gas flow in a furnace for 30 min. The N2 gas flow
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rate {[N2] = ([N2] + [H2])} was 0.95 (gas pump: 100 sccm; pressure: 0.7 atm). Under the
N2 gas flow, the temperature increased from 25 ◦C to 400 ◦C in 1 h and then decreased
from 400 ◦C to 25 ◦C in 2 h. Secondary ion mass spectrometry (SIMS) measurements were
conducted on a circular area with a diameter of 33 µm using the Cs+ software. Selective area
diffraction pattern (SADP) analysis was carried out to determine crystallinity of the Al2O3
film. The capacitance and conductance were measured using a B1520A multifrequency
capacitance measurement unit at various frequencies (1 kHz–1 MHz). The leakage current
and breakdown field were measured using a Keithley 4200-SCS instrument (Tektronix
KOREA, Seoul, Republic of Korea). Dit (≈2.5(qA)−1(Gp/ω)max) was calculated following
the well-known conductance method [15]:

Gp/ω = C2
OXGMω−1/

{
(GM/ω)2 + (COX − CM)2

}
(1)

where q = 1.6 × 1019 C; A is the area of the electrode; (Gp/ω)max is the normalized parallel
conductance peak; COX is the capacitance in strong accumulation; CM is the measured
capacitance; and GM is the measured conductance.
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Figure 1. Process flow for the fabrication of the Al/Al2O3/Si gate stack.

Table 1. Al2O3 samples under deposition conditions (O2 plasma exposure time: 3 and 7 s) and
posttreatment conditions (H2 plasma treatment and post-metallization annealing (PMA)).

Samples O2 Plasma Exposure Time (s) H2 Plasma Treatment PMA

S1_as_dep 3 X X
S1_H2_plamsa 3 O X

S1_PMA 3 X 400 ◦C; 30 min
S1_H2 plasma + PMA 3 O 400 ◦C; 30 min

S2_as_dep 7 X X
S2_H2_plamsa 7 O X

S2_PMA 7 X 400 ◦C; 30 min
S2_H2 plasma + PMA 7 O 400 ◦C; 30 min

3. Results and Discussion
3.1. Post-Metallization Annealing

Al2O3 was deposited via PEALD using trimethylaluminum as the precursor and O2
plasma. A flux of O* radicals reacts with methyl groups and is effused in the COX (x = 1–2)
state [16]. However, residual carbon is generated when a sufficient reaction is not performed
and acts as a defect in the inner and interfacial regions of Al2O3. Accordingly, the O2 plasma
exposure time was increased to 7 s to ensure a sufficient response.

The TEM image of the as-deposited Al2O3 film is shown in Figure 2a. An Al2O3 film
with a thickness of 30 nm was deposited on the Si substrate, and Al electrode was deposited
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on the Al2O3 dielectric. No interfacial layer (IL) was formed at the interface between Si
and Al2O3. Additionally, based on the SADP in Figure 2a, the as-deposited Al2O3 is in an
amorphous state.
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PMA was performed at 400 ◦C for 30 min after Al2O3 film deposition. After PMA on
the Al2O3 film, oxygen in the dielectric film diffused toward the Si substrate. Accordingly,
Si and oxygen form a bond in the SiOX (x = 1–2) state, thereby forming an IL with a thickness
of 2.5 nm [8,17] (Figure 2b). As IL was formed between Al2O3 and Si, the thickness of Al2O3
decreased from 28.7 to 26.9 nm after PMA. Furthermore, as shown in SADP, amorphous
Al2O3 is converted to polycrystalline Al2O3 via PMA [18].

The normalized capacitance vs. voltage curves before and after PMA of S1 and S2 are
shown in Figure 3. The graphical ((COX/CMOS)2 − 1)(VG) method [19] was applied to the
normalized capacitance vs. voltage curve to extract Vfb. The Vfb of as-deposited S1 was
1.65 V, showing a considerable flat-band voltage shift (∆Vfb ≈ 2.54 V) compared with the
theoretical value of Al2O3 dielectric (Vfb ≈ −0.89 V). This Vfb shift resulted from defects,
such as carbon impurities that occur during Al2O3 deposition via PEALD. However, in
the case of S2 samples with an increased O2 plasma exposure time, the Vfb of S2_as_dep is
0.61 V, exhibiting a smaller ∆Vfb compared with that of S1. This is because the amount of
negatively charged defects inside S2 is smaller than that of S1.

Nanomaterials 2023, 13, 731 5 of 12 
 

 

 
Figure 3. Normalized capacitance vs. voltage graph and graphical ((COX/CMOS)2 − 1)(VG) method to 
extract the flat-band voltage (Vfb) of Al2O3 samples with and without PMA (frequency = 1 MHz). 

Vfb increased by 0.54 V after PMA in the case of Al2O3 samples with short O2 plasma 
exposure times. Internal defects that form bonds with carbon impurities have a negative 
charge and diffuse toward Si [10,14]. However, in the case of S2 samples with long O2 
plasma exposure times, the change in Vfb was as small as 0.2 V owing to a decrease in the 
defects that can be diffused. 

The permittivity of Al2O3 samples before and after PMA is shown in Figure 4. The 
permittivity is 9.5 in the case of the as-deposited S1 sample, which is similar to the gener-
ally known permittivity value of amorphous Al2O3 (6–9) [18,20]. However, an IL of SiOX 
(x = 1–2) is formed between Al2O3 and Si after PMA, slightly decreasing the permittivity. 
The permittivity of the as-deposited S2 sample is 12.5, which is considerably higher than 
that of the S1 sample. This is because of the decrease in the content of various defects and 
the increase in the internal carbon concentration owing to the longer O2 plasma exposure 
time. After PMA on the as-deposited S2 sample, the permittivity decreases to 10.5 because 
an IL of SiOx (x = 1–2) is formed between Al2O3 and Si like the S1 sample. However, the 
S2_PMA sample still showed a higher permittivity than the S1 samples with shorter O2 
plasma exposure time. 

 
Figure 4. Permittivity of Al2O3 samples under deposition conditions (O2 plasma exposure time: 3 
and 7 s) and post-metallization annealing (PMA). 

-5 0 5

0.0

0.5

1.0

N
or

m
al

iz
ed

 C
ap

ac
ita

nc
e

Gate Voltage [V]

 S1_as_dep
 S1_PMA
 S2_as_dep
 S2_PMA

− 0.89V

-2 -1 0 1 2 3

(C
ox

/C
m

os
)2 −1

Gate Voltage [V]
0

S1_as_dep S1_PMA S2_as_dep S2_PMA

8

9

10

11

12

13

14

Pe
rm

itt
iv

ity

Figure 3. Normalized capacitance vs. voltage graph and graphical ((COX/CMOS)2 − 1)(VG) method
to extract the flat-band voltage (Vfb) of Al2O3 samples with and without PMA (frequency = 1 MHz).
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Vfb increased by 0.54 V after PMA in the case of Al2O3 samples with short O2 plasma
exposure times. Internal defects that form bonds with carbon impurities have a negative
charge and diffuse toward Si [10,14]. However, in the case of S2 samples with long O2
plasma exposure times, the change in Vfb was as small as 0.2 V owing to a decrease in the
defects that can be diffused.

The permittivity of Al2O3 samples before and after PMA is shown in Figure 4. The
permittivity is 9.5 in the case of the as-deposited S1 sample, which is similar to the gen-
erally known permittivity value of amorphous Al2O3 (6–9) [18,20]. However, an IL of
SiOX (x = 1–2) is formed between Al2O3 and Si after PMA, slightly decreasing the per-
mittivity. The permittivity of the as-deposited S2 sample is 12.5, which is considerably
higher than that of the S1 sample. This is because of the decrease in the content of various
defects and the increase in the internal carbon concentration owing to the longer O2 plasma
exposure time. After PMA on the as-deposited S2 sample, the permittivity decreases to
10.5 because an IL of SiOx (x = 1–2) is formed between Al2O3 and Si like the S1 sample.
However, the S2_PMA sample still showed a higher permittivity than the S1 samples with
shorter O2 plasma exposure time.

Nanomaterials 2023, 13, 731 5 of 12 
 

 

 
Figure 3. Normalized capacitance vs. voltage graph and graphical ((COX/CMOS)2 − 1)(VG) method to 
extract the flat-band voltage (Vfb) of Al2O3 samples with and without PMA (frequency = 1 MHz). 

Vfb increased by 0.54 V after PMA in the case of Al2O3 samples with short O2 plasma 
exposure times. Internal defects that form bonds with carbon impurities have a negative 
charge and diffuse toward Si [10,14]. However, in the case of S2 samples with long O2 
plasma exposure times, the change in Vfb was as small as 0.2 V owing to a decrease in the 
defects that can be diffused. 

The permittivity of Al2O3 samples before and after PMA is shown in Figure 4. The 
permittivity is 9.5 in the case of the as-deposited S1 sample, which is similar to the gener-
ally known permittivity value of amorphous Al2O3 (6–9) [18,20]. However, an IL of SiOX 
(x = 1–2) is formed between Al2O3 and Si after PMA, slightly decreasing the permittivity. 
The permittivity of the as-deposited S2 sample is 12.5, which is considerably higher than 
that of the S1 sample. This is because of the decrease in the content of various defects and 
the increase in the internal carbon concentration owing to the longer O2 plasma exposure 
time. After PMA on the as-deposited S2 sample, the permittivity decreases to 10.5 because 
an IL of SiOx (x = 1–2) is formed between Al2O3 and Si like the S1 sample. However, the 
S2_PMA sample still showed a higher permittivity than the S1 samples with shorter O2 
plasma exposure time. 

 
Figure 4. Permittivity of Al2O3 samples under deposition conditions (O2 plasma exposure time: 3 
and 7 s) and post-metallization annealing (PMA). 

-5 0 5

0.0

0.5

1.0

N
or

m
al

iz
ed

 C
ap

ac
ita

nc
e

Gate Voltage [V]

 S1_as_dep
 S1_PMA
 S2_as_dep
 S2_PMA

− 0.89V

-2 -1 0 1 2 3

(C
ox

/C
m

os
)2 −1

Gate Voltage [V]
0

S1_as_dep S1_PMA S2_as_dep S2_PMA

8

9

10

11

12

13

14

Pe
rm

itt
iv

ity

Figure 4. Permittivity of Al2O3 samples under deposition conditions (O2 plasma exposure time:
3 and 7 s) and post-metallization annealing (PMA).

The decrease in the carbon impurity content with increasing O2 plasma exposure
time was validated using SIMS depth profiling. As shown in Figure 5, the amount of
carbon impurities in the Al2O3 film deposited with an O2 plasma exposure time of 7 s
is considerably less than that of the Al2O3 sample deposited with a shorter O2 plasma
exposure time. As the O2 plasma exposure time increased, more carbon was effused into
the COX (x = 1–2) gas state through numerous reactions between the oxygen plasma and
carbon [16]. If the O2 plasma exposure time is more than 7 s, there is a possibility of
improvement as much as carbon is reduced. However, there is a limit to effuse through
the reaction with carbon, and the improvement effect is expected to be saturated as carbon
is reduced.

To apply Al2O3 as a passivation dielectric film, the quality of the interface region
between Si and Al2O3 is crucial. Carbon in Al2O3 acts as an interface trap in the interface
region between the Al2O3 dielectric and Si substrate [21]. The parallel conductance versus
frequency plots of the Al2O3 films with various Dit values are shown in Figure 6. Dit
was measured using the conductance method [13]. The Dit of the S1_as_dep sample was
8.98 × 1013 eV−1·cm−2, whereas that of the S2_as_dep sample was 1.12 × 1012 eV−1·cm−2.
The interface traps of the S2 sample decreased with a decrease in the carbon impurity con-
tent in the interface area with increasing O2 plasma exposure time. After PMA, the interface
region between the Al2O3 dielectric and Si was improved due to various reasons. First, an
IL was formed after the application of PMA to the Al2O3 gate stack. Therefore, the number
of hydroxyl groups is reduced, thereby decreasing the number of interface traps [22]. For
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other reason, as crystallization of Al2O3 occurred due to PMA, defects and dangling bonds
acting as traps in the interface region were removed. In addition, crystallization of the
Al2O3 dielectric stabilized the bond between the Al2O3 and Si substrate [10].
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Figure 6. GP/w vs. frequency curves of Al2O3 samples with and without PMA for measuring
interface trap density (Dit).

In summary, the number of interface traps of the S2_PMA sample, in which the
concentrations of both carbon impurities and hydroxyl groups were reduced, were the
lowest in this study (Dit = 1.35 × 1011 eV−1·cm−2).

The interface improvement owing to the increase in the O2 plasma exposure time
was also validated using the breakdown characteristics. The gate leakage current with an
increase in the electrical field of the S1 and S2 Al2O3 samples is shown in Figure 7a. In the
case of S1_as_dep, the breakdown occurred at 9.73 MV/cm. The breakdown characteristics
improved after PMA was performed owing to the formation of an IL, which occurred at
11.47 MV/cm. However, breakdown did not occur until the application of the maximum
electric field (14 MV/cm) of the 4200-SCS equipment in the case of the S2 sample. Further-
more, breakdown did not occur in the case of the S2_as_dep sample without the IL. This
was because of the reduction in the impurity content in the interface area with an increase
in the O2 plasma exposure time.
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In addition, the FN plots to validate the improvement in the interface quality are
shown in Figure 7b. The FN plot is analyzed using the leakage current density caused by
FN tunneling, JFN, and can be described as follows:

JFN = AE2 exp(−B/E), (2)

where
A = q3m0/(8πhm∗ΦB),

and
B = 4(2m∗)

1
2 (qΦB)

3
2 /(3qh/2π),

where A is the Richardson’s constant; q is the electronic charge; h is Planck’s constant; m0 is
the free electron mass; m∗ is the effective electron mass in the oxide; and ΦB is the barrier
height [23]. The steeper the slope in the FN plot, the larger the FN barrier height ΦB [4].
Since the absolute value of the slope of the S2_as_dep sample (slope = −182.06) is larger
than that of the S1_as_dep sample (slope = −103.28), it means that the barrier height is
higher in S2_as_dep. Therefore, the FN plot shows that the interface region of Al2O3/Si
was improved in the S2 sample with increased O2 plasma exposure time.

In summary, the increase in the O2 plasma exposure time decreases the carbon content
in Al2O3, which reduces Dit, improves the breakdown field, and prevents the Vfb shift.
However, the H2 plasma treatment decreased the quality of the oxide and interface owing
to the increase in the O2 plasma exposure time, which is discussed later.

3.2. H2 Plasma Treatment

H2 plasma treatment significantly decreased the carbon impurity content in Al2O3
in previous studies [10], thereby preventing the Vfb shift and improving the breakdown
characteristics. However, further improvements in the interface quality is required for
next-generation CIS devices. Therefore, we analyzed the effects of the H2 plasma treatment
on Al2O3 films with increasing O2 plasma exposure time.

Dit values depending on various treatments on the Al2O3 samples are shown in
Figure 8. The average Dit of the sample with the H2 plasma treatment was
4.45 × 1012 eV−1·cm−2, which was significantly smaller than that of as-deposited S1. How-
ever, the average Dit of the sample with the H2 plasma treatment was 1.13 × 1012 eV−1·cm−2

in the case of S2 samples with an increased O2 plasma exposure time, which increased
compared with the average Dit of as-deposited S2 (Dit,as_dep S2 = 5.79 × 1011 eV−1·cm−2). A
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similar trend was observed after PMA. Dit was higher in the S2 sample with the H2 plasma
treatment and PMA than that of the S2 sample treated with only PMA.
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Figure 8. Interface trap density (Dit) of Al2O3 samples under deposition conditions; O2 plasma
exposure time: 3 (left side) and 7 s (right side) and posttreatment conditions: H2 plasma treatment
and post-metallization annealing (PMA).

A large amount of carbon impurities was removed owing to the increased O2 plasma
exposure time in the S2 sample. Therefore, there are not enough carbon impurities for
the reaction with the H2 plasma. As a result, owing to the excessive postprocessing H2
plasma treatment on the S2 sample, H impurities remained inside the Al2O3 film [24].
In addition, additional H2 plasma treatment for carbon impurities, whose content was
reduced owing to an increase in the O2 plasma exposure time, had a more significant effect
on the formation of defects owing to damage due to the plasma treatment compared with
the effects of curing defects owing to carbon content reduction [25]. In conclusion, in the
case of the S2 sample with increased O2 plasma exposure time, excessive postprocessing
H2 plasma treatment caused residual H impurities and plasma damage, which contributed
to increase Dit by forming dangling bonds in interface region.

Using the capacitance vs. voltage curve, the plasma damage to the gate stack was
confirmed. The normalized capacitance before and after the H2 plasma treatment in the S2
sample with an increased O2 plasma exposure time is shown in Figure 9. In contrast to the
S2_as_dep sample, the C–V hump occurs near Vfb in the S2_H2 plasma sample. Therefore,
the hydrogen plasma, which should be effused via the reaction with carbon, damaged the
Al2O3 dielectric.

The formation of defects in the oxide and interface regions of the S2 sample owing to
the H2 plasma treatment resulted in more leakage flow in the gate stack. In contrast to the
S2_as_dep sample, where breakdown does not occur even under the electric field limit of
the 4200-SCS equipment (Efield = 14 MV/cm), the breakdown occurs at 11.2 MV/cm in the
S2_H2 plasma sample (Figure 10). As a result, in the case of the Al2O3 film with increased
O2 plasma exposure time, H2 plasma treatment rather deteriorates the interface quality
between Al2O3 dielectric and Si.

In summary, H2 plasma treatment has different effects depending on the O2 plasma
exposure time during deposition of the Al2O3 dielectric. H2 plasma treatment was effective
for S1 samples with a large amount of carbon impurities because of the short O2 plasma
exposure time. Due to the reduction of carbon impurities, the Dit of the S1 sample was
greatly reduced after H2 plasma treatment. However, the treatment effects on S2 samples
was rather poor, resulting in reduced carbon content owing to the long O2 plasma exposure
time. H2 plasma treatment produced residual H impurities in the S2 samples and also
caused plasma damage. Therefore, H2 plasma treatment rather increased Dit in the Al2O3
with increased O2 plasma exposure time.
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exposure time.

4. Conclusions

The criterion of fixed charges in the Al2O3 film for application as a CIS passivation
layer was satisfied in a previous study; however, the issue of interface traps remained
unresolved. Further improvement in the interface area is required for Al2O3 to be used as
a passivation dielectric layer. Therefore, this study investigated the conditions to reduce
defect contents and the Dit of the Al2O3 film. The carbon content inside the Al2O3 was
significantly decreased by adjusting the O2 plasma exposure time to induce more reactions
during dielectric deposition. Dit was significantly decreased owing to the reduction in the
amount of carbon impurities, and the improvement in the interface region was validated
using the breakdown characteristics. Moreover, H2 plasma treatment effectively reduced
Dit in Al2O3 films with a short O2 plasma exposure time during deposition. However, H2
plasma treatment of the Al2O3 film deposited with a long O2 plasma exposure time rather
increased Dit due to plasma damage. PMA slightly decreased the permittivity after Al2O3
deposition; however, Dit significantly decreased. In particular, in the case of Al2O3 samples
with increased O2 plasma exposure time, after PMA, it had the lowest Dit, which is suitable
for use as a passivation layer for CIS.
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