
Citation: Cojocaru, C.; Pascariu, P.;

Enache, A.-C.; Bargan, A.; Samoila, P.

Application of Surface-Modified

Nanoclay in a Hybrid

Adsorption-Ultrafiltration Process for

Enhanced Nitrite Ions Removal:

Chemometric Approach vs. Machine

Learning. Nanomaterials 2023, 13, 697.

https://doi.org/10.3390/nano13040697

Academic Editors: Glaydson

Simoes dos Reis and Chandrasekar

M. Subramaniyam

Received: 19 January 2023

Revised: 6 February 2023

Accepted: 8 February 2023

Published: 10 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Application of Surface-Modified Nanoclay in a Hybrid
Adsorption-Ultrafiltration Process for Enhanced Nitrite Ions
Removal: Chemometric Approach vs. Machine Learning
Corneliu Cojocaru 1,* , Petronela Pascariu 2, Andra-Cristina Enache 1 , Alexandra Bargan 1

and Petrisor Samoila 1

1 Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry,
41A Grigore Ghica Voda Alley, 700487 Iasi, Romania

2 Laboratory of Physical Chemistry of Polymers, “Petru Poni” Institute of Macromolecular Chemistry,
41A Grigore Ghica Voda Alley, 700487 Iasi, Romania

* Correspondence: cojocaru.corneliu@icmpp.ro

Abstract: Herein, we report the results of a study on combining adsorption and ultrafiltration in a
single-stage process to remove nitrite ions from contaminated water. As adsorbent, a surface-modified
nanoclay was employed (i.e., Nanomer® I.28E, containing 25–30 wt. % trimethyl stearyl ammo-
nium). Ultrafiltration experiments were conducted using porous polymeric membranes (Ultracel®

10 kDa). The hybrid process of adsorption-ultrafiltration was modeled and optimized using three
computational tools: (1) response surface methodology (RSM), (2) artificial neural network (ANN),
and (3) support vector machine (SVM). The optimal conditions provided by machine learning (SVM)
were found to be the best, revealing a rejection efficiency of 86.3% and an initial flux of permeate of
185 LMH for a moderate dose of the nanoclay (0.674% w/v). Likewise, a new and more retentive
membrane (based on PVDF-HFP copolymer and halloysite (HS) inorganic nanotubes) was produced
by the phase-inversion method, characterized by SEM, EDX, AFM, and FTIR techniques, and then
tested under optimal conditions. This new composite membrane (PVDF-HFP/HS) with a thickness of
112 µm and a porosity of 75.32% unveiled an enhanced rejection efficiency (95.0%) and a lower initial
flux of permeate (28 LMH). Moreover, molecular docking simulations disclosed the intermolecular
interactions between nitrite ions and the functional moiety of the organonanoclay.

Keywords: nanoclay; adsorption; ultrafiltration; nitrite removal; modeling; machine learning

1. Introduction

Anionic species such as nitrite (NO2
−) and nitrate (NO3

−) play an essential role in the
biogeochemical cycle of nitrogen in nature. However, high nitrite and nitrate concentra-
tions in natural waters are very toxic to human health [1]. Generally, nitrite ions are more
hazardous than nitrate ions. Therefore, the maximum admissible concentration for nitrite
(NO2

−) is about 100-fold less than that of nitrate (NO3
−). For instance, according to the

European Council Directive (98/83/EC), the maximum allowed concentration for nitrate
(NO3

−) in drinking water was established at 50 mg/L, whereas for nitrite (NO2
−) the max-

imum admissible concentration was recommended at a much lower level of 0.5 mg/L [2].
The high toxicity of nitrite is related to the ability of NO2

− anions to readily interact with
amines and to form carcinogenic compounds known as nitrosamines [3–5].

Nitrite and nitrate salts are used in many domains such as the food industry, agricul-
ture, and the chemical industry [6]. Consequently, the pollution of natural waters (rivers
and groundwater) with nitrogen-based oxoanions frequently occurs as a result of these
agricultural and industrial activities [5–7]. So far, different methods have been employed to
remove nitrites and nitrates from contaminated waters, including selective ion exchange [8],
adsorption [9], biosorption [10], reverse osmosis [11], electrodialysis [12], and biological
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denitrification [13]. Among these methods, adsorption is the most attractive one owing
to its simplicity, lower operating costs, and relevant efficiency. In this respect, different
adsorbent materials were reported in the applications dealing with removing of nitrite and
nitrate ions from contaminated waters. To be specific, the sepiolite (clay mineral) and mod-
ified sepiolite were tested for nitrite and nitrate removal from aqueous solutions [14–16].
The adsorption capacity of pristine sepiolite was reported as being 0.65 mg/g for retention
of nitrite [14] and 3.4 mg/g for retention of nitrate [15]. Previous studies [16,17] reported
that the chemical modification of clays with surfactants was favorable. The obtained
organoclays showed a higher adsorption capacity for the retention of nitrate [16,17].

It is well known that in the adsorption process, the final step implies the separation
of the solid and liquid phases. When a powder adsorbent is used, the separation step is
often realized by intense centrifugation, which consumes energy at a high level. Therefore,
a robust alternative is to integrate the adsorption with the filtration through the membrane
(e.g., low-pressure driven microfiltration or ultrafiltration) in a one-step process. Combining
adsorption and ultrafiltration (UF) in a hybrid process demonstrated some benefits in
water purification [18] and wastewater treatment [19]. For example, the association of
the adsorption and UF in a one-step process resulted in the better physical removal of
the dissolved pollutants from aqueous solutions [18]. Hence, the application of the UF-
adsorption hybrid process to remove nitrogen-based oxoanions from contaminated waters
is of practical interest.

Currently, it has become essential to explore and optimize the investigated processes
using modeling and computer-aided simulation techniques. Modern modeling and com-
putational tools are aimed to advance the level of research within the field. In modeling
a real system or process, one tries to find the true response surface function, which is a
complex relation of dependency between input variables (factors) and the output variable
(response). However, the true response function can only be approximated or estimated by
different data-driven modeling approaches such as response surface methodology (RSM),
artificial neural networking (ANN), support vector machine (SVM), and others. Recent
advancements in data-driven modeling of separation processes in water purification and
wastewater treatment have highlighted the importance of modern modeling tools like RSM,
ANN, and SVM [20]. The last two (i.e., ANN and SVM) are part of machine learning (ML),
which is a type of artificial intelligence (AI) that uses historical data as input to predict new
output values for a studied system or process.

Three main objectives were taken into account in this paper. The first one aimed
to study the adsorption-ultrafiltration hybrid process applied to remove nitrite (NO2

−)
anions from aqueous solutions using organoclay as an adsorbent and a porous polymeric
membrane as a separation barrier. The second objective dealt with data-driven modeling
and model-based optimization of the adopted adsorption-ultrafiltration hybrid process.
In this respect, the response surface methodology (RSM), artificial neural network (ANN),
and a support vector machine (SVM) were employed as modeling tools to point out the
common and distinct features among these modeling methods. The third objective was to
assess a new composite polymeric membrane (prepared by the phase-inversion method)
under the established optimal conditions.

2. Materials and Methods
2.1. Materials

Sodium nitrite (NaNO2), acquired from Merck Millipore (Darmstadt, Germany),
was used for the preparation of aqueous solutions loaded with nitrite (NO2

−) ions. Griess’
reagent (Sigma-Aldrich, St. Louis, MO, USA) was employed for detecting nitrite ions in
aqueous solutions via diazotization reaction. As an adsorbent for capturing the nitrite
ions, surface-modified nanoclay (organoclay) was applied. This nanoclay is a commercial
product (Nanomer® clay I.28E) that was purchased from Sigma-Aldrich. Note that this
product (Nanomer® I.28E), containing 25–30 wt. % trimethyl stearyl ammonium TmSA
(C21H46N+), relies on the montmorillonite (MMT) clay matrix that has been surface modi-
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fied. Sulphuric acid (H2SO4) 98% (Carl Roth, Karlsruhe, Germany) and sodium hydroxide
(NaOH) ≥98% (Sigma-Aldrich) were employed for the preparation of 0.1 M H2SO4 and
0.1 M NaOH solutions, respectively, which were used for pH adjustments.

Commercial polymeric porous membranes (Ultracel® from Merck Millipore) with
10 kDa molecular weight cut-off (MWCO) were employed to perform the basic ultrafiltra-
tion assays according to the design of the experiments. In addition, a composite porous
membrane (flat-sheet) was produced and tested in laboratory conditions. To this end,
the following products were acquired: Poly(vinylidene fluoride-co-hexafluoropropylene)
(PVDF-HFP) with an average molecular mass of Mn ≈ 130 kDa (Mw/Mn ≈ 3.1) was sup-
plied by Sigma-Aldrich; Halloysite (H4Al2O9Si2·2H2O) nanotubes with dimensions of
approximately 30 to 70 nm × 1.4 µm (Sigma-Aldrich) were used as inorganic nanofillers for
the composite membrane; As a pore generator (porogen), the polyethylene glycol PEG-400
(Aldrich) was adopted; As the aprotic solvent, N,N-Dimethylacetamide (DMAC) from
Sigma-Aldrich was employed for composite membrane fabrication through the phase-
inversion method. Isopropyl alcohol (Chemical Company, Iasi, Romania) was used in
assays for porosity estimation.

2.2. Experimental Methods

Ultrafiltration (UF) assays were carried out in a dead-end flow regime by using an
Amicon® Stirring-Cell (Merck Millipore) of 50 mL volumetric capacity. In this regard,
the commercial flat-sheet membranes (Ultracel® 10 kDa, Merck Millipore) were applied,
possessing the following characteristics: (1) material: regenerated cellulose; (2) molecular
weight cut-off (MWCO) of 10 kDa; (3) membrane diameter of 4.45 cm; and (4) effective
filtration area equal to 13.4 cm2. The experimental setup for the ultrafiltration system is
depicted in Figure 1.

Nanomaterials 2023, 13, x FOR PEER REVIEW 3 of 25 
 

 

product (Nanomer® clay I.28E) that was purchased from Sigma-Aldrich. Note that this 
product (Nanomer® I.28E), containing 25–30 wt. % trimethyl stearyl ammonium TmSA 
(C21H46N+), relies on the montmorillonite (MMT) clay matrix that has been surface modi-
fied. Sulphuric acid (H2SO4) 98% (Carl Roth, Karlsruhe, Germany) and sodium hydroxide 
(NaOH) ≥98% (Sigma-Aldrich) were employed for the preparation of 0.1 M H2SO4 and 0.1 
M NaOH solutions, respectively, which were used for pH adjustments. 

Commercial polymeric porous membranes (Ultracel® from Merck Millipore) with 10 
kDa molecular weight cut-off (MWCO) were employed to perform the basic ultrafiltration 
assays according to the design of the experiments. In addition, a composite porous mem-
brane (flat-sheet) was produced and tested in laboratory conditions. To this end, the fol-
lowing products were acquired: Poly(vinylidene fluoride-co-hexafluoropropylene) 
(PVDF-HFP) with an average molecular mass of Mn ≈ 130 kDa (Mw/Mn ≈ 3.1) was supplied 
by Sigma-Aldrich; Halloysite (H4Al2O9Si2∙2H2O) nanotubes with dimensions of approxi-
mately 30 to 70 nm × 1.4 μm (Sigma-Aldrich) were used as inorganic nanofillers for the 
composite membrane; As a pore generator (porogen), the polyethylene glycol PEG-400 
(Aldrich) was adopted; As the aprotic solvent, N,N-Dimethylacetamide (DMAC) from 
Sigma-Aldrich was employed for composite membrane fabrication through the phase-in-
version method. Isopropyl alcohol (Chemical Company, Iasi, Romania) was used in as-
says for porosity estimation. 

2.2. Experimental Methods 
Ultrafiltration (UF) assays were carried out in a dead-end flow regime by using an 

Amicon® Stirring-Cell (Merck Millipore) of 50 mL volumetric capacity. In this regard, the 
commercial flat-sheet membranes (Ultracel® 10 kDa, Merck Millipore) were applied, pos-
sessing the following characteristics: (1) material: regenerated cellulose; (2) molecular 
weight cut-off (MWCO) of 10 kDa; (3) membrane diameter of 4.45 cm; and (4) effective 
filtration area equal to 13.4 cm2. The experimental setup for the ultrafiltration system is 
depicted in Figure 1. 

 
Figure 1. Dead-end ultrafiltration (UF) system employed for experimentation: (1) air compressor; 
(2) manometers; (3) pressure control valves; (4) dispensing pressure vessel; (5) UF stirred cell; (6) 
porous membrane; (7) magnetic stirrer; (8) permeate container; (9) digital balance. 

In the course of the adsorption-ultrafiltration experiments, the concentration of ni-
trite ions (NO2−) was monitored by recording the absorbance of aqueous solutions (after 
adding the Griess’ reagent) on a UV-Vis spectrophotometer (Hitachi U-2910, Tokyo, Ja-
pan). In this respect, 0.2 mL of Griess’ reagent was added to 4.0 mL of the analyzed aque-
ous solution. Next, the resulting solution was gently stirred for about 30 min at 27 °C to 
promote the complexation reaction between Griess’ reagent and nitrite ions. The absorb-
ance of the aqueous solution was recorded at 525 nm wavelength and then converted to 
concentration using the linear regression equation resulting from the calibration curve 
(absorbance—concentration). The molar extinction coefficient from the calibration curve 
was equal to ε = 31,100 M−1 cm−1. It should be mentioned herein that in a classical Griess’ 
reaction, nitrite ion (NO2−) reacts with sulfanilic acid (HO3SC6H4—NH2) to generate a dia-
zonium cation (HO3SC6H4—N+≡N), which then couples with α-naphthylamine 

Figure 1. Dead-end ultrafiltration (UF) system employed for experimentation: (1) air compressor;
(2) manometers; (3) pressure control valves; (4) dispensing pressure vessel; (5) UF stirred cell; (6)
porous membrane; (7) magnetic stirrer; (8) permeate container; (9) digital balance.

In the course of the adsorption-ultrafiltration experiments, the concentration of nitrite
ions (NO2

−) was monitored by recording the absorbance of aqueous solutions (after adding
the Griess’ reagent) on a UV-Vis spectrophotometer (Hitachi U-2910, Tokyo, Japan). In this
respect, 0.2 mL of Griess’ reagent was added to 4.0 mL of the analyzed aqueous solution.
Next, the resulting solution was gently stirred for about 30 min at 27 ◦C to promote the
complexation reaction between Griess’ reagent and nitrite ions. The absorbance of the
aqueous solution was recorded at 525 nm wavelength and then converted to concentration
using the linear regression equation resulting from the calibration curve (absorbance—
concentration). The molar extinction coefficient from the calibration curve was equal to
ε = 31,100 M−1 cm−1. It should be mentioned herein that in a classical Griess’ reaction,
nitrite ion (NO2

−) reacts with sulfanilic acid (HO3SC6H4—NH2) to generate a diazonium
cation (HO3SC6H4—N+≡N), which then couples with α-naphthylamine (C10H7NH2) in para-
position to form an azo dye of a red-violet color (HO3SC6H4—N = N—C10H6NH2) [3,21].
Additional details regarding Griess’ reaction are reported in Scheme S1 from the Supple-
mentary Materials Section S1.
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The fabricated composite membrane (in laboratory conditions) was characterized
morphologically and structurally. In this regard, the surface examination was carried out
by scanning electron microscopy (SEM) using an (ESCM) Quanta 200 device (Brno, Czech
Republic) equipped with Energy Dispersive X-ray (EDX) module. The recorded SEM
micrographs were further analyzed by means of ImageJ open-source software. Atomic
force microscopy (AFM, NTEGRA Spectra NT-MDT, Zelenograd, Russia) was also involved
to explore the roughness of the membrane surface. Infrared spectra with Fourier-transform
(FTIR) were recorded in the range of 400–4000 cm−1 by using a Bruker Vertex 70 FTIR
spectrometer (Ettlingen, Germany).

3. Computational Protocol
3.1. Multiple-Regression Modeling by Response Surface Methodology (RSM)

Response surface methodology (RSM) is a mathematical-statistical tool dealing with
the multiple-regression modeling applied to real-world problems. In science and engineer-
ing, the RSM gained a wide application for exploring the functional relationship between
one or more responses (output variables) and the factors (input variables) of a process or
system [22,23]. In this respect, the RSM is often employed for empirical (or data-driven)
modeling and implies the doing of experiments in accordance with an adopted design of
experiments (DoE) [24]. Such a plan (DoE) involves conducting experiments by simultane-
ously varying the factors, leading to saving resources for experimentation if compared to
the one-variable-at-a-time methodology. Consequently, the study by RSM involves four
important aspects [22–26]: (1) experimental planning, (2) data analysis, (3) data-driven
modeling, and (4) model-based optimization. To develop a reliable empirical model, the in-
put variables (factors) are usually subjected to codification (see Supplementary Materials
Section S2). The codification procedure is necessary to investigate in the same framework
(factorial space) the input variables that are of different orders of magnitude in the real
space [25,26]. Generally, the response surface model represents a second-order polynomial
equation with interaction terms, which can be written compactly using the matrix-vector
notation [22–24]:

ŶRSM(x) = b0 + xTbL + xTBx (1)

where ŶRSM denotes the estimated response by the RSM model; x—vector of input variables
(factors), xT—transpose of the vector x; b0—intercept coefficient; bL—vector of linear re-
gression coefficients (bi), and B—matrix of quadratic and interaction regression coefficients,
i.e., with (i)th element equal to (bii), and the (ij)th off-diagonal element equal to (1/2 × bij).

Hence, the issue of empirical modeling is reduced to the calculation of the regression
coefficients by means of the multiple-regression technique [25,26]:

b = (XTX)
−1

XTy (2)

where b is the column vector of the regression coefficients b = {b0, bi, bii, bij}T that includes
the main elements of b0, bL, and B; X—matrix of experimental input data (coded values
of input variables), XT—transpose matrix, and y—column vector of output experimental
data (observed response). In this study, the RSM model was constructed by means of the
Design-Expert 10 software program.

3.2. Machine Learning by Artificial Neural Network (ANN)

Artificial neural networks (ANNs) represent a subfield of machine learning theory.
The development of the concept of modeling by artificial neural networks (ANNs) was
inspired by information processing and distributed communication nodes that exist in bio-
logical systems. In the last 2.5 decades, artificial neural networks (ANNs) were successfully
applied for modeling the separation and purification processes in membrane science [27].
An artificial neural network (ANN) is made of a set of computation units (artificial neurons)
interconnected by synaptic connections and biases. Each connection has an associated
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numerical weight. The set of synaptic numerical weights (w1, w2, . . . , wn) along with the
biases (θ, θ) represents the numerical parameters of the artificial neural network.

An artificial neuron signifies a computational node that has several inputs and one out-
put. Mathematically, the artificial neuron involves two functions [27–30]: (1) the summation
function and (2) the activation function. The summation function allows the aggregation
of input signals (xi) into an integrated signal (λj = ∑ wijxi + θj). Then, the integrated
signal (λj) is taken over by the activation function, which generates the output signal of
the neuron (outj = f (λj)) and transfers it to the network (see Supplementary Materials
Scheme S2) [31]. The most typical activation functions applied to solve multiple-regression
problems are (1) linear function (purelin), (2) sigmoidal function (logsig), and (3) hyperbolic
tangent (tansig) [27,28].

The placement, organization, and interconnection of artificial neurons in the network
define the architecture (topology) of the network, which can be represented by a support
graph. The network architecture involves several layers, namely: the inputs, the hidden
layer (or hidden layers), and the output layer. The computation nodes (artificial neurons)
are placed in hidden and output layers.

To address the multiple-regression problem by using the ANN concept, a multilayer
neural network with unidirectional architecture (feed-forward) is most often applied. In a
feed-forward ANN topology (also known as multi-layer perceptron MLP), the information
flows in a single direction (input→ output). For this type of unidirectional architecture,
the support graph does not contain cycles (neurons are placed on consecutive levels),
and the output vector is determined by direct calculation from the input vector. The esti-
mation of the response function by a feed-forward ANN (with one hidden layer and one
output layer) can be written by using the following vector-matrix expression:

ŶANN(x) = f(2)
(

LW(2,1)f(1)
(

IW(1,1)x + θ(1)
)
+ θ(2)

)
(3)

where ŶANN denotes the network output (predictions given by ANN model), x is the
vector of input variables (inputs), f(1)—vector of the activation functions assigned to the
hidden layer (layer-1), f(2)—vector of the activation functions attributed to the output layer
(layer-2), IW(1,1) = wij

(1,1) is the input weight matrix, LW(2,1) = wij
(2,1) is layer weight vector,

θ(1) = (θj)
(1)—bias vector, and θ(2) is the bias scalar. To develop a robust ANN model,

a pre-processing step and a post-processing step are usually applied (see Supplementary
Materials Section S3).

In the course of the machine learning procedure, the feed-forward artificial neural
network (ANN) is trained by applying an algorithm involving the back-propagation of
errors. This algorithm allows the adjustment of the parameters of the neural network (i.e.,
weights and biases) in order to minimize the residual error between the network output
(ŶANN) and the target experimental response (Ytarget). Thus, the performance of training

is typically expressed via the mean-square-error function MSE ∼ ∑
(
ŶANN −Ytarget

)2.
Consequently, the weights and biases are adjusted by means of recursive schemes (e.g.,
wnew

ij = wold
ij + ∆wij and θnew

j = θold
j + ∆θj) while minimizing the MSE function. One of

the most efficient back-propagation algorithms is based on the Levenberg–Marquardt
method [32,33]. In our study, the ANN model was developed using the standard neural
network toolbox implemented in the Matlab program.

3.3. Machine Learning by Support Vector Machine (SVM)

By developing the machine learning domain, mathematicians and computer scientists
have proposed another interesting technique known as the support vector machine (SVM),
which can be employed for response function estimation. Hence, the support vector ma-
chine (SVM) represents a powerful methodology for solving problems in machine learning,
such as function estimation by regression analysis, nonlinear classification, and pattern
recognition [34–43]. In this study, the emphasis was put on the application of SVM for
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response function estimation by multiple regression. The basic idea of SVM and support
vector regression (SVR) consists in using the kernel function K(x, xτ), which is the dot
product of two vectors in the feature space (i.e., superior space) defined by the mapping
functions [34,36,41]:

K(x, xτ) = ϕ(x)T ϕ(xτ) (4)

where x denotes the vector of input variables; xτ is the vector of input variables associated
with the training set; and K(x, xτ) is the kernel function. Thus, the input vectors x and xτ
are mapped into a high-dimensional feature space defined by the transforming functions
ϕ(x) and ϕ(xτ). According to SVM methodology, there is no need to define explicitly
the mapping functions ϕ(x) and ϕ(xτ) since SVR requests only the dot product between
vectors in the regression procedure. Hence, in the frame of SVR, the kernel function
K(x, xτ) operates to find a hyperplane in the higher-dimensional feature space (ϕ(x))
without increasing the computational cost. This hyperplane in feature space corresponds
to a response surface of nonlinear type when we transform the hyperplane back to the
original space of inputs.

The most popular kernel function employed in SVR is the Gaussian RBF kernel (radial
basis function). The Gaussian RBF kernel is widely used in SVM owing to its flexibility; it
represents the square of the Euclidean distance between the two vectors, that is [34,39,41]:

K(x, xτ) = exp

(
−(||x||−||xτ||)2

σ2

)
(5)

where σ2 denotes the squared bandwidth parameter for the Gaussian RBF kernel. Ulti-
mately, the estimation of the response function by means of SVM can be written as [34,42]:

ŶSVM(x) =
nτ

∑
τ = 1

ατK(x, xτ) + β (6)

where ατ and β are parameters of the SVM model determined by the regression procedure.
In this study, the least squares support vector machine (LS-SVM) was applied to

address the function estimation problem by machine learning. Hence, we employed the
LS-SVMlab Toolbox (v.1.5, Katholieke Universiteit Leuven, Leuven-Heverlee, Belgium)
developed by Suykens and co-workers [43,44]. As designed, this toolbox was used in the
frame of the commercial Matlab package. Additional details regarding SVM are given in
the Supplementary Materials (Section S4).

4. Results and Discussions
4.1. Design of Experiments (DoE)

The adsorption-ultrafiltration experiments, designed to remove nitrite ions (NO2
−)

from aqueous solutions, were performed in accordance with a central composite experimen-
tal plan of rotatable type (Table 1). As feed solution, we considered water contaminated syn-
thetically with nitrite ions in high concentration in all experiments, i.e., [NO2

−]0 = 5 mg/L.
This level exceeds the maximum allowed concentration of tenfold. The key factors con-
sidered as having the main influence on the performance of the adsorption-ultrafiltration
process were (1) sorbent dose SD (% w/v) and (2) pH of feed solution. As sorbent, we em-
ployed the organoclay adsorbent (TmSA-MMT), representing the montmorillonite (MMT)
clay modified with trimethyl stearyl ammonium TmSA (C21H46N+). The idea here was
that the positively charged moiety of TmSA (C21H46N+) from organoclay can interact
with negatively charged nitrite anions (NO2

−) by electrostatic forces. This assumption
was supported by molecular docking simulation reported in Supplementary Materials
(Section S5). The region of experimentation was defined by the ranging intervals of the
main factors, i.e., SD (0.12–0.58% w/v) and pH (4.9–9.1), as given in Table 1.
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Table 1. Central composite experimental design of rotatable type employed for exploring the
adsorption-ultrafiltration hybrid process for nitrite removal from aqueous solutions; fixed conditions
for experimentations: [NO2

−]0 = 5 mg/L; ∆P = 3 bar; temperature T = 298 K (25 ◦C).

Run/Trial

Sorbent Dose pH of Feed
Aqueous Solutions Response:

Nitrite Removal Efficiency
Y (%)Coded

x1

Actual
SD, % w/v

Coded
x2

Actual
pH

1 −1 0.20 −1 5.5 50.09
2 +1 0.60 −1 5.5 82.35
3 −1 0.20 +1 8.5 67.54
4 +1 0.60 +1 8.5 83.53
5 −1.414 0.12 0 7.0 59.69
6 +1.414 0.68 0 7.0 86.03
7 0 0.40 −1.414 4.9 72.64
8 0 0.40 +1.414 9.1 70.36
9 0 0.40 0 7.0 80.48

10 0 0.40 0 7.0 81.35
11 0 0.40 0 7.0 81.07

The ultrafiltration experiments were carried out in dead-end mode, and the experi-
mental set-up is depicted in Figure 1. In a typical experiment, the organoclay adsorbent
(TmSA-MMT) was added to the aqueous solution containing NO2

− ions, in accordance with
the designed sorbent dosage (Table 1). Then, the pH of the aqueous solution was adjusted
to the required value (Table 1), and the resulting feed solution was magnetically stirred
for 60 min to attain equilibrium. This period of time was fixed to attain equilibrium in
accordance with the kinetics of adsorption detailed in Supplementary Materials (Figure S1
and Table S1). It should be mentioned that the observed maximum adsorption capacity
of the nanoclay (TmSA-MMT) for nitrite ions was found to be 2.57 mg/g, according to
the adsorption isotherm of type III (see Supplementary Materials Figure S2). After attain-
ing equilibrium, the colloidal suspension (TmSA-MMT/NO2

−) was transferred to the UF
stirred cell, where the ultrafiltration process was performed at room temperature (24 ± 2 ◦C)
under three bars (operating pressure). To minimize the concentration polarization effect,
the colloidal suspension was gently stirred during ultrafiltration. Thus, the separation
process was performed by retaining the particles of the adsorbent loaded with nitrite ions
(TmSA-MMT/NO2

−) onto the membrane surface and collecting the purified water (perme-
ate flux). The performance of separation of the hybrid process (adsorption-ultrafiltration)
was evaluated by determining experimentally the removal (rejection) efficiency (Y, %) of
nitrite ions, which can be expressed as:

Y =

(
1−

[
NO−2

]
P[

NO−2
]

0

)
× 100 (7)

where
[
NO−2

]
0 denotes the initial concentration of nitrite in feed solution (5 mg/L),

and
[
NO−2

]
P is the concentration of nitrite in permeate solution (mg/L).

Table 1 reports the experimental conditions of the adsorption-ultrafiltration process
as well as the main response (rejection efficiency Y, %) determined for each run. In addi-
tion, the initial permeate flux Ji (recorded in the first three minutes of ultrafiltration) was
determined experimentally. For the conditions given in Table 1, the initial permeate flux
Ji varied into the narrow interval of 176–189 (LMH, L·m−2·h−1) with an average value of
183 ± 5 (L·m−2·h−1).

4.2. Data-Driven Modeling: RSM vs. Machine Learning (ANN and SVM)

The experimental design reported in Table 1 represents the main matrix of data that
was used to develop all three data-driven models (i.e., RSM, ANN, and SVM).
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First, starting from the experimental data summarized in Table 1 and using the
multiple-regression technique [25,26], we developed the RSM model that can be expressed
in terms of coded variables as follows:

ŶRSM = 80.97 + 10.69x1 + 1.93x2 − 4.38x2
1 − 5.06x2

2 − 4.07x1x2 (8)

subjected to: −ubjec ≤ xj ≤ 1.414; (j = 1, 2).
After applying the mathematical substitution technique, the RSM model with actual

factors can be written as

ŶRSM = −115.04 + 235.92× SD + 38.18× pH− 109.47× SD2

−2.25× pH2 − 13.56× SD× pH
(9)

subjected to: 0.12 ≤ SD ≤ 0.68(%w/v); 4.9 ≤ pH ≤ 9.1.
The mathematical RSM model was validated statistically by using the analysis of

variance (ANOVA), which is detailed in Supplementary Materials (Section S6). In addition,
the accordance between the observed response (Y, %) and the estimated response by the
RSM model (ŶRSM) was analyzed (Figure 2). The parity plot between the actual response
and the predicted one disclosed a reasonable alignment of data along the bisector, indicating
a linear correlation coefficient equal to r2

LC = 0.939 (Figure 2a). Figure 2b shows the residual
errors (between experimental data and RSM model) against predicted response, suggesting
a normal distribution of the residuals.
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The estimated response surface by the conventional multiple-regression model (RSM)
is depicted in Figure 3, showing a surface of maximum type with some ridge aspects.
Herein, the 3D graph (Figure 3a) and 2D contour-line map (Figure 3b) show the reciprocal
influence of SD and pH factors on the estimated rejection efficiency (ŶRSM). In accordance
with the prediction given by the RSM model, the main effect of the SD factor (sorbent
dose) is greater than the main effect of the pH factor. Generally, the greater the SD factor is,
the higher the estimated response (ŶRSM). Likewise, an interaction effect exists between
the factors SD and pH. According to this interaction effect, the increment of pH value at
a low sorbent dose conducts gentle increases of the rejection efficiency (ŶRSM). At a high
adsorbent dose, the increment of pH value from 4.9 to 8.0 does not affect the response too
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much; for pH > 8.0, the rejection efficiency is gently diminished. The response surface plot
shown in Figure 3 indicates an optimal region (red-colored zone), where the estimated
response attains elevated values (ŶRSM > 80%). In the first approximation by visual
analysis (Figure 3), this optimal region can be characterized in terms of factors as follows:
SD > 0.55% w/v and pH 5.3–8.3. More precise localization of the optimal point by RSM is
detailed in the next section, where the numerical optimization is discussed.
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Second, regarding machine learning by using the artificial neural network (ANN),
the experimental plan reported in Table 1 served as the main matrix of data used for ANN
training. To improve the robustness of the neural network, additional sets of data (valida-
tion and test) were also employed for the development of the ANN model. These validation
and test sets of data are reported in Supplementary Materials (Section S3, Table S2).

For this application, we employed a feed-forward ANN, whose architecture is depicted
in Figure 4. The topology of the applied neural network included (1) two inputs (associated
with factors SD and pH); (2) one hidden layer with three artificial neurons activated by
logsig nonlinear function; and (3) one output layer with a single artificial neuron activated
by purelin linear function (Figure 4).

The training of this network was realized by means of Levenberg–Marquardt back-
propagation algorithm. The training performance was achieved in four epochs (see Supple-
mentary Materials Figure S3), and the established optimal network parameters (i.e., weights
and biases) are reported in Supplementary Materials (Table S3). The agreement between
experimental data (target) and the predicted response given by the ANN model is shown
in Figure 5. As one can see from Figure 5a, the data from training, validation, and test sets
are aligned along the bisector revealing a linear correlation coefficient of r2

LC = 0.994. This
proves good prediction ability of the developed ANN model.
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Optionally, the analysis of variance (ANOVA) was performed highlighting the signifi-
cance of the ANN model (see Supplementary Materials Section S6). As detailed in Figure 5b,
the residual errors (between observations and the ANN model) are of both negative and
positive values. The generalization capability of the developed ANN model is displayed in
Figure 6, where the predictions provided by the neural network are plotted as a 3D output
surface (Figure 6a) and a 2D contour-lines map (Figure 6b). The response surface provided
by the ANN model (Figure 6) is somewhat similar to the one generated by the RSM model



Nanomaterials 2023, 13, 697 11 of 23

(Figure 3), excepting some specific differences. The similitude is related to the general
shape of the ANN output surface for the region of experimentation, that is, the tendency to
a maximum shape with slight ridge aspects (Figure 6). Instead, the discrepancies imply the
following: The optimal region indicated by ANN (yellow-colored zone in Figure 6) seems
to be more extended, i.e., this optimal region might be defined by SD > 0.5% w/v and pH
5.3–8.7; Moreover, an inflection point of the ANN output surface appears at SD 0.24–0.26%
w/v and pH 8.2.–8.4 (Figure 6), which does not emerge for the surface estimated by RSM.
This might be explained by the ability of the ANN model to better estimate more complex
nonlinear effects compared to the RSM model.
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Third, the machine learning technique based on the support vector machine (SVM)
was also employed for building a predictive model for the same region of experimentation.
In this respect, the experimental design given in Table 1 served as the matrix of data to
develop the SVM model. The established parameters for the SVM model are reported in
Supplementary Materials (Table S4). The prediction ability of the SVM model is displayed
in Figure 7. Herein, the accordance between the experimental results and the SVM model
is shown (Figure 7a), revealing an excellent alignment of data near the bisector with a
linear correlation coefficient of r2

LC = 0.999. This fact suggests good prediction ability of the
constructed SVM model. In addition, the analysis of variance (ANOVA) corroborated the
statistical significance of the SVM model (Supplementary Materials Section S6). The plot of
residuals against the predicted response by SVM is highlighted in Figure 7b, indicating the
existence of both negative and positive values of the residual errors.
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actual response, (r2
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The estimated response by the SVM model is represented in Figure 8 as an output
surface influenced by SD and pH factors. Predictions estimated by the SVM model are also
plotted in both formats, i.e., 3D graph (Figure 8a) and 2D map (Figure 8b). Compared to the
previous two cases (RSM and ANN), the output surface provided by SVM shows several
extreme points inside the valid region, i.e., (1) a local minimum (at SD ≈ 0.2% w/v, pH 5.5);
(2) the first local maximum (at SD ≈ 0.43% w/v, pH 7.2); (3) the second local maximum
(defined by the region SD > 0.65% w/v, pH 6.2–7.8). Hence, the SVM model showed a
different ability to describe the nonlinear effects than the ANN and RSM models, providing
a more complex response surface with more than one extreme point inside the region of
experimentation. This might be attributed to the radial distribution function (RDF) implied
in the SVM algorithm.
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The built data-driven models (RSM, ANN, and SVM) offer functional relationships
between the input and output variables of the process, without giving insights into the
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interaction mechanism at the molecular level. To address this aspect, we employed molec-
ular docking simulations, which revealed the importance of the electrostatic interactions
in the retention of nitrite ions, as detailed in Supplementary Materials (Figure S4 and
Table S5) [44,45].

All three employed models (RSM, ANN, and SVM) were significant from a statisti-
cal viewpoint, as suggested by the analysis of variances (see Supplementary Materials
Tables S6–S8). Likewise, all three models were tested for normal distribution of residual
errors (for a confidence interval of 95%), and the results were reported as probability plots
(Supplementary Materials Figure S5a–c). According to these probability plots, the best
normal distribution of residuals was observed for the RSM model followed by the SVM
model. In the case of the ANN model, a slight deviation from the normal distribution was
observed for a single point (Supplementary Materials Figure S5b). Table 2 summarizes the
residual analysis and descriptive statistics of residual errors aiming to compare the predic-
tion abilities of the constructed models RSM, ANN, and SVM. According to descriptive
statistics, the amplitude represents the difference between the maximal residual error and
the minimal residual error. In Table 2, the lowest amplitude (3.1567) is attributed to the
SVM model, followed by the ANN model which gives a slightly higher amplitude (3.8252).
The amplitude associated with the RSM model is almost threefold higher, i.e., (9.2720).
Likewise, the statistical parameters like linear correlation coefficient (r2

LC) and ANOVA
coefficient of determination (R2) were found to be the best for the SVM model, followed
by the ANN model, and then by the RSM model. Thus, according to the residual analysis,
the prediction performance of the models slightly diminished in the following order: SVM >
ANN > RSM. The superiority of SVM over ANN in response estimation with lower residual
errors might be attributed to the fact that SVM possesses a high generalization capability
in solving practical problems related to nonlinearity, small samples, and over-fitting [39].
The residual analysis performed for this case study suggested that the response surface
predicted by the SVM model might be closer to the true response surface, if compared to
the ANN and RSM models.

Table 2. Residual analysis and descriptive statistics of residual errors.

Statistical Descriptor
for Residuals

Sources of Residuals (Yexperimental − Ymodel)

RSM Model ANN Model SVM Model

Minimal residue (min) −4.7580 −3.1324 −2.0045
Maximal residue (max) 4.5140 0.6928 1.1522
Amplitude (max-min) 9.2720 3.8252 3.1567

Median 0.1030 0.1090 0.2822
Average 0.0002 0.3204 0.0672

Standard deviation 2.8035 1.0462 1.0079
r2

LC (LCC) 0.939 0.994 0.999
R2 (ANOVA) 0.938 0.989 0.992

4.3. Multivariate Optimization of Adsorption-Ultrafiltration Hybrid Process

In this study, the multivariate optimization problem dealt with the maximization of
the response function (objective function), representing the rejection efficiency depend-
ing on the two variables x1 and x2 (that correspond to SD and pH factors). Hence, each
response function estimated by RSM, ANN, and SVM models was subjected to maximiza-
tion in the optimization problem. To this end, the Monte Carlo optimization method
was employed, which relies on stochastic search using the pseudorandom number (PRN)
generator [46,47]. Pseudorandom numbers generated by computers are usually distributed
uniformly between 0 and 1.
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The computer-aided numerical optimization was performed by generating pseudoran-
dom numbers (in the interval 0–1) that were used to generate the vector of input variables
according to the following equation:

x(k) =

{
x(k)1

x(k)2

}
=

{
L1 + PRN(k)

1 (U1 − L1)

L2 + PRN(k)
2 (U2 − L2)

}
(10)

where x(k) =
[

x(k)1 , x(k)2

]T
denotes the vector of input variables (in coded values); k is the

iteration number associated with the random number generation loop (k ∈ K; K = 106);
Li and Ui are the lower and upper bounds of the input variables (i.e., Li = −1.414 and
Ui = +1.414), respectively, and PRN(k)

i represents the pseudorandom number generated for
the variable (i) at iteration (k). Thus, the recursive Equation (10) enabled the conversion of
the pseudorandom numbers (PRNs) into values of input variables uniformly distributed
inside the valid region (i.e., the region of experimentation). Then, the response (Ŷ) was
estimated by means of the model (RSM, ANN, or SVM) for each generated vector x(k).
Finally, the calculated values of the response function Ŷ(x(k)) were compared, and the
maximal value was identified for each set and retained as the optimal solution. Table 3
reports the optimal points provided by each considered model (RSM, ANN, and SVM).
These optimal conditions established by numerical optimization using the Monte Carlo
method were checked experimentally in so-called confirmation runs. Generally, all three
optimal solutions indicated by different models (RSM, ANN, and SVM) converged to the
same region defined by sorbent dose 0.67–0.68% w/v and pH 6.4–7.1. In this optimal region,
the observed response was about 86%, according to confirmation runs (Table 3). However,
speaking more precisely, the optimal conditions (SD = 0.674% w/v and pH 7.0) provided
by the SVM model were the best, since the highest experimental response of 86.28% for
removal of nitrite ions was observed. By comparing the observed response (confirmation
runs) given in Table 3, our assumption that the estimated SVM response surface is closer
to the true response surface was corroborated. The observed value of 86.28% for rejection
efficiency (under conditions indicated by the SVM model) was the highest one in all
experiments where the commercial flat-sheet membrane (Ultracel® 10 kDa) was used (see
Tables 1 and 3). It should also be mentioned that the initial permeate flux determined for
Ultracel® membrane under the optimal conditions given by SVM was equal to 185 ± 4
LMH (L·m−2·h−1). In the next section, a new composite porous membrane was tested
under optimal conditions indicated by the SVM model.

Table 3. Optimal points established by model-based numerical optimization and confirmation runs.

Model
Sorbent Dose (% w/v) pH of Feed Solution Response

(Removal Efficiency, %)

x1 (Coded) SD (Actual) x2 (Coded) pH (Actual) ^
Ycalculated

Yobserved

RSM 1.393 0.678 −0.365 6.4 88.05 85.93
ANN 1.409 0.682 0.073 7.1 85.53 86.18
SVM 1.372 0.674 0.007 7.0 84.95 86.28

4.4. Testing Optimal Conditions on a New Composite Membrane

The aim of the study presented in this section was to test a more retentive porous mem-
brane for the removal of nitrite ions under the optimal conditions established previously
by the SVM model (i.e., SD = 0.674% w/v and pH 7.0). The more retentive porous mem-
brane was prepared in laboratory conditions using the phase-inversion method [48–52].
In this respect, the non-reactive thermoplastic co-polymer PVDF-HFP was used as the
primary polymeric material for membrane fabrication. In addition, the halloysite (HS)
nanotubes were used as inorganic fillers to add strength reinforcement to the compos-
ite membrane and induce hydrophilic properties. As a pore-generator agent (porogen),
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polyethylene glycol (PEG-400) was employed. As the aprotic solvent, for preparing cast-
ing solution, N, N-Dimethylacetamide (DMAc) was used. The resulting casting solution
(PVDF-HFP/HS/PEG/DMAc) was then poured on a glass plate and stretched to a thin
layer of 300 um thickness, using a film applicator (ZUA 2000, ZEHNTNER). Then, the glass
plate was immersed in distilled water to promote the phase-inversion process and mem-
brane formation. More details regarding the synthesis of the composite membrane by
the phase-inversion method are reported in Supplementary Materials (Section S7). This
composite membrane was designed to have a final composition (in the solid phase) of 97%
PVDF-HFP and 3% HS (halloysite) by weights. The thickness of the resulting membrane
(PVDF-HFP/HS) was determined by micrometer measurements and it was 112 ± 18 µm.

The fabricated composite membrane (PVDF-HFP/HS) was characterized by physical-
chemical instrumental techniques (i.e., SEM-EDX, FTIR, AFM, and WCA). Figure 9 high-
lights the morphological and structural features of the produced composite membrane.
The microscopic images (SEM) at different magnitudes are given in Figure 9a,b, where the
porous morphology of the composite membrane is detailed in cross-section. Additional
SEM micrographs are reported in Supplementary Materials (Figure S6).
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filtration by improving the flow of the permeate flux. The third layer (Layer-3, L3) is the 
bottom layer of thickness 46.42 ± 13.97 μm, comprising the sponge-like pores (0.10–2.76 
μm), which are illustrated in Figure 9b. These sponges-like pores have the role of main-
taining a good permeate flow as well as sustaining the stability of the bottom scaffold (L3) 
of the membrane. In addition, the statistical analyses of the pore size distributions were 
performed for each considered layer. In this respect, the histograms of pore size distribu-
tions were built (see Supplementary Materials Figures S7–S9). The analysis of the con-
structed histograms showed distributions skewed to the right, suggesting lognormal dis-
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Figure 9. Morphological and structural characteristics of the produced composite membrane PVDF-
HFP/HS: (a,b) SEM images (cross-section) of the composite membrane recorded at different magni-
tudes; (c) EDX spectrum for the composite membrane (inset image—distribution map of chemical
elements); (d) AFM scanning-map (2D) of the top surface of the composite membrane (PVDF-
HFP/HS).
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The careful inspection of the registered SEM micrographs enabled us to discern three
layers (in the membrane cross-section) with different patterns of pores. The first one (Layer-
1, L1) represents the top skin layer with a thickness of 5.80 ± 1.75 µm and involves small
pores (0.05–1.98 µm) that ensure selective separation. That is, the top layer L1 contributes
to the retention of the organoclay particles loaded with nitrite ions while enabling the
permeation of water. The second layer (Layer-2, L2) is of thickness 60.72 ± 17.62 µm and
implies the finger-like macropores (3.98–34.50 µm) as well as the macrovoids (>35 µm).
This layer of macropores (L2) contributes to the hydrodynamic conditions of ultrafiltration
by improving the flow of the permeate flux. The third layer (Layer-3, L3) is the bottom
layer of thickness 46.42 ± 13.97 µm, comprising the sponge-like pores (0.10–2.76 µm),
which are illustrated in Figure 9b. These sponges-like pores have the role of maintaining a
good permeate flow as well as sustaining the stability of the bottom scaffold (L3) of the
membrane. In addition, the statistical analyses of the pore size distributions were per-
formed for each considered layer. In this respect, the histograms of pore size distributions
were built (see Supplementary Materials Figures S7–S9). The analysis of the constructed
histograms showed distributions skewed to the right, suggesting lognormal distributions
(Figures S7–S9).

Therefore, on the basis of histograms, we developed the lognormal probability density
function (f LN) as well as the corresponding cumulative distribution function (FLN) that is
shown in Figure 10. As one can see from Figure 10a,b, the probability density function (f LN)
is comparable for the layers L1 (skin layer pores with mode 0.30 µm) and L3 (sponge-like
pores with mode 0.58 µm), and obviously different for the layer L2 (finger-like pores with
mode 10.0 µm). Moreover, the cumulative density function (insets in Figure 10a,b) revealed
that (1) 75% of accounted pores were less than 1.0 µm in size for L1 (skin layer); (2) 75% of
accounted pores were less than 18.3 µm in size for L2 (finger-like structure); and (3) 75% of
accounted pores were less than 1.5 µm in size for L3 (sponge-like structure).
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Figure 10. Lognormal probability density function (f LN) of the pore size distribution for composite
membrane (PVDF-HFP/HS): (a) pore size distribution in layers L1 and L3; (b) pore size distribution
in layer L2; inset images—cumulative distribution function (FLN).

Likewise, the distribution of the pore sizes from the top surface of the membrane was
performed based on the analysis of SEM images. The constructed histogram of the pore
size distribution for these opening pores is detailed in Figure S10 from Supplementary
Materials. This histogram pointed out a relevant skewness for the distribution of opening
pores ranging from 0.01 µm to 1.25 µm, disclosing a mode of 0.04 µm.

The overall porosity of the composite membrane (PVDF-HFP/HS) was determined
gravimetrically by immersion of this material in isopropyl alcohol, and by measuring
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the weight of liquid retained in the pores [53,54] (for more details see Supplementary
Materials Section S7). Thus, the overall porosity of the composite membrane (PVDF-
HFP/HS) was found to be ε = 75.32 ± 2.65%, which was somewhat greater than the
porosity (71.94 ± 3.04%) determined for the pristine polymeric membrane (PVDF-HFP).

According to the EDX spectrum reported in Figure 9c, the presence of all expected
chemical elements (C, O, F, Al, Si) was proved. These emerged from two sources (1) PVDF-
HFP polymer and (2) halloysite nanotubes (HS). The EDX spectrum for the composite
membrane (Figure 9c) pointed out a much lower weight percentage (0.8–2.9%) for Si, Al,
and O from HS compared to the dominant elements C and F (45% and 48%) originating
from polymer. This is due to the fact that HS was designed in a low amount (3% wt.) in the
composite membrane, compared to the polymer matrix (97% wt.). Figure 9d illustrates the
AFM scanning map (2D) of the top surface of the composite membrane (PVDF-HFP/HS).
Results revealed that the surface of the membrane was not smooth but implied roughness in
the form of nanosized hills and valleys. The average roughness parameter for the fabricated
membrane (PVDF-HFP/HS) was found to be Ra = 41.32 nm. The hills and valleys are
shown in Figure 9d as bright and dark spots, respectively. From another perspective,
the valleys (dark spots) from the AFM map might represent the openings or access pores
to the membrane. The measured size of the dark spots from the AFM map ranged from
0.02 µm to 0.76 µm. This interval (0.02–0.76 µm) was framed into the wider interval of
opening pores (0.01–1.25 µm) determined from the top surface of the membrane by SEM
analysis (Supplementary Materials Figure S10).

It should be noted that the presence of the inorganic component HS (halloysite) in
the polymeric matrix (PVDF-HFP) induced the hydrophilic properties to the composite
membrane. This evidence was observed by measuring the water contact angle (WCA),
which decreased from 80 ± 4◦ (for PVDF-HFP) to 61 ± 3◦ (for PVDF-HFP/HS), (see
Supplementary Materials Figure S11).

In addition, the produced composite membrane (PVDF-HFP/HS) was characterized
by Fourier transform infrared spectroscopy (FTIR) and compared with the sample of neat
co-polymer (PVDF-HFP) and halloysite (HS), as shown in Figure 11. Details regarding the
assignments of the peaks from infrared (IR) spectra are given in Supplementary Materials
(Section S8).

As shown in Figure 11, the IR spectrum of the composite membrane (PVDF-HFP/HS)
is generally similar to the IR spectrum of the polymer (PVDF-HFP), since the weight of the
polymer in the composite is significant (97%), while the weight of the inorganic component
(HS) is small (only 3%). However, some changes can be distinguished in the IR spectrum of
the composite compared to the pristine co-polymer. For instance, owing to the addition
of HS, the peaks at 3694 and 3625 cm−1 (attributed to υ(O-H) stretching vibration from
HS) can be clearly identified. In addition, for the composite membrane, the intensity of the
peaks at 765 cm−1 and 686 cm−1 increased, to some extent, as a result of superimposing
bending (δ) and wagging (ω) vibrations. That is, the overlay of the δ(Si-O-Al) vibration
mode (from HS) to the vibration modes δ(C-C) andω(CF2) of the polymer.

Finally, the produced composite membrane (PVDF-HFP/HS) was tested in a longer-
term ultrafiltration assay (up to 90 min) under the established optimal conditions of
adsorption-ultrafiltration (i.e., SD = 0.674% w/v and pH 7.0) in order to evaluate the
kinetics of the permeate flux and the nitrite removal efficiency. Results from this ultrafiltra-
tion test aiming to remove nitrite ions by adsorption onto the organoclay are highlighted in
Figure 12.



Nanomaterials 2023, 13, 697 18 of 23

Nanomaterials 2023, 13, x FOR PEER REVIEW 19 of 25 
 

 

perspective, the valleys (dark spots) from the AFM map might represent the openings or 
access pores to the membrane. The measured size of the dark spots from the AFM map 
ranged from 0.02 μm to 0.76 μm. This interval (0.02–0.76 μm) was framed into the wider 
interval of opening pores (0.01–1.25 μm) determined from the top surface of the mem-
brane by SEM analysis (Supplementary Materials Figure S10). 

It should be noted that the presence of the inorganic component HS (halloysite) in 
the polymeric matrix (PVDF-HFP) induced the hydrophilic properties to the composite 
membrane. This evidence was observed by measuring the water contact angle (WCA), 
which decreased from 80 ± 4° (for PVDF-HFP) to 61 ± 3° (for PVDF-HFP/HS), (see Supple-
mentary Materials Figure S11). 

In addition, the produced composite membrane (PVDF-HFP/HS) was characterized 
by Fourier transform infrared spectroscopy (FTIR) and compared with the sample of neat 
co-polymer (PVDF-HFP) and halloysite (HS), as shown in Figure 11. Details regarding the 
assignments of the peaks from infrared (IR) spectra are given in Supplementary Materials 
(Section S8). 

 
Figure 11. Infrared spectra (FTIR) of investigated materials: (a) PVDF-HFP membrane; (b) HS (Hal-
loysite); (c) PVDF-HFP/HS composite membrane. 

As shown in Figure 11, the IR spectrum of the composite membrane (PVDF-HFP/HS) 
is generally similar to the IR spectrum of the polymer (PVDF-HFP), since the weight of 
the polymer in the composite is significant (97%), while the weight of the inorganic com-
ponent (HS) is small (only 3%). However, some changes can be distinguished in the IR 
spectrum of the composite compared to the pristine co-polymer. For instance, owing to 
the addition of HS, the peaks at 3694 and 3625 cm−1 (attributed to υ(O-H) stretching vibra-
tion from HS) can be clearly identified. In addition, for the composite membrane, the in-
tensity of the peaks at 765 cm−1 and 686 cm−1 increased, to some extent, as a result of su-
perimposing bending (δ) and wagging (ω) vibrations. That is, the overlay of the δ(Si-O-
Al) vibration mode (from HS) to the vibration modes δ(C-C) and ω(CF2) of the polymer. 

Figure 11. Infrared spectra (FTIR) of investigated materials: (a) PVDF-HFP membrane; (b) HS
(Halloysite); (c) PVDF-HFP/HS composite membrane.

Nanomaterials 2023, 13, x FOR PEER REVIEW 20 of 25 
 

 

Finally, the produced composite membrane (PVDF-HFP/HS) was tested in a longer-
term ultrafiltration assay (up to 90 min) under the established optimal conditions of ad-
sorption-ultrafiltration (i.e., SD = 0.674% w/v and pH 7.0) in order to evaluate the kinetics 
of the permeate flux and the nitrite removal efficiency. Results from this ultrafiltration test 
aiming to remove nitrite ions by adsorption onto the organoclay are highlighted in Figure 
12. 

 
  

(a) (b) (c) 

Figure 12. Outcomes of the ultrafiltration test performed by using PVDF-HFP/HS (3%) composite 
membrane: (a) permeate flux decline observed under optimal conditions (SD = 0.674% w/v, pH 7.0); 
(b) photo image of the spent membrane at the end of UF test; (c) the microscopic image that shows 
the top surface of the spent membrane highlighting the deposition of the cake fragments (distin-
guished as brown spots). 

As one can see from Figure 12a, the permeate flux decreases against time. By assum-
ing that the permeate flux is inversely proportional to time and may attain a steady-state 
level at equilibrium, the experimental data from Figure 12a were interpolated to a hyper-
bolic regression equation with three parameters that can be written as 𝐽(𝑡) = 𝐽 × 𝜏𝜏 + 𝑡 + 𝐽  (11)

where t is the time of ultrafiltration (independent variable), and JD, JE and τ are the param-
eters of the adopted hyperbolic regression model. The model parameters JD and JE have 
the same units as permeate flux (e.g., LMH). The first parameter (JD) can be associated 
with the portion of the permeate flux subjected to the decline dynamics; thereby, it is de-
nominated herein as the decline parameter (JD). The second parameter (JE) can be at-
tributed to the portion of permeate flux that achieved a steady state; thereby, it is desig-
nated herein as the equilibrium or residual parameter (JE). The last parameter τ might be 
associated with the half-life of decline indicating the time when the declining term in 
Equation (11) is reduced by half (i.e., ½ JD). Thus, the parameter τ has the same units as 
time (e.g., min), and when τ = t, then the permeate flux is readily estimated as ½JD + JE. 
The interesting aspect of this hyperbolic model is that at time zero (t = 0), the initial per-
meate flux (J0) of the feed solution can be extrapolated to J0 = JD + JE. For instance, in our 
case study (see Figure 12a), the parameters of the hyperbolic model were determined by 
nonlinear regression and were found to be JD = 17.3 LMH, JE = 10.7 LMH, and τ = 50 min. 
Consequently, the initial permeate flux (J0, at time zero t = 0) of the feed solution (contain-
ing [NO2−]0 = 5 mg/L) was estimated as J0 = 28.0 LMH. This value was somewhat lower 
than the pure water flux (PWF0 = 31.1 ± 1.5 LMH) determined for the composite mem-
brane. According to Figure 12a, in the course of 90 min (1.5 h) of filtration, the permeate 
flux was diminished but still had not completely achieved its steady state. 

Figure 12. Outcomes of the ultrafiltration test performed by using PVDF-HFP/HS (3%) composite
membrane: (a) permeate flux decline observed under optimal conditions (SD = 0.674% w/v, pH 7.0);
(b) photo image of the spent membrane at the end of UF test; (c) the microscopic image that shows the
top surface of the spent membrane highlighting the deposition of the cake fragments (distinguished
as brown spots).

As one can see from Figure 12a, the permeate flux decreases against time. By assuming
that the permeate flux is inversely proportional to time and may attain a steady-state level
at equilibrium, the experimental data from Figure 12a were interpolated to a hyperbolic
regression equation with three parameters that can be written as

J(t) =
JD × τ

τ + t
+ JE (11)

where t is the time of ultrafiltration (independent variable), and JD, JE and τ are the
parameters of the adopted hyperbolic regression model. The model parameters JD and
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JE have the same units as permeate flux (e.g., LMH). The first parameter (JD) can be
associated with the portion of the permeate flux subjected to the decline dynamics; thereby,
it is denominated herein as the decline parameter (JD). The second parameter (JE) can
be attributed to the portion of permeate flux that achieved a steady state; thereby, it is
designated herein as the equilibrium or residual parameter (JE). The last parameter τ
might be associated with the half-life of decline indicating the time when the declining
term in Equation (11) is reduced by half (i.e., 1

2 JD). Thus, the parameter τ has the same
units as time (e.g., min), and when τ = t, then the permeate flux is readily estimated as
1
2 JD + JE. The interesting aspect of this hyperbolic model is that at time zero (t = 0), the initial
permeate flux (J0) of the feed solution can be extrapolated to J0 = JD + JE. For instance, in our
case study (see Figure 12a), the parameters of the hyperbolic model were determined by
nonlinear regression and were found to be JD = 17.3 LMH, JE = 10.7 LMH, and τ = 50 min.
Consequently, the initial permeate flux (J0, at time zero t = 0) of the feed solution (containing
[NO2

−]0 = 5 mg/L) was estimated as J0 = 28.0 LMH. This value was somewhat lower than
the pure water flux (PWF0 = 31.1 ± 1.5 LMH) determined for the composite membrane.
According to Figure 12a, in the course of 90 min (1.5 h) of filtration, the permeate flux was
diminished but still had not completely achieved its steady state.

The meaning of the model parameters (JD, JE, and τ) can be distinguished from
Figure S12 (given in Supplementary Materials), where the computer-aided simulation was
performed based on the hyperbolic model for a larger time span. According to this plot,
when filtration time is less than the half-life parameter (t < τ) the permeate flux decline is
very fast, and afterward (for t > τ) the dynamics of the flux slows gradually until it reaches
steady state at a permeate flux equal to JE.

It is worth mentioning here that the nitrite removal efficiency by the more retentive
membrane (PVDF-HFP/HS) was equal to 95.0%, which represents a greater value than the
one recorded for the commercial membrane (~86%). Note that a separation yield of 95%
is a significant result. For a feed solution of [NO2

−]0 = 5 mg/L (exceeding the maximum
allowed value of ten times), the removal efficiency of 95% means about 0.25 mg/L of
remaining nitrite ions are in the aqueous solution. This value is two times below the
maximum allowed concentration. By comparing the performance of the commercial
membrane (Y~86%, J0 = 185 LMH) and the produced composite membrane (Y = 95%,
J0 = 28 LMH), it is evident that establishing the trade-off between the rejection efficiency
and the permeate flux is essential for real applications. In our study, the focus was placed on
the environmental protection aspect (i.e., removal of very toxic ions); thereby, the enhanced
rejection was preferred instead of productive water flux. In this respect, the produced
composite membrane (PVDF-HFP/HS) was more suitable for achieving this objective. It is
important to note that the pristine montmorillonite (MMT) was also tested (in optimal
conditions), disclosing a low rejection efficiency of 22.1%, compared to the rejection of 95.0%
indicated by the organoclay (MMT-TmSA). Hence, the major role in the retention of nitrite
ions can be attributed to the functional groups TmSA (C21H46N+) from the organoclay.

In Figure 12a, the permeate flux decline can be a consequence of the combined effect
of concentration-polarization, membrane fouling, and membrane compaction. At the end
of ultrafiltration, cake formation was noticed at the surface of the membrane (Figure 12b,c).
The photo image of the spent membrane is shown in Figure 12b. In turn, Figure 12c
displays the microscopic image unveiling the top surface of the spent membrane where the
reddish spots (cake fragments) were deposited non-uniformly. The spent UF membrane
was restored by rinsing it with tap water, then immersing it in 0.01 M NaOH solution for
1 min, and ultimately thoroughly washed with distilled water.

5. Conclusions

In summary, we demonstrated the capability of organoclay (Nanomer® I.28E) to ad-
sorb the nitrite ions (NO2

−) and the efficiency of ultrafiltration to retain the formed colloids
in a one-step hybrid process. The proposed mechanism of adsorption envisaged the in-
teraction between organic moiety (C21H46N+) from organoclay and nitrite ion (NO2

−).
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This interaction relied on electrostatic forces (Coulomb) as molecular docking simulation
suggested. The UF experiments were conducted using a commercial porous membrane
(Ultracel®) of 10 kDa MWCO. The hybrid adsorption-ultrafiltration process was modeled
mathematically using three different computational tools, for comparison. Thus, the clas-
sical RSM modeling tool was compared with machine learning tools such as ANN and
SVM. The residual analysis disclosed that machine learning by the SVM model provided
the most accurate predictions compared to ANN and RSM models. For this case study,
we believe that the true response surface was better estimated by the SVM model compared
to the ANN and RSM models. The optimal conditions for the adsorption-ultrafiltration
hybrid process were established by numerical optimization, disclosing an adsorbent dose
of 0.674% w/v and pH 7.0. Under these optimal conditions (indicated by the SVM model),
the nitrite removal efficiency was found to be 86.28% and the initial permeate flux was
185 LMH on the Ultracel® commercial membrane. In addition, these optimal conditions
of adsorption-ultrafiltration were tested on a more retentive membrane prepared in the
laboratory by the phase-inversion method. This new composite membrane with 75.32%
porosity (made of PVDF-HFP polymer and Halloysite (HS) inorganic nanotubes) revealed
a higher nitrite removal efficiency of 95.0%, but a lower initial permeate flux of 28.0 LMH.
Moreover, the kinetics of permeate flux decline was modeled by using a hyperbolic re-
gression equation with three parameters. This hyperbolic regression model enabled the
extrapolation of the permeate flux at time zero (t = 0).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13040697/s1. Scheme S1: Greiss’ reaction employed for
qualitative & quantitative analysis of nitrite ions (NO2

−). (a) Classical Greiss’ reaction: under acidic
conditions, NO2

− reacts with the amino moiety of sulfanilic acid to form diazonium cation, which
links to α-naphthylamine in para-position to form the azo-dye identified by UV-Vis spectrophoto-
metric method; (b) Modified Greiss’ reaction: under acidic conditions, NO2

− reacts with the amino
moiety of sulfanilamide to form diazonium cation, which links to N-(1-naphthyl)ethylenediamine in
para-position to form the azo-dye identified by UV-Vis spectrophotometric method [16]. Scheme S2:
Artificial neuron structure and types of activation functions for multiple regression. Scheme S3:
Representation of the principle of a support vector machine (SVM); Figure S1: Adsorption kinet-
ics of (NO2

−) ions onto nanoclay adsorbent (TmSA-MMT); T = 300 K, SD = 4 g/L, pH 7.0 ± 0.1,
and [NO2

−]0 = 5 mg/L; Figure S2: Adsorption equilibrium isotherm for the system NO2
−/TmSA-

MMT, at T = 300 K and initial pH of 7.0 ± 0.1; contact time t = 60 min; experimental observation:
qe,max = 2.57 mg/g; data interpolation by Freundlich isotherm model (KF = 1.0391 and nF = 0.79627);
Figure S3: Training performance of feed-forward ANN (2:3:1) model: Evolution of performance func-
tion (MSE) using LM-BP algorithm for training (goal = 5.00 × 10−4 and performance = 4.39 × 10−4);
Figure S4: Molecular docking outcome: best pose of the docked complex showing the binding
mode and interactions between TmSA (C21H46N+) (receptor) and NO2

− ion (ligand); computa-
tion results: binding affinity = −0.461 kcal/mol and dissociation constant Kd = 459 mM; Figure S5:
Probability plot of residuals (Normal distribution—95% Confidence Interval, CI); Figure S6: SEM
images (cross-section view) of the produced flat-sheet porous membranes: (a,b) polymeric membrane
(PVDF-HFP); (c,d) composite membrane (PVDF-HFP/HS); Figure S7: Histogram of pore size distri-
bution in Layer-1 (skin-layer); Figure S8: Histogram of pore size distribution in Layer-2 (finger-like
pores); Figure S9: Histogram of pore size distribution in Layer-3 (sponge-like pores); Figure S10:
Histogram of pore size distribution (SEM top surface analysis); Figure S11: Water contact angle
(WCA) measurements: (a) WCA = 80 ± 4◦ for polymeric membrane (PVDF-HFP); (b) WCA = 61 ± 3◦

for composite membrane (PVDF-HFP/HS); Figure S12: Estimation of permeate flux evolution for a
longer time (t = 10,080 min, i.e., 168 h, or 7 d) by extrapolation using the computer-aided simulation
based on the hyperbolic equation model; this simulation was performed to point out the meaning
of the hyperbolic equation parameters; Table S1: Kinetic models and parameters for (NO2

−) ions
adsorption onto nanoclay adsorbent (TmSA-MMT), experimental conditions: T = 300 K, SD = 4 g/L,
[NO2

−]0 = 5 mg/L and pH 7.0; Table S2: Experimental design employed for Validation and Testing of
ANN-model (Val and Test sets used for developing of ANN model); Table S3: Values of ANN-model
parameters, i.e., weights (IW(1,1), LW(2,1)) and biases (θ(1)b), θ(2)b) for trained ANN (2:3:1), computed
by LM-BP algorithm; Table S4: Values of least square SVM model parameters determined through
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LS-SVR; Table S5: Energy of intermolecular interactions between nitirite ion NO2
− as ligand and

trimethyl stearyl ammonium TmSA (C21H46N+) as receptor; Table S6: ANOVA-Analysis of Variance
(ANOVA) of the RSM-model; Table S7: ANOVA-Analysis of Variance (ANOVA) of the ANN-model;
Table S8: ANOVA-Analysis of Variance (ANOVA) of the SVM-model (LS-SVM).
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