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Abstract: In this study, the bipolar switching properties and electrical conduction behaviors of the
ITO thin films RRAM devices were investigated. For the transparent RRAM devices structure, indium
tin oxide thin films were deposited by using the RF magnetron sputtering method on the ITO/glass
substrate. For the ITO/ITOX/ITO/glass (MIM) structure, an indium tin oxide thin film top electrode
was prepared to form the transparent RRAM devices. From the experimental results, the 102 On/Off
memory ratio and bipolar switching cycling properties for set/reset stable states were found and
discussed. All transparent RRAM devices exhibited the obvious memory window and low set voltage
for the switching times of 120 cycles. The electrical transport mechanisms were dominated by the
ohmic contact and space charge limit conduction (SCLC) models for set and reset states. Finally,
the transmittances properties of the transparent ITO/ITOX/ITO RRAM devices for the different
oxygen growth procedures were about 90% according to the UV–Vis spectrophotometer for the visible
wavelength range.

Keywords: nonvolatile; bipolar switching; RF sputtering; resistance random access memory

1. Introduction

According to the dimensions scaled down trend of different traditional memory de-
vise for flash memory, dynamic random access memory (DRAM), and various nonvolatile
memory, the reveal charge loss and limiting physical properties were considered and in-
vestigated [1,2]. Many advantages of the various nonvolatile memory devices, such as
non-volatility, high operation speed of 10 ns, multi-state possibility, the simple capacitor
structure of 1–2 nm, small size of 1–2 nm, high packing density of 6F2, and low power
consumption of 1.5 V properties, were also became prospective candidate for the next-
generation nonvolatile memory devices was identified [3,4]. Recently, resistance random
access memory (RRAM) devices were widely used for applications in portable electronic
systems, such as iPads, cell phones, digital cameras, and flash storage devices. The resis-
tance switching properties were found and discussed from the I-V characteristics of various
thin films RRAM devices between the low resistance state (LRS) and high resistance state
(HRS). Many thin film materials for RRAM devices were widely discovered, such as the
chalcogenide material, the metal oxide-base, the carbide materials, and amorphous silicon
materials, which were used for the RRAM’s applications [5–12].

Seo et al. [13] reported the transparent resistive random access memory (T-RRAM)
devices using the ZnO-based material and the electrode of indium tin oxide (ITO) film. In
addition, the ITO/ZnO/ITO RRAM devise structure exhibited unipolar switching behav-
ior. In the future, RRAM devices will appear in bionic and high-speed logic operations
applications. The T-RRAM device also realized the memory array architecture through
the cross array format, memory computing technology of low-power consumption, and
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developments in the application potential in AI technologies [13]. According to a previous
RRAM’s materials-related study, indium tin oxide (ITO) was an important candidate for
the transparent electrode materials for its high thermal stability properties, large band gaps,
good transmittances, and electrical conduction properties [14,15]. For the motivation of the
transparent RRAM device’s fabrication in this study, the ITOX material was chosen because
of the low-cost single processing and the continuous deposition time of the same one RF
sputtering vacuum system. In addition, the high transparent properties, high conductivity,
electrical resistive switching behavior, bipolar switching properties, electrical conduction
transport mechanisms, and On/Off memory ratio of the transparent ITO/ITOX/ITO RRAM
devices were important challenge for application in future memory devices. The transmit-
tance of the ITO/ITOX/ITO RRAM devices will be discussed and affected by the different
oxygen concentration deposited parameters.

2. Experimental Procedures

For ITOX/ITO RRAM structure, the ITOX thin films were deposited on the ITO/glass
substrate by RF power of 50 W, chamber pressure of 20 mTorr, and sputtering time of 10 min.
The XRD patterns of the ITOX thin films were recorded to determine the crystalline phase
of the X-ray diffraction (XRD) in the 2θ degree of 20–60◦. The surface micro-structure and
cross-section morphology were observed by scanning electron microscope (SEM). Using the
RF magnetron sputtering method, the indium tin oxide top electrode (diameter = 0.1 cm)
array deposited (with 100% Ar, ITO target) for the transparent metal-insulator-metal (MIM)
(ITO/ITOX/ITO) RRAM structure was shown in Figure 1. The current versus applied
voltage (I-V) curves switching characteristics of the ITO/ITOX/ITO RRAM structure were
measured by the semiconductor parameter analyzer (HP4156C). The electrical transport
conduction mechanisms of set/reset state were discussed and investigated. In addition, the
transmittances of the ITO/ITOX/ITO RRAM were measured using the UV–Vis spectropho-
tometer for the visible wavelength range of 400–800 nm. In this study, the transparent
ITO/ITOx/ITO/glass transparent RRAM devices for 10 samples were measured.
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Figure 1. The MIM structure of the transparent ITO/ITOX/ITO RRAM device.

3. Results and Discussion

Figure 2 depicted the XRD patterns of the as-deposited ITOX thin films prepared by RF
power of 50 W for different oxygen growth procedure parameters. All ITOX thin films were
exhibited the mainly preferred (400) phrase orientation for 2θ degree of 35◦. In addition,
the (211), (222), (400), (411), (431), and (440) peaks of thin films were observed in XRD
patterns in previous studies [16–18]. The (211), (200), and (440) peaks corresponding to the
ITOX thin films were also observed in the XRD pattern. The XRD results demonstrated that
the (400) peaks of the ITOX phases were obtained for different oxygen growth procedure
parameters. In XRD patterns, the sharp and strong (400) phrase preferred peak of ITOX
thin film was found and chosen in the following experimental procedure. Figure 3 shows
the cross-sectional SEM image of the RRAM device’s structure for different oxygen growth
procedure parameters. The layer structures and evident interface of ITOX, ITO, and glass
were observed and found. In addition, the thickness of as-deposited ITOX thin films was
calculated to 228 nm.
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3d5/2 peaks.

Figure 3 presented the XPS measurement of the transparent ITOX thin films for (a) In1+

3d5/2, and (b) Sn1+ 3d5/2, Sn2O3 3d5/2 peaks. In Figure 3, the In1+ 3d5/2 and Sn1+ 3d5/2
bonding energy of the transparent ITOX thin films was 443 eV and 485.3 eV, respectively. In
Table 1, the mole fraction ratio of the transparent as-deposited and RTA–ITOX thin films
for Sn, In, and O elements was observed from the XPS results. The oxygen mole fraction
of as-deposited ITOX thin films for 50% oxygen growth procedure parameters was about
47.15% in Table 2. The oxygen mole fraction of RTA–ITOX thin films was increased to
76.98% in Table 1. This result proved the oxygen mole fraction was increased by RTA
processing using oxygen gas treatment. However, the ITOx thin film for 50% oxygen
growth procedure parameters exhibited low oxygen content of thin films. As shown in
Figure 2, the sharp (400) phrase preferred peak of ITOX thin film for 50% oxygen growth
procedure parameters was chosen in the following experimental procedure. In addition,
the ITOX thin film for different oxygen growth procedure parameters which exhibited the
high memory ratio was also shown in I-V curves of RRAM devices.

Table 1. The mole fraction ratio of the ITOX thin films from the XPS results.

Mole fraction Sn In O

ITO 5.08% 47.76% 47.15%

RTA-ITO 4.7% 18.32% 76.98%
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Table 2. The oxygen gas present of the growth procedure and oxygen fraction of as-deposited thin
film from the XPS results.

Growth Procedure
Argon: Oxygen Gas (%)

Thin Film
Oxygen Mole Fraction (%)

0% 47.15%

25% 52.1%

50% 55.2%

75% 57.4%

Figure 4 depicts the surface micro-structure morphologies of ITOX thin films at differ-
ent oxygen growth procedure parameters. More non-uniform grains and rather bumpy
surfaces were found in 0% and 25% oxygen growth procedure parameters. As shown in
Figure 5c,d, the denser surfaces of thin films for 50% and 75% oxygen growth procedure
parameters was increased. In addition, the oxygen vacancies were the main factor for the
electrical current transport paths under the different oxygen sputtering growth procedure
parameters. The electrical transport conduction paths affected by the variation in oxy-
gen vacancies of ITOX thin films for the 50% oxygen growth procedure parameters were
improved in I-V curves switching behaviors.

Nanomaterials 2023, 13, x FOR PEER REVIEW 4 of 12 
 

 

Table 1. The mole fraction ratio of the ITOX thin films from the XPS results. 

Mole fraction Sn In O 

ITO 5.08% 47.76% 47.15% 

RTA-ITO 4.7% 18.32% 76.98% 

Table 2. The oxygen gas present of the growth procedure and oxygen fraction of as-deposited thin 

film from the XPS results. 

Growth Procedure  

Argon: Oxygen Gas (%) 

Thin Film 

Oxygen Mole Fraction (%) 

0% 47.15% 

25% 52.1% 

50% 55.2% 

75% 57.4% 

Figure 4 depicts the surface micro-structure morphologies of ITOX thin films at dif-

ferent oxygen growth procedure parameters. More non-uniform grains and rather bumpy 

surfaces were found in 0% and 25% oxygen growth procedure parameters. As shown in 

Figure 5c,d, the denser surfaces of thin films for 50% and 75% oxygen growth procedure 

parameters was increased. In addition, the oxygen vacancies were the main factor for the 

electrical current transport paths under the different oxygen sputtering growth procedure 

parameters. The electrical transport conduction paths affected by the variation in oxygen 

vacancies of ITOX thin films for the 50% oxygen growth procedure parameters were im-

proved in I-V curves switching behaviors. 

ITO

ITOX

Glass

 

Figure 4. The SEM cross-section image of the as-deposited ITOX thin film for 50% different oxygen 

growth procedure parameters. 
Figure 4. The SEM cross-section image of the as-deposited ITOX thin film for 50% different oxygen
growth procedure parameters.

Figure 6 presents the surface micro-structure (AFM) images of the ITOX thin films
prepared by different oxygen growth procedure parameters. For the inhomogeneity of layer
thickness, the surface roughness of the ITOx thin films was also observed and discussed.
The surface roughness of the ITOX thin films for different oxygen growth procedure pa-
rameters was about 3.434, 2.371, 3.821, and 3.145 nm, respectively. For 50% oxygen growth
procedure parameters, the large roughness surface and the non-flat depth images of the
inhomogeneity ITOx layer thickness were caused by excess oxygen gas growth procedure
parameters and re-sputtering treatment.
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The typical I–V curves of the ITOX thin films RRAM devices are shown in Figure 7.
The electrical current compliance is 5 mA in Figure 7a. The MIM capacitor structure of the
ITO/ITOX/ITO RRAM devices is shown in Figure 7b. For the initial forming process at a
voltage of −10 V, the ITOX thin films from the RRAM devices switch to the low resistance
state (called LRS) and the high resistance state (called HRS). To discuss and confirm the
stable I–V switching behavior, the LRS/HRS states of the ITOX thin films of the RRAM
devices were repeated 100 times.



Nanomaterials 2023, 13, 688 6 of 11

Nanomaterials 2023, 13, x FOR PEER REVIEW 6 of 12 
 

 

The typical I–V curves of the ITOX thin films RRAM devices are shown in Figure 7. 

The electrical current compliance is 5 mA in Figure 7a. The MIM capacitor structure of the 

ITO/ITOX/ITO RRAM devices is shown in Figure 7b. For the initial forming process at a 

voltage of −10 V, the ITOX thin films from the RRAM devices switch to the low resistance 

state (called LRS) and the high resistance state (called HRS). To discuss and confirm the 

stable I–V switching behavior, the LRS/HRS states of the ITOX thin films of the RRAM 

devices were repeated 100 times. 

 

Figure 7. The I-V curves of ITO/ITOX/ITO RRAM for (a) initial electrical forming process, and (b) 

electrical filament mechanism model on the MIM structure. 

For the RF sputtering process parameters, the different defects and oxygen vacancies 

of as-deposited ITOX thin films were filled and compensated for different oxygen growth 

procedure parameters. Figure 8 shows the I-V characteristics of ITO/ITOX/ITO RRAM for 

different oxygen growth procedure parameters. All RRAM devices exhibited the bipolar 

switching behavior in the I-V curves result. The On/Off memory ratio of ITO/ITOX/ITO 

RRAM devices for 50% oxygen growth procedure parameters was also observed in the I-

V curves. 

Some studies reported that the oxygen vacancies effect played an important role in 

the resistive switching properties of the RRAM devices [19–21]. In the initial metallic fila-

ment model, the transport formation path and rupture effect of the electrical conducting 

filaments were the main electrical switching mechanisms. The electrical switching 

transport mechanism of the ITOx thin film was correlated to oxygen ions or to vacancies 

between of the electrode and the insulator thin film. As shown in Figure 8a–d, the set 

voltage of RRAM devices gradually increases from −0.7 V (25% O2), −1.7 V (50% O2), and 

−1.8 V (75% O2). In addition, the obvious I-V switching characteristic of the RRAM devices 

for 0% oxygen growth procedure parameters was not observed. 

Figure 7. The I-V curves of ITO/ITOX/ITO RRAM for (a) initial electrical forming process, and
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For the RF sputtering process parameters, the different defects and oxygen vacancies of as-
deposited ITOX thin films were filled and compensated for different oxygen growth procedure
parameters. Figure 8 shows the I-V characteristics of ITO/ITOX/ITO RRAM for different oxygen
growth procedure parameters. All RRAM devices exhibited the bipolar switching behavior
in the I-V curves result. The On/Off memory ratio of ITO/ITOX/ITO RRAM devices for 50%
oxygen growth procedure parameters was also observed in the I-V curves.
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Some studies reported that the oxygen vacancies effect played an important role in
the resistive switching properties of the RRAM devices [19–21]. In the initial metallic
filament model, the transport formation path and rupture effect of the electrical conducting
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filaments were the main electrical switching mechanisms. The electrical switching transport
mechanism of the ITOx thin film was correlated to oxygen ions or to vacancies between
of the electrode and the insulator thin film. As shown in Figure 8a–d, the set voltage of
RRAM devices gradually increases from −0.7 V (25% O2), −1.7 V (50% O2), and −1.8 V
(75% O2). In addition, the obvious I-V switching characteristic of the RRAM devices for 0%
oxygen growth procedure parameters was not observed.

Figure 9a,b presents the statistical results of distribution of the set/reset voltages
measured from the RRAM devices for 400 times measured, respectively. In Figure 9a,
the counts distribution results, the set and reset voltage value was found for the range of
applied voltage of −3 to 3 V. In addition, the statistical results of cumulative probability for
the resistive switching properties of the RRAM devices in set and reset are also observed in
Figure 9b.
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Many previous studies have suggested ways to prove the electrical transport con-
ductive behaviors of the RRAM devices: the modification of the Schottky mechanism for
the trapped charge carrier model, the conductive filamentary path model, the migration
of oxygen vacancies model, and the carriers tunneling model [22–25]. In addition, many
studies attempted to elucidate the I-V resistive switching properties of RRAM devices.

Figure 10 depicts the I-V curves characteristics (Ln (I) as the vertical axis and Ln (V)
as the horizontal axis) of the ITO/ITOX/ITO RRAM devices under 0, 25, 50, and 75%
different oxygen growth procedure parameters. According to experimental results, the
electrical current conduction mechanism was ohmic conduction (external electric field
dominated, slope ≈ 1) for low voltages. As high voltages were applied, the defects filled
by the carriers of electrical conduction mechanisms were caused by the space charge limit
conduction (SCLC, slope ≈ 2). The electrical conduction mechanisms exhibited both ohmic
conduction and SCLC mechanisms (slope = 1~2.5). The electrical current density of the
ohmic conduction and SCLC was written as [26]:

J = nqµE exp(
−∆Eac

kT
) (1)

J =
9εiµV2

8d3 . (2)

In Equation (1), J is the electrical current density, E is the electric field, µ is the mobility
of electrons, ∆Eac is the activation energy of electrons, T is the absolute temperature, k is
the Boltzmann constant, n is the electron concentration, d is the thickness of the insulator
layer, εi is the dynamic permittivity of the insulator layer, and V is the applied voltage.
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(RF power of 50 W) for (a) 0%(b) 25%(c) 50%, and (d) 75%.

Figure 11 presents the switching cycling versus resistance value curves, measured by
using the type of the retention and endurance measurement properties. In Figure 11a, the
retention properties of the ITO/ITOX/ITO thin film RRAM devices were measured to inves-
tigate their reliability for applications in non-volatile memory RRAM devices. Figure 11b
demonstrates that no significant changes in the ON/OFF ratio switching resistance cycling
versus testing time curves in ITO/ITOX/ITO thin film RRAM devices were found for more
than 102 s in the extrapolation calculation anticipation measured.
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and (b) endurance properties (measured at room temperature).

For the visible wavelength range from 400 to 800 nm, the transmittance properties of
ITO/ITOX/ITO RRAM devices were measured in Figure 12. For the 0% oxygen growth
procedure parameters, the transmittance efficiency was about 85% for all visible wavelength
ranges. The optimal transmittance efficiency of 93% for 50% oxygen growth procedure
parameters was observed. Additionally, the transparency of ITO/ITOX/ITO RRAM devices
was improved to 90%. The transmittance efficiency and resistivity value of the as-deposited
ITOx thin film for RTA treatment were about 94% and 5 × 10−1 (Ω-cm). Finally, the good
transparency efficiency of the ITO/ITOX/ITO RRAM as observed by optical images is
shown in Figure 13.
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Figure 12. The transmittance of ITO/ITOX/ITO RRAM for the visible wavelength range of 400–800 nm.

Figure 14 presents the initial electrical metallic filament forming physical model of
the ITO/ITOX/ITO thin film RRAM devices for LRS/HRS state. In Figure 14a, the initial
electrical metallic filament path model for the ITO/ITOX/ITO thin film RRAM devices
for negative bias in the set state. As shown in fig. 14a, the oval pattern of the depletion
region formed by the oxygen ions and vacancies in the ITO top-electrode of the transparent
ITO/ITOX/ITO thin films RRAM devices for LRS was gradually accumulated. In addition,
the electrical metallic path tip passed through the oval depletion region in the ITO electrode
using the application of continuous high negative voltage. The thin electrical metal metallic
filament for the continuous oxidation reaction from oxygen atoms and vacancies with the
application of high positive voltage was shown in Figure 14b. The electrical metal metallic
filament is continuously sharp for the oxygen atoms and vacancies in the ITO bottom
electrode. Finally, the symmetry bipolar switching I-V curves properties of the transparent
ITO/ITOX/ITO RRAM devices were also proved and verified by the physical forming
model of the top/bottom ITO electrode [19–25].



Nanomaterials 2023, 13, 688 10 of 11

Nanomaterials 2023, 13, x FOR PEER REVIEW 10 of 12 
 

 

400 500 600 700 800
50

60

70

80

90

100

Wavelength (nm)

T
ra

n
s

m
it

ta
n

c
e

 (
%

)

0 % O2

75 % O2

50 % O2

25 % O2

 

Figure 12. The transmittance of ITO/ITOX/ITO RRAM for the visible wavelength range of 400–800 

nm. 

Bottom Electrode

Top Electrode

 

Top Electrode
Bottom Electrode

  

Figure 13. Optical images of the transparent ITO/ITOX/ITO RRAM device. 

Figure 14 presents the initial electrical metallic filament forming physical model of 

the ITO/ITOX/ITO thin film RRAM devices for LRS/HRS state. In Figure 14a, the initial 

electrical metallic filament path model for the ITO/ITOX/ITO thin film RRAM devices for 

negative bias in the set state. As shown in fig. 14a, the oval pattern of the depletion region 

formed by the oxygen ions and vacancies in the ITO top-electrode of the transparent 

ITO/ITOX/ITO thin films RRAM devices for LRS was gradually accumulated. In addition, 

the electrical metallic path tip passed through the oval depletion region in the ITO elec-

trode using the application of continuous high negative voltage. The thin electrical metal 

metallic filament for the continuous oxidation reaction from oxygen atoms and vacancies 

with the application of high positive voltage was shown in Figure 14b. The electrical metal 

metallic filament is continuously sharp for the oxygen atoms and vacancies in the ITO 

bottom electrode. Finally, the symmetry bipolar switching I-V curves properties of the 

transparent ITO/ITOX/ITO RRAM devices were also proved and verified by the physical 

forming model of the top/bottom ITO electrode [19–25]. 

Figure 13. Optical images of the transparent ITO/ITOX/ITO RRAM device.

Nanomaterials 2023, 13, x FOR PEER REVIEW 11 of 12 
 

 

 

Figure 14. The initial metallic filament path model of the transparent ITO/ITOX/ITO RRAM device 

for (a) LRS (set), and (b) HRS (reset) state. 

4. Conclusions 

The electrical bipolar resistance switching properties of ITOX thin films RRAM de-

vices were well investigated and discussed. The high-performance of simple capacitor 

structure, high transmittance efficiency, and the stable switching cycle of the 

ITO/ITOX/ITO structure RRAM devices for applications in nonvolatile memory devices. 

The RRAM devices all exhibited the bipolar switching behavior and memory window of 

102 on/off ratio. In addition, the memory reliability for switching endurance and retention 

testing was also found. The electrical conduction mechanisms for LRS/HRS states were 

exhibited ohmic and SCLC mechanisms for SET/RESET states. The transparency proper-

ties of ITO/ITOX/ITO RRAM devices were improved from 80% (0% O2) to about 90% (>25% 

O2). The low power operation and high uniformity properties of the transparent 

ITO/ITOX/ITO RRAM devices will be a candidate for high density and low power con-

sumption electronic devices. 

Author Contributions: K.-H.C. and C.-M.C. designed and performed the experimental work, ex-

plained the obtained results, and wrote the paper; K.-H.C. and C.-M.C. conceived the study and 

participated in its design and coordination; K.-H.C., Y.-Y.P., M.-L.C. and C.-M.C. helped in writing 

of the paper and participated in the experimental work. All authors have read and agreed to the 

published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Availability Statements are available in section “MDPI Research Data 

Policies” at https://www.mdpi.com/ethics (accessed on 29 December 2022). 

Conflicts of Interest: The founding sponsors had no role in the design of the study; in the collection, 

analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish 

the results. 

References 

1. Meijer, G.I. Who wins the nonvolatile memory race? Science 2008, 319, 1625–1626. https://doi.org/10.1126/science.1153909. 

2. Kim, K.M.; Jeong, D.S.; Hwang, C.S. Nanofilamentary resistive switching in binary oxide system; a review on the present status 

and outlook. Nanotechnol 2011, 22, 254002. https://doi.org/10.1088/0957-4484/22/25/254002. 

3. Ho, C.H.; Hsu, C.L.; Chen, C.C.; Liu, J.T.; Wu, C.S.; Huang, C.C.; Hu, C.; Yang, F.L. 9nm half-pitch functional resistive memory 

cell with <1μA programming current using thermally oxidized sub-stoichiometric WOx film. In Proceedings of the 2010 Inter-

national Electron Devices Meeting (2010 IEDM), San Francisco, CA, USA, 6–8 December 2010; pp. 19.1.1–19.1.4. 

https://doi.org/10.1109/IEDM.2010.5703389. 

4. Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840. 

https://doi.org/10.1038/nmat2023. 

Figure 14. The initial metallic filament path model of the transparent ITO/ITOX/ITO RRAM device
for (a) LRS (set), and (b) HRS (reset) state.

4. Conclusions

The electrical bipolar resistance switching properties of ITOX thin films RRAM devices
were well investigated and discussed. The high-performance of simple capacitor structure,
high transmittance efficiency, and the stable switching cycle of the ITO/ITOX/ITO structure
RRAM devices for applications in nonvolatile memory devices. The RRAM devices all
exhibited the bipolar switching behavior and memory window of 102 on/off ratio. In
addition, the memory reliability for switching endurance and retention testing was also
found. The electrical conduction mechanisms for LRS/HRS states were exhibited ohmic and
SCLC mechanisms for SET/RESET states. The transparency properties of ITO/ITOX/ITO
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