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Abstract: Although colorectal cancer (CRC) is easy to treat surgically and can be combined with
postoperative chemotherapy, its five-year survival rate is still not optimistic. Therefore, developing
sensitive, efficient, and compliant detection technology is essential to diagnose CRC at an early stage,
providing more opportunities for effective treatment and intervention. Currently, the widely used
clinical CRC detection methods include endoscopy, stool examination, imaging modalities, and tumor
biomarker detection; among them, blood biomarkers, a noninvasive strategy for CRC screening,
have shown significant potential for early diagnosis, prediction, prognosis, and staging of cancer.
As shown by recent studies, electrochemical biosensors have attracted extensive attention for the
detection of blood biomarkers because of their advantages of being cost-effective and having sound
sensitivity, good versatility, high selectivity, and a fast response. Among these, nano-conductive
polymer materials, especially the conductive polymer polypyrrole (PPy), have been broadly applied
to improve sensing performance due to their excellent electrical properties and the flexibility of their
surface properties, as well as their easy preparation and functionalization and good biocompatibility.
This review mainly discusses the characteristics of PPy-based biosensors, their synthetic methods,
and their application for the detection of CRC biomarkers. Finally, the opportunities and challenges
related to the use of PPy-based sensors for diagnosing CRC are also discussed.
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1. Introduction

As a result of the influences of individual lifestyle, food safety, and the ecological
environment on health and the accelerating processes of industrialization, urbanization,
and global population aging, the morbidity and mortality of chronic diseases are increasing
with a constant upward trend, seriously endangering population health. Colorectal cancer
(CRC) has one of the highest incidences among malignant tumors all over the world, which
is related to genetics, gender, age, race, living environment, lifestyle, eating habits, and
medicine use [1]. CRC develops from genetic and epigenetic variation and progresses to
adenoma and malignancy through subsequent changes, such as transcription, translation,
and abnormal protein expression, in a multi-stage process. There were over 1.9 million
new CRC cases and over 900,000 deaths worldwide in 2020 [1]. Early diagnosis of CRC
can enhance the survival rate with successful treatment and improve CRC outcomes by
offering care at the earliest possible stage.

Recently, many techniques have been developed to diagnose CRC clinically, such
as colonoscopy, sigmoidoscopy, colon capsule endoscopy (CCE), computed tomography
colonography (CTC), the antibody-based fecal immunochemical test (FIT), the immune-
based fecal occult blood test (FOBT), and biomarker determination [2]. Colonoscopy and
sigmoidoscopy (endoscopic examination of the distal colon) are practical tools for CRC
screening with higher sensitivity that can clearly show lesions, and they can be utilized as
auxiliary options during CRC surgery. However, these methods are invasive and costly

Nanomaterials 2023, 13, 674. https://doi.org/10.3390/nano13040674 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13040674
https://doi.org/10.3390/nano13040674
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-2596-8400
https://doi.org/10.3390/nano13040674
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13040674?type=check_update&version=1


Nanomaterials 2023, 13, 674 2 of 27

and require special facilities and sedatives with low patient compliance [3,4]. CCE is
a potential noninvasive screening tool for CRC, but it is difficult to control and lacks
accuracy in the determination of the type and size of lesions [5]. CTC is an auxiliary
imaging method that can be used to identify colonic lesions in three-dimensional (3D)
images with high sensitivity, and it is less invasive and suitable for visualization of the
entire colon [6,7]. Nevertheless, CTC is also limited due to the uncomfortable bowel
preparation, radiological safety concerns, and poor specificity in the detection of small
tumors [8]. Standard non-invasive assays, such as FIT and FOBT, enable the quantitative
measurement of hemoglobin content in human fecal samples [9,10]. However, they lack
specificity in the detection of precancerous lesions and are related to false positives in
clinical tests [11]. In contrast, the detection of CRC biomarkers, including Kirsten rat
sarcoma viral oncogene homolog (KRAS), V-RAF murine sarcoma viral oncogene homolog
B1 (BRAF), tumor protein 53 (TP53), microRNA-21 (miRNA-21), carcinoembryonic antigen
(CEA), carbohydrate antigens (CA19-9, CA72-4, CA125), interleukin-6 (IL-6), and vascular
endothelial growth factor (VEGF), is more sensitive and has important practical significance
for the early screening of CRC [12,13].

Biomarkers mainly refer to biological molecules—i.e., DNA, RNA, miRNA, and
proteins—that are markers of normal or abnormal states [14]. The conventional detec-
tion methods include the polymerase chain reaction (PCR) method [15], the enzyme-
linked immunosorbent assay (ELISA) [16], DNA microarrays [17], Northern blot tech-
niques [18], electrophoresis [19], radioimmunoassays (RIAs) [20], immunohistochem-
istry [21], chromatography-based technologies [22], the fluorescence method [23,24], and
the chemiluminescence method [25]. Although these methods have been used to obtain
relatively accurate results, detecting trace biomarkers at the early stage of CRC is far from
effective. Moreover, the limitations include complex operation, a time-consuming detection
process, the need for high-level technology and expensive equipment, and low sensitivity.
Thus, there is still a strong demand for specific tools for the early detection of CRC that are
efficient, sensitive, accurate, convenient, and fast.

Electrochemical-based detection methods, including electrochemistry, electrochemi-
luminescence (ECL), and photoelectrochemistry (PEC) methods, can convert analytical
signals generated by target molecules into readable electrical signals, and they have the
inherent advantages of excellent sensitivity and selectivity, simple operation, rapid de-
tection, cost-effectiveness, simultaneous detection of multiple biomarkers, and potential
for miniaturization [26]. Electrochemical techniques can be divided into five categories in
accordance with the measurable signals: amperometry, potentiometry, resistance methods,
voltammetry, and conductometry (Figure 1). Among them, voltammetry and electrochem-
ical impedance spectroscopy (EIS) are often used for the construction of electrochemical
biosensors, sensor characterization, and quantitative analysis [27,28]. Voltammetry has
the advantages of simple operation, intuitive atlas analysis, widespread effectiveness, and
high sensitivity. EIS has no significant influence on the system during the measurement
process. It provides more interface structure and electrode dynamics information than
other electrochemical methods.

Electrochemical sensors are sensitive sensing devices that use electrochemical tech-
nology to detect analytes; they are generally composed of sensitive elements, transducers,
and transformation circuits. Electrochemical sensors can be categorized according to their
different target molecules as biosensors, gas sensors, ion sensors, etc. The biometric ele-
ment is a sensitive element with a molecular recognition ability that has a significant place
in the construction of biosensors. In accordance with the different biometric elements,
biosensors can be divided into enzyme sensors, immune sensors, aptamer sensors, and
so on. Moreover, the electrode reaction in the sensor occurs at the interface between the
solution and the electrode, and the properties of the interface have a significant influence
on the reaction. Therefore, reasonable modifications of the interface play a decisive role in
improving sensing efficiency.
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Nanomaterials and nanocomposites with different structures [29,30], including con-
ductive polymers (CPs), carbon-based materials, metal nanomaterials, metal oxide nano-
materials, and silicon nanomaterials, are often utilized in biosensors to increase the surface
area, fix the biometric elements, catalyze the electrochemical reactions, enhance the elec-
trical conductivity of the electrode surface, and label the biomolecules, improving the
detection performance of the sensors.

Among the various nanomaterials, increasing attention has been focused on CPs,
which are known as “synthetic metals” because of their outstanding electrical, optical, and
magnetic characteristics [31]. Furthermore, several CPs, such as PPy, polyaniline (PANI),
polythiophene (PTh), and poly(3,4-ethylene dioxythiophene) (PEDOT), have gained ex-
tensive attention for practical applications relating to biomedicine, electronics, energy
equipment, etc. because of their biocompatibility, high surface area, good environmental
stability, inherent electrical conductivity, and other physical properties [32,33]. Specifically,
these CPs can be used for a wide range of applications in electrochemical biosensors, as
shown in Table 1. Wang et al. utilized polypyrrole nanowires (PPyNWs) and polyami-
doamine dendrimer (PAMAM) to design an miRNA biosensor with a high surface area and
high electrical conductivity that showed significantly improved sensitivity in the determi-
nation of miRNA [34]. Compared to other CPs, PPy has been widely studied and applied,
especially for the development of implantable, flexible, and wearable electronic equipment,
due to its electrical versatility, which ranges from that of an insulator to near that of a
metal; outstanding optical, thermoelectric, and electrical characteristics; easy synthesis
and functionalization; low electropolymerization potential; stability under environmental
conditions; and biocompatibility [35–37].

Table 1. Conductive polymers commonly used in electrochemical biosensors.

Conductive Polymers Ref.

Polypyrrole (PPy) [38–41]

Polyaniline (PANI) [42–44]

Polythiophene (PTh) [45–47]

Poly(3,4-ethylene dioxythiophene) (PEDOT) [48–50]
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2. Polypyrrole Biosensors
2.1. Physical and Chemical Characteristics of PPy

Pyrrole monomer is a five-membered heterocyclic molecule composed of C and N that
appears as a colorless oil-like liquid at room temperature. PPy, a heterocyclic conjugated
conductive polymer that usually appears as an amorphous black solid with good electrocon-
ductivity, processability, and chemical stability, is easy to form through polymerization of
pyrrole in various organic electrolytes. Although conventional PPy has high rigidity, poor
mechanical ductility, and poor solubility in common organic solvents, as well as deficiencies
in its optical, electrical, and biological properties, nanostructured PPy has improved elec-
trochemical activity, better electrical conductivity and biocompatibility, enhanced optical
properties, good mechanical properties, and is easy to process because of the nanostructure
and larger surface area, making it widely utilized in biomedical applications [51,52].

2.2. Synthesis and Modification of PPy

The polymerization of pyrrole can be carried out using chemical, electrochemical,
ultrasonic, electrospinning, and even biotechnological methods with different morphologies
(Figure 2), among which chemical oxidation polymerization and electropolymerization are
commonly used [53–59]. During the synthesis of PPy, the CP is able to carry biomolecules or
functional groups for specific biometric functions through physicochemical means [60,61];
i.e., physical adsorption, embedding, affinity, covalent immobilization, etc.
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Oxidative chemical polymerization of PPy is inexpensive and suitable for large-scale
production. Andriukonis et al. proved that [Fe(CN)6]3- can induce the synthesis of PPy [62].
Mao and Zhang pointed out that FeCl3, H2O2, and other oxidants can be utilized to ox-
idize Py and polymerize PPy [63]. Furthermore, pyrrole monomer can also be oxidized
using oxidoreductases (e.g., peroxidase, glucose oxidase, etc.) through enzymatic reac-
tions in an environmentally friendly fashion with a suitable pH and room temperature
conditions [64,65], and the embedded enzyme can maintain its catalytic activity when
encapsulated in the polymer particles or layers formed during the preparation of enzyme-
based biosensors. In addition, the formation of PPy can be implemented in cells, where the
PPy induced by microorganisms is mainly deposited in the cytoderm and between the cell
membrane and the cytoderm [66,67].

Electrochemical polymerization can be used to form PPy in situ with or without em-
bedding materials (nucleic acids, enzymes, receptor proteins, and antibodies) to improve
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the mechanical properties and solubility [34,68–71]. In the electrochemical preparation of
PPy, selection of the appropriate electrodeposition methods and electrochemical parame-
ters, including the applied voltage, current, potential window, potential scanning rate, and
duration, can ensure that the morphology, thickness, conductivity, doping, and dedoping
of the PPy are regulated well [72]. Moreover, the electrochemical properties of PPy, such as
the conductivity, morphology, thickness, structure, and porosity, can also be modulated
by controlling the type and concentration of dopants, electrolytes, and solvent, as well as
the pH value, temperature, and monomer concentration of the bulk solution [54,73,74]. In
addition to normal PPy preparation, electropolymerization can be utilized for the synthesis
of molecularly imprinted polymer (MIP) films on the electrode surface with high stability
and low cost [72,75,76]. During the preparation of the MIP, additional electrochemical oper-
ations can be performed for overoxidation after the formation of the initial electrodeposited
PPy layer [77,78]. Although peroxidation will destroy the π–π conjugate system of CP and
inhibit the polymerization process, during the construction of the MIP, oxygen-containing
groups, such as hydroxyl (-OH), carbonyl (-CH = O), and carboxyl (-COOH), can be gener-
ated adjacent to the embedded molecules, forming a specific environment conducive to
the attachment of imprinted template molecules. Moreover, excessive oxidation is able to
promote template removal and regeneration based on the MIP layer.

In addition to the direct synthesis of PPy via chemical oxidation and electrochemical
oxidation, ultrasound can also be used to promote the polymerization of Py. The ultrasonic
cavitation effect produced in the ultrasound process can heat the solvent and atomize it
locally, making it possible to prepare polypyrrole with a small size and uniform shape in a
short time [79]. Electrospinning is another convenient method that can be used to produce
ultra-fine polymer nanofibers with a porous structure and high specific surface area [80].
Vapor phase polymerization does not require a solution environment and can be used to
produce high-purity PPy nanomaterials on different types of substrates. However, the
formed PPy has insufficient adhesion with the substrate surface [81]. Photopolymeriza-
tion is a technology with which Py monomers can be polymerized under visible light or
ultraviolet light, using laser-generating free radicals for the preparation of porous PPy with
a high specific surface area. This approach allows for excellent control of the size of PPy
and facilitates micro-machining and direct polymerization on substrates with solubility or
temperature limitations [82].

2.3. Applications of PPy

As shown in Figure 3, PPy—with different morphologies including nanoparticles,
nanotubes, nanowires, nanorods, nanocapsules, thin films, nanofibers, and hydrogels—can
be utilized as a conductive material, electrical display material, electrochromic material, or
photoluminescent quencher [35,83,84] in the construction of chemical sensors, biosensors,
optical sensors, actuators, flexible electronics, transistors, electrochemical batteries, biofuel
cells, photovoltaic cells, electrochromic displays, wearable and implantable/connectable
biomedical tools, and other sensors [31,85–94]. Yang et al. prepared a high-performance
biosensor utilizing PPy nanowires (PPyNWs) with outstanding conductivity and a large
surface area to detect hydrogen peroxide and miRNA [95]. Rong et al. reported a nanocom-
posite film containing PPy for the selective adsorption and removal of Pb [96]. Mohamed
et al. designed a nanocomposite using PPy nanofibers (PPyNFs) with photocatalytic activity
and the capacity for dye adsorption to remove dye from raw water samples [97]. Han
et al. fabricated a conductive hydrogel combining PPy and silk hydrogel for use in the
preparation of flexible and wearable sensors [91]. Fan and his colleagues utilized a PPy
sponge with micron-sized pores, good mechanical capacities, and the capacity for light
absorption for use in a functional solar steam generator [98].
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2.4. Application of PPy-Based Biosensors

PPy and its derivatives are some of the most effective nanomaterials for improving
the sensing performance of different biosensors (see Table 2). PPy nanomaterials and their
composites, which have unique optical, electrochemical, and other physical and chemical
properties, have great potential for the enhancement of sensing performance, including the
response and recovery time, stability, selectivity, and sensitivity [99].

Table 2. Applications of PPy-based biosensors with different functions.

Type of Biosensor Function of PPy Ref.

Enzyme-based biosensors

� Entrap and immobilize the enzyme
� Reduce the oxidation potential of the substrate
� Improve the biocompatibility of the biosensor
� Promote electron transfer

[100–102]

Immunobiosensors
� Offer a proper environment for the immobilization of biomolecules
� Increase surface area
� Improve the biocompatibility and conductivity of the biosensor

[103–105]

Aptamer-based biosensors
� Immobilize aptamers
� Enlarge the specific surface area
� Enhance the biocompatibility and electroconductivity of the biosensor

[106,107]

MIP-based biosensors � Manually create specific molecular recognition sites
� Enhance the specificity, biocompatibility, and electroconductivity of the biosensor [108–111]

Nanocatalytic biosensors

� Serve as a suitable immobilization matrix and disperse metal nanoparticles
effectively

� Improve the catalytic activity of enzyme mimics
� Provide good conductivity

[112–114]

2.4.1. Enzyme-Based Biosensors

PPy is widely used as a substrate for the preparation of enzyme-based biosensors.
During this process, PPy is used for enzyme fixation and facilitates electron transfer between
the active center of the immobilized enzyme and the electrode. The permeability of the
PPy layer for enzyme substrates and reaction products is relatively low, contributing to
the increase in the apparent Michaelis constant of the enzyme and thereby expanding
the detection range for analytes [115]. Apetrei et al. described a PPy-based enzymatic
sensor in which the polyphenol oxidase extract could be utilized as a catalyst for both the
synthesis of PPy and the self-encapsulation of the enzyme (Figure 4A) [100]. Dutta et al.
synthesized an amperometric biosensor in which PPy was used to entrap and immobilize
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acetylcholinesterase, facilitate electron transfer, and reduce the oxidation potential of the
reaction substrate [101]. Shi et al. synthesized overoxidized PPy to modify an electrode, and
it had a catalytic oxidation ability that made it possible to reduce the oxidation potential of
ascorbic acid and then increase the sensitivity of the biosensor [102].
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2.4.2. Immunobiosensors

Antibody/antigen-based biosensors are sensing devices based on the affinity inter-
action between antibodies and antigens [116]. PPy is commonly applied in these sensors
because of its low oxidation potential and good biocompatibility. During biosensor prepa-
ration, PPy can serve as both an immobilizing substrate for biometric components and as a
signal transduction system [99]. Tang et al. fabricated PPy-PEDOT-Au to fix the antibody
in an electrochemical immunosensor due to the excellent electron transfer efficiency and
environmental stability of PPy (Figure 4B) [104]. Zou et al. utilized PPy with good bio-
compatibility and a high surface area to improve the dispersion of AuNPs, constructing a
biocompatible platform and immobilizing more antibodies to detect trace amounts of E.
coli K12 (Figure 4C) [105].

2.4.3. Aptamer-Based Biosensors

Aptamers, which are artificial single-stranded oligonucleotide fragments, can precisely
capture ligands, such as DNA, RNA, or proteins, with high affinity and selectivity. Ap-
tamers are easily synthesized and more stable than antibodies and antigens, and they have
been widely utilized in electrochemical biosensors to detect low concentrations of target
molecules in the blood. Duan et al. designed an aptasensor to detect lipopolysaccharide in
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which PPyNWs with -COOH ensured the immobilization of aptamers and enlarged the
specific surface area (Figure 5A) [106]. In addition, a nitrogen-doped graphene (NG)/PPy
nanocomposite was synthesized in order to design an aptasensor that, with the help of PPy,
would exhibit a large surface area and enhanced electroconductivity [107].
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the preparation of molecularly imprinted polypyrrole nanotubes (MIPNs) and the MIPN-based
glyphosate platform. Reproduced from [108] with permission from Elsevier. (C) Schematic diagram
of the fabrication process for the biosensor based on imprinted polypyrrole film from bacteria.
Reproduced from [109] with permission from the American Chemical Society.

2.4.4. MIP-Based Biosensors

MIP is synthesized by polymerizing one or more monomers in the presence of the
template molecules and then removing the template analytes, forming a complementary 3D
imprint in the polymer matrix. It is a kind of polymer with specific recognition sites that are
created artificially and complement the imprinted analyte, and it is also known as a “bionic
receptor” [117]. Considering its biocompatibility, excellent electron transmission rate, and
good environmental stability [108,110], molecularly imprinted polypyrrole (MIPPy) can
be polymerized and impressed simultaneously using amperometric, potentiometric, or
potential scanning methods or polymerized on a template-modified electrode [75]. It can be
used for biomedical and environmental monitoring applications, and it is cost-effective and
exhibits excellent selectivity, sensitivity, and chemical/thermal stability [75,111]. Ding et al.
described an electrochemical method that can be used to detect glyphosate with a detection
limit of 1.94 ng/mL based on the construction of molecularly imprinted polypyrrole
nanotubes (MIPNs) that exhibited excellent conductivity and specificity (Figure 5B) [108].
Wu et al. designed an electrochemical platform utilizing imprinted polypyrrole from
bacteria that could sensitively detect E. coli O157. Owning to the presence of MIPPy, the
biosensor had high selectivity and specificity and a rapid detection ability and was easy to
prepare (Figure 5C) [109].

2.4.5. Nanocatalytic Biosensors

As natural enzymes are limited by their instability, demanding environmental con-
ditions, and complex preparation processes, nanocatalytic biosensors have been devel-
oped that provide improved electrocatalytic behavior, stability, and selectivity because of
their satisfactory surface area, morphology, and high conductivity [118–120]. After Fe3O4
nanoparticles were reported to exhibit catalytic activities similar to enzymes in 2007 [121], a
growing number of catalytically active nanomaterials have been discovered that can be used
as alternatives to enzymes. Metals and metal oxides have outstanding electronic properties,
and their nanoenzymes have received significant attention for sensing and electrocatalysis
applications [118]. Li et al. prepared nanocomposites capable of catalyzing glucose oxi-
dation by depositing gold nanoparticles on the surface of PPyNFs to non-enzymatically
detect glucose, using PPyNFs as carriers to avoid the need for harsh oxidation pretreatment
and disperse the AuNPs well, thereby improving their catalytic activity and reducing Au
consumption (Figure 6A) [112]. Jeong and his colleagues proposed an electrochemical
method based on a chitosan–PPy/TiO2 sensor in which TiO2 NPs, as the electrochemical
catalyst, are deposited using the plasma process, demonstrating outstanding catalytic
activity, reactivity, sensitivity, and selectivity in the detection of glucose (Figure 6B) [113].
Meng et al. fabricated a non-enzymatic biosensor utilizing CuxO-modified PPyNWs to
sensitively detect glucose, and the PPyNWs showed excellent electrical performance and
produced a good immobilization matrix for nanoparticles (Figure 6C) [114].
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3. PPy-Based Biosensors for CRC Biomarker Detection

CRC is currently the second-leading cause of death worldwide [122]. The electrochem-
ical detection of biomarkers in the blood (such as DNA, RNA, miRNA, proteins, and other
molecules), a low-cost, simple, rapid, specific, sensitive, and noninvasive strategy, exhibits
tremendous potential for the early diagnosis of CRC [27].

3.1. Circulating Cell-Free DNA (ccf-DNA)

Ccf-DNA is actively released by tumor cells through apoptosis, necrosis, or exosomes. It is
present in significantly higher amounts than in healthy people, highlighting its crucial practical
significance for the early diagnosis of malignant tumors. Ccf-DNA is attractive and easily
accessible, providing a new, non-invasive method for CRC detection and characterization.
Many studies have shown the diagnostic, predictive, and prognostic significance of abnormal
ccf-DNA with genetic and epigenetic variations in the plasma/serum of CRC patients [123].

3.1.1. DNA Mutation

Abnormal genetic mutations in the blood have been evaluated as one of the most
promising diagnostic tools for CRC. The protooncogene KRAS is an early candidate in this
context, as its mutations involve some of the most frequently mutated oncogenes and have
a certain practical significance for the clinical diagnosis of CRC [122]. BRAF, belonging to
the RAF gene family, is a direct downstream effector of KRAS and is connected to CRC
development [123]. The adenomatous polyposis coli (APC) gene, a tumor-suppressor
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gene with the encoded protein in the Wnt signaling pathway, was one of the early genetic
factors used in the screening of CRC [124]. It is claimed that TP53 is the guardian of the
genome, and its mutation can disable the functional activity of wild-type p53 (wtp53)
and produce oncogenic properties [125]. As the TP53 mutation occurs in 50–70% of CRC
patients, monitoring the changes in the TP53 gene and/or its encoded protein in CRC
patients may contribute to the early diagnosis and detection of clinical conditions.

As shown in Figure 7A, Wang and colleagues coated PPy-covered MWNT-Ru(bpy)3
2+

composite materials on the surface of a Au electrode to prepare a DNA sensor for wtp53
sequence detection using ECL [126]. ECL, which has the advantages of low background
signals, high sensitivity, good versatility and controllability, and a wide detection range, is
generated using electrochemical reactions that trigger light signals. Considering its large
specific surface area and prominent conductivity, PPy was utilized as a stable modification
layer for ssDNA attachment to improve the wtp53 sensing performance, resulting in a
detection range of 0.2 pM–200 pM and an LOD of 0.1 pM. The authors also fabricated
another DNA-based biosensor modified by electrospinning composite MWNT-PA6-PPy
nanofibers (Figure 7B) [127]. Compared with traditional planar materials, PPy nanofibers
have better mechanical strength, uniformity, porosity, and reusability, as well as satisfactory
biocompatibility and a high surface area, making it possible to immobilize more ssDNA
and increase the hybridization sensitivity for determination of trace amounts of wtp53.
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3.1.2. DNA Methylation

DNA methylation is another ccf-DNA-based technique for the early diagnosis of
CRC that employs genes such as SEPT9, SCTR, SDC2, SFRP2, TMEFF2, NGFR, and
CG10673833 [128–131]. Sun et al. demonstrated that aberrant methylation of the SEPT9
gene (mSEPT9) in the blood can be used as a marker in the early diagnosis and screening
of CRC [128]. Li et al. showed that hypermethylation of the SCTR gene resulted in good
accuracy in the diagnosis of CRC and its precursor lesions [129].

3.2. MiRNA-Based Biomarkers

MicroRNAs are abundant and endogenous noncoding RNAs with a small size and
hairpin structure. MiRNAs can regulate and control physiological processes, such as the
proliferation and differentiation of cells, by regulating the expression of various genes. The
development of numerous diseases (cancer, neurodegenerative diseases, cardiovascular
diseases, etc.) is related to abnormal microRNA expression [132]. It has been shown that
miRNAs play significant roles in the progress of CRC, and evaluation of the strange expres-
sion of miRNAs, such as miR-21, miR-92a, miR-451a, miR-29a, miR-23a, miR-141, let-7a,
miR-1229, miR-223, miR-1246, miR-150, and miR-378, has shown great clinical value in
CRC screening, prognosis, prediction, and treatment [133–136]. Among these miRNAs,
miR-21 is one of the most widely researched for the diagnosis, prediction, and treatment of
CRC [134,136–138]. Pothipor et al. synthesized a gold nanoparticle/polypyrrole/graphene
(AuNP/PPy/GP) nanocomposite for the selective detection of miR-21 (Figure 8A) [139].
The use of PPy in this work improved the dispersion of AuNPs on the electrode sur-
face, facilitating the fixation of an miR-21 probe with a corresponding detection range of
1.0 fM–1.0 nM and LOD of 0.020 fM that can be used to detect miR-21 in clinical trials. Tian
et al. designed a PPy-AuNP superlattice (AuNS) biosensor for the detection of miR-21
(Figure 8B) [140]. Compared to randomly arranged nanoparticles, the presence of the
conductive polymer PPy can induce AuNPs to assemble into AuNS structures with a larger
surface area, better electron transfer performance, and more active sites. Furthermore,
using PPy ligand can facilitate quantitative and accurate control of the distance between
adjacent particles, enabling miR-21 determination with a 100 aM–1 nM detection range and
limit of detection (LOD) of 78 aM.
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face of a pencil graphite electrode (PGE) and achieved maximum doping of the anti-miR-21
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probe in PPy (Figure 9A) [141]. PPy has high conductivity and a porous structure, making
it possible to improve charge transfer, increase the number of fixed probe molecules, and
reduce the non-specific binding of MDB and other molecules, and the designed biosen-
sor demonstrated improved selectivity and an LOD of 0.17 nM. Yang et al. prepared
PDA-PPy-NS with π-electron coupling and an ultra-narrow band-gap by polymerizing
PPy onto hybrid polydopamine nanosheets (PDA-NSs) and used nucleic acid dye (Cy5)-
labeled ssDNA as probes to detect miRNA-21 (Figure 9B) [83]. The mixed PDA-PPy-NS
nanoquencher showed a better fluorescence quenching ability than PDA-NSs owing to the
presence of the narrow band-gap PPy and its excellent π-electron delocalization ability,
promoting intermolecular electron coupling and realizing fluorescence quenching. The
nanoquencher/probe was demonstrated to have remarkable specificity, stability, and sensi-
tivity and an LOD of 23.1 pM, indicating the tremendous potential of nanoquencher-based
sensors for detection with real samples.
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procedure for the hybrid polydopamine/polypyrrole nanosheet (PDA-PPy-NS) biosensor for miRNA-
21 determination. Reproduced from [83] with permission from the American Chemical Society.

3.3. Specific Protein Biomarkers

In addition to DNA and RNA, various proteins secreted from tumor cells can also
facilitate the early diagnosis of CRC, including CEA, CA19-9, CA72-4, CA125, IL-6, IL-
8, MUC1, and p53, as shown in Table 3. As the table demonstrates, conductive PPy
is commonly applied to improve electrochemical sensing performance, including the
detection range and LOD, in the detection of specific CRC protein biomarkers.

Table 3. PPy-based biosensors for the determination of CRC protein biomarkers.

Protein
Biomarkers Biosensor Components Detection

Method Detection Range LOD I Ref.

CEA II

2-NS-PPy III/PEE
IV-PPy/2-NS-PPy/AuNP/Apt/CEA

EIS 10−1–103 ng/mL 0.033 ng/mL [142]

PPy foam/Cu/ITO V/PET
VI/Kapton/PDMS VII/cAb

VIII/CEA/PtNP-labeled dAb IX

Resistance
determination 0.2–60 ng/mL 0.13 ng/mL [143]

GCE
X/PPy@AuNP-luminol-anti-CEA/CEA ECL 10−5–10 ng/mL 3 fg/mL [144]

ITO/PANI/PPy-
Ag/Ab1/CEA/ZnO@AgNC

XI-Ab2

ECL 10−3–100 ng/mL 0.4 pg/mL [145]

AuNP/NH2-GS
XII/Ab1/CEA/Au@PdND
XIII/Fe2+-CS/PPy NT/Ab2

i-t/SWV 5 × 10−5–50 ng/mL 17 fg/mL [146]

GCE/PPy
hydrogel/AuNP/anti-CEA/CEA DPV 10−6–200 ng/mL 0.16 fg/mL [147]

CA72-4 XIV GCE/PPy-NH2GO-
Ag2Se@CdSe/Ab/CEA ECL 10−4–20 U/mL 2.1 × 10−5 U/mL [148]

CA125 XV ITO/MB-mAb1/CEA/PPy-Ag-pAb2 LSV 0.001–300 U/mL 7.6 mU/mL [149]
Au-SPE/MIPPy XVI/CA125 SWV/SPR XVII 0.01–500 U/mL 0.01 U/mL [150]

IL-6 XVIII

SPGE XIX/PPy/AuPts/Apt XX/IL-6 EIS 10−6–15 µg/mL 0.33 pg/mL [151]
ITO/PPCE XXI/IL-6 receptor/IL-6 EIS/CV 0.02–16 pg/mL 6.0 fg/mL [152]
ITO/AB XXII/EpxS-PPyr XXIII/IL-6

receptor/IL-6
EIS/CV 0.01–50 pg/mL 3.2 fg/mL [153]

PEEK XXIV/PETE
XXV/PPyNW/mAb/IL-6

EIS 1–50 pg/mL 0.36 pg/mL [154]

VEGF XXVI
Glass substrate/CPNT XXVII/Apt/VEGF FET XXVIII - 400 fM [155]

Flexible substrate/PPy-NDFLG
XXIX/Apt/VEGF FET - 100 fM [156]

Notes: I. LOD: limitation of detection; II. CEA: carcinoembryonic antigen; III. 2-NS-PPy: PPy doped with 2-
naphthalene sulfonate; IV. PEE: pentaerythritol ethoxylate; V. ITO: indium tin oxide; VI. PET: poly(ethylene tereph-
thalate); VII. PDMS: poly(dimethylsiloxane); VIII. cAb: capture antibody; IX. dAb: detection antibody; X. GCE:
glassy carbon electrode; XI. AgNC: silver nanocluster. XII. NH2-GS: amino-functionalized graphene sheet; XIII.
PdND: palladium nanodendrite; XIV. CA72-4: carbohydrate antigen 72-4; XV. CA125: carbohydrate antigen 125;
XVI. MIPPy: molecularly imprinted polypyrrole; XVII. SPR: surface plasmon resonance; XVIII. IL-6: interleukin-6;
XIX. SPGE: screen-printed graphite electrodes; XX. Apt: aptasensor; XXI. PPCE: polypyrrole polymer-containing
epoxy side group; XXII. AB: acetylene black; XXIII. EpxS-PPyr: epoxy-substituted poly(pyrrole) polymer; XXIV.
PEEK: polyether ether ketone; XXV. PETE: poly(ethylene terephthalate); XXVI. VEGF: vascular endothelial growth
factor; XXVII. CPNT: carboxylated polypyrrole nanotube; XXVIII. FET: field-effect transistor; XXIX. PPy-NDFLG:
PPy-transformed N-doped few-layer graphene.

3.3.1. Carcinoembryonic Antigen (CEA)

The polymeric glycoprotein CEA is a tumor-associated antigen that is overexpressed in
CRC, gastric cancer, breast cancer, lung cancer, and other cancers and has a certain value for
the evaluation of tumor status and therapeutic effect [157]. CEA is abnormally expressed
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in more than 90% of CRC patients. The monitoring of CEA concentration in serum/plasma
is an effective strategy for CRC diagnosis and measurement of disease progression.

Tavares et al. designed a self-powered and self-signaled biosensing platform for the
detection of CEA using MIPPy and the DSSC method (Figure 10A) [158]. Specifically, they
assembled the MIPPy as a biorecognition element on the PEDOT layer of an FTO-conductive
glass substrate and used it as the counter electrode of the DSSC. The DSSC/biosensor
device was connected to an electrochromic cell to produce a color gradient for the CEA.
The concentration of CEA ranged from 0.1 ng/mL to 100 µg/mL. This strategy can be used
for clinical point-of-care (POC) analysis with high independence.
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PPy can also be used to prepare flexible pressure sensors that convert external force
information into electrical signals in real time. Yu et al. prepared a pressure-based immune
sensor based on 3D PPy foam (Figure 10B) [143]. The PtNPs attached to dAb catalyze the
decomposition of H2O2 and produce oxygen in the sealed device. Consequently, CEA
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concentration can be detected using pressure changes in the range of 0.2–60 ng/mL with
an LOD of 0.13 ng/mL.

Zhu et al. constructed a novel ECL immune-based biosensor using anti-CEA–luminol–
AuNP@PPy (Figure 11A) [144]. The PPy nanostructure made it possible to enhance the
conductivity of the biosensor and provided a high specific surface area for the combination
with the AuNPs, thus enabling the attachment of abundant amounts of the ECL reagent
(luminol) and promoting the immobilization of antibodies. This strategy showed a detection
range of 0.01 pg/mL–10 ng/mL and an LOD of 3 fg/mL, making it an effective tool for the
clinical detection of CEA.
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CP hydrogels, such as PPy hydrogel, have been applied to construct biosensors; in
particular, those with 3D nanostructures. Compared to other materials, PPy hydrogel has
the advantages of prominent conductivity, good biocompatibility, a large specific surface
area, and easy processing [147]. Rong et al. designed an electrochemical immunosensing
platform to measure CEA based on 3D continuous conducting network nanocomposites
composed of PPy hydrogel loaded with AuNPs (Figure 11B) [147]. The hydrogel had
good biocompatibility and electronic properties and offered a larger space that made it
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possible to immobilize more biomolecules. The nanostructure-based sensor had a highly
porous 3D network, high specificity, and good stability. It showed a broad linear range
(1 fg/mL–200 ng/mL) and an LOD of 0.16 fg/mL.

Abnormal changes in CEA concentration in the blood are generally associated with
cancer progression, and the sensitivity of this biomarker increases with tumor stage. There-
fore, CEA is the preferred marker for monitoring CRC progression and prognosis. However,
abnormal elevation of CEA in the blood occurs not only in CRC but also in various other
diseases. In addition, CEA has low sensitivity in the early stages of CRC. Hence, this
biomarker is ineffective for screening and detecting CRC early [123].

3.3.2. Carbohydrate Antigens

Abnormal expression of CA19-9, CA72-4, CA125, CA242, and other carbohydrate
antigens also has a certain correlation with CRC [157,159–161]. CA19-9 was first discovered
in 1981, and elevated CA19-9 levels can be used both as an aid in the diagnosis of CRC and
as a reference index to assess the development of CRC.

CA72-4 is a cancer biomarker with a certain diagnostic value that can provide diagnos-
tic information regarding recurrent CRC. Lv et al. proposed an ECL immunosensor using
a novel Ag2Se@CdSe nanomaterial nanoneedle modified with polypyrrole-intercalated
aminated graphene (PPy-NH2GO) for CA72-4 detection (Figure 12A) [148]. The PPy-
functionalized NH2GO had a high surface area that made it possible to immobilize signifi-
cant amounts of Ag2Se@CdSe, and it demonstrated a low LOD of 2.1 × 10−5 U/mL and a
detection range of 10−4–20 U/mL.

An electrochemical magnetic immunoassay platform was described by Huang et al.
that used anti-CA125 antibody (mAb1)-conjugated magnetic beads as the capture probe
and an anti-CA125 antibody (pAb2)-labeled Ag-PPy nanostructure as the detection probe
(Figure 12B) [149]. Compared with AgNPs, use of Ag-PPy as the electroactivity indicator
can further improve sensors’ analytical performance.

However, due to the limited applicability of markers such as CEA and CA19-9, several
other proteins have been highlighted as potential biomarkers associated with CRC.

3.3.3. Interleukin-6 (IL-6)

IL-6 is an inflammatory cytokine with hematopoietic and immunomodulatory func-
tions; although not a specific biomarker of CRC, IL-6 is closely associated with CRC
occurrence, development, staging, invasion, and metastasis.

Tertis et al. constructed an electrochemical aptasensor to sensitively detect IL-6 in
human serum by depositing a nanocomposite consisting of PPy nanoparticles (PPyNPs)
and AuNPs onto SPCE (Figure 13A) [151]. Both the PPyNPs and AuNPs coexisted on
the electrode surface, providing an appropriate environment for immobilization of IL-6
aptamers. Moreover, conjugated polypyrrole polymer-containing epoxy side group (PPCE)
is a novel conjugated polymer polymerized by the Py monomer that contains an epoxy
active side group. As shown in Figure 13B, Elif Burcu Aydın designed an immunosensor
using PPCE-modified ITO electrodes [152]. The PPCE polymer formed a large specific
surface area on the ITO electrode, making it possible to fix the biomolecular IL-6 receptor,
and the sensor had good conductivity, stability, and biocompatibility, which enhanced its
sensitivity.

PPyNWs exhibit good electrical characteristics and can enhance the sensitivity of
biosensors because of their high specific surface area. Cruz et al. prepared PPyNWs
on PEEK and PETE flexible thermoplastics using nanocontact printing technology and
controlled chemical technology and then functionalized them with diazo chemistry and
a crosslinking agent to immobilize the IL-6 antibody, enabling IL-6 detection with a wide
linear range from 1 pg/mL to 50 pg/mL and an LOD of 0.36 pg/mL [154].
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(PPy-NH2GO/Ag2Se@CdSe)-based immunosensor for the CA72-4 assay. Reproduced from [148] with
permission from the American Chemical Society. (B) Schematic diagram of the platform for CA125
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(Ag-PPy- pAb2). (c) magneto-controlled microfluidic device with an electrochemical detection cell.
Reproduced from [149] with permission from the Royal Society of Chemistry.

3.3.4. Vascular Endothelial Growth Factor (VEGF)

Angiogenesis is closely connected to the growth of solid tumors and the metastasis of
cancer cells, and VEGF participates in the regulation of angiogenesis by stimulating the
corresponding receptors and is important for the development of blood vessels. Nogués
et al. pointed out that high-level expression of VEGF in the serum of CRC patients seems
to be a promising tumor biomarker [162].

By immobilizing anti-VEGF RNA aptamers onto a field-effect transistor (FET) modified
with carboxylated polypyrrole nanotubes (CPNTs) with excellent conductivity, Kwon et al.
developed a biosensor capable of recognizing VEGF, as shown in Figure 14A [155]. The
FET platform is capable of detecting VEGF at concentrations as low as 400 fM. In a related
study, the author led a team in combining PPy-transformed N-doped few-layer graphene
(PPy-NDFLG) with an RNA aptamer for the fabrication of a high-performance and flexible
FET biosensor (Figure 14B) [156]. The sensor demonstrated good mechanical flexibility,
high sensitivity, high selectivity, a rapid response, reusability, durability, and a low LOD of
100 fM.
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3.3.5. Other CRC-Related Protein Biomarkers

Mucin 1 (MUC1) is a membrane-associated macromolecule glycoprotein that is over-
expressed in most adenocarcinomas [163,164]. Detection of abnormal increases in MUC1 in
the blood can offer new opportunities for CRC early diagnosis, tumor staging, and clinical
treatment.

Huang et al. designed a microfluidic aptasensor by combining the use of an MUC1
aptamer as a detection probe with PPyNWs. The sensor can be used for sensitive, rapid,
label-free, and real-time detection of MUC1 [165]. The PPyNW-modified biosensor showed
significantly enhanced sensitivity, conductivity, and biocompatibility. In addition, serum
angiopoietin, MST1/STK4, S100A9 TIMP1, ITGB4, Cyr61, and CXCL-8 in the blood have
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also been proven to have potential uses as biomarkers in the diagnosis and detection of
colorectal cancer, and they could be employed in electrochemical sensor detection after
further verification [166–170].

3.4. Opportunities and Challenges Related to PPy-Based Sensors in CRC Diagnosis

Currently, most discovered CRC biomarkers are not specific to CRC. Combined de-
tection of multiple biomarkers in the blood could sufficiently increase the accuracy of
CRC diagnosis, resulting in an effective detection strategy. It has been shown that, com-
pared with the detection of single biomarkers, simultaneous determination of the serum
biomarkers MMP-7, TIMP-1, and CEA increased the sensitivity and specificity of CRC diag-
nosis [171]. However, studies are still required to further determine the clinical significance
of single CRC marker analysis and combined detection of groups of biomarkers as early
detection tools for CRC and to develop additional analytical means that can enhance the
accuracy and specificity of CRC diagnosis.

As a heterocyclic conjugated polymer with good electroconductivity, processability,
and chemical stability, PPy is rarely used for the detection of multiple CRC biomarkers. The
electrochemical deposition of PPy could enable sensing of coating designs with different
physical characteristics and the development of arrays of electrochemical biosensors in
which a single sensor would respond differently to similar mixtures of the analyte, opening
applications for the detection of CRC biomarkers. Moreover, the biocompatibility of
PPy provides it with potential for use in the design of implantable biomedical devices.
However, PPy lacks selectivity for target molecules, and the modification of suitable
biometric molecules is essential. In addition, while PPy may not always show the best
results alone in an electrochemical biosensor, copolymers blended with other CPs could
also be applied for suitable trace sensing. Moreover, PPy may degrade over time during
detection, and efforts should be devoted to improving the stability of sensor response. In
addition, in past decades, researchers mainly focused on the interfacial design, employing
different PPy polymerization methods to improve the stability of the enzymes. However,
research on the interface interaction between PPy and biorecognition elements, which has
the potential to improve the sensitivity of biosensors, is lacking. Therefore, the interface
interaction between PPy and biorecognition elements should be focused on and discussed
in future studies with the aim of increasing sensing performance.

4. Conclusions

CRC is a type of cancer with high morbidity and mortality worldwide. Analyzing the
concentration changes in CRC-associated biomolecules through electrochemical biosensing
technology is significant for the early diagnosis, prognosis, and prediction of CRC. The
fundamental purpose of this review paper was to introduce the design of PPy biosensors
and their applications for the electrochemical measurement of CRC biomarkers. The
conductive polymer PPy is a nanomaterial that has attracted much attention because of
its specific characteristics, such as its excellent electrical properties, the flexibility of its
surface properties, its easy preparation and functionalization, and its good biocompatibility,
and it is often used in the design and improvement of biosensors. The different forms
of PPy, synthesized via oxidation chemistry or electrochemical synthesis, can be used for
various purposes. Moreover, various properties of PPy can be significantly improved by
embedding, doping, or dedoping specific materials during or after its formation. PPy and its
derivatives can be applied in enzyme-based biosensors, immunobiosensors, aptamer-based
biosensors, MIP-based biosensors, and nanocatalytic biosensors and improve their sensing
performance. Herein, it was shown that electrochemical-based PPy-based sensors, which
have the inherent advantages of excellent sensitivity and selectivity, rapid detection, cost-
effectiveness, and being capable of simultaneous detection of multiple CRC biomarkers, can
be used to develop highly important detection strategies for CRC. However, the potential of
such biosensors for simultaneous detection of multiple biomarkers needs further research
and development. It is necessary to skillfully combine PPy with other nanomaterials to
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effectively improve the detection performance of biosensors. The stability of PPy during
detection also needs to be further enhanced. In addition, more attention should be focused
on improving the interfacial synergy between PPy and biorecognition elements, thereby
improving the sensing performance of assays.
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