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Abstract: Surface plasmon resonance (SPR) photocatalysts have attracted considerable attention
because of their strong absorption capacity of visible light and enhanced photogenic carrier separation
efficiency. However, the separate production of metal nanoparticles (NPs) and semiconductors limits
the photogenic charge transfer. As one of the most promising organic photocatalysts, porphyrin
self-assemblies with a long-range ordered structure-enhance electron transfer. In this study, plasmonic
noble metal-based porphyrin hexagonal submicrowires composites (M-HW) loaded with platinum
(Pt), silver (Ag), gold (Au), and palladium (Pd) NPs were synthesized through a simple in situ
photocatalytic method. Homogeneous and uniformly distributed metal particles on the M-HW
composites enhanced the catalytic or chemical properties of the organic functional nanostructures.
Under the same loading of metal NPs, the methyl orange photocatalytic degradation efficiency of
Ag-HW [kAg-HW (0.043 min−1)] composite was three times higher than that of HW, followed by Pt-
HW [kPt-HW (0.0417 min−1)], Au-HW [kAu-HW (0.0312 min−1)], and Pd-HW [kPd-HW (0.0198 min−1)].
However, the rhodamine B (RhB) and eosin B photocatalytic degradations of Pt-HW were 4 times
and 2.6 times those of HW, respectively. Finally, the SPR-induced electron injection, trapping, and
recombination processes of the M-HW system were investigated. These results showed that M-HW
plasmonic photocatalysts exhibited excellent photocatalytic performances, making them promising
materials for photodegrading organic pollutants.

Keywords: porphyrin; self-assemblies; surface plasmon resonance; photocatalytic

1. Introduction

Environmental pollution has become a major concern because of rapid industrial
development, which greatly threatens human health and social stability [1–3]. As a result,
photocatalysis, as an ideal environmental purification and green energy production tech-
nology using semiconductor materials, has attracted considerable scholarly attention. In
addition, it uses solar energy for the photodegradation of organic pollutants [4], organic
synthesis (e.g., selective oxidation and reduction), and water splitting for hydrogen genera-
tion. Therefore, the synthesis of efficient photocatalysts is crucial. The two key factors that
determine the catalytic efficiency are the absorption spectrum and separation efficiency
of the photogenerated charge of the materials [5]. Noble metal (such as Au, Pt, Ag, and
Pd) nanoparticles (NPs) can strongly absorb visible light owing to their surface plasmon
resonance (SPR) features [6–9]. They can also enhance the separation of a photogenerated
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charge over the Schottky barrier, thereby greatly improving the photocatalytic and pho-
tovoltaic performance. In general, NPs have a wide application in colorimetric sensors,
photovoltaic devices, photochromic devices, and photocatalysis [10–12].

Recently, studies have focused on the control of shapes and sizes of metal NPs for
the synthesis of semiconductor-based plasmonic photocatalysts [13–15]. Several chemical
or photoreduction processes have been developed for the synthesis of SPR composite
structures, despite the limited control of the size and spatial distribution of the metal
NPs [16,17]. The incorporations of plasmonic Au or Ag nanoparticles (NPs) into wide-
bandgap semiconductors, such as titanium dioxide (TiO2) and cerium dioxide (CeO2),
have enhanced the photocatalytic activities in the visible light region [18–22]. In some
cases, the separate production of metal NPs and semiconductor NPs can limit the charge
transfer [23,24]. Therefore, it is of great technical interest to develop a simple and efficient
method for the synthesizing of SPR nanocomposites with precise dimensional control and
a wide absorption spectrum, which may have important implications for solar energy
harvesting. The reduced particle size greatly enhances the surface-to-volume ratio of the
catalysts, thus improving the catalytic performance of noble metals [25,26].

Nevertheless, finding a catalyst with a broad absorption spectrum is crucial [27–29].
Porphyrins have a similar structure as chlorophyll (found in plants, which is essential
for the photosynthesis of the plant) with a good light sensitivity due to their large π-
conjugated system [30–32]. Self-assembled porphyrin nanostructures formed through a
noncovalent bond interaction can exhibit inherit electronic and optical properties with a
similar broadened optical absorption as those of the original porphyrin monomers [33–35].
Porphyrin-order nanostructures have attracted widespread attention as a promising pho-
tovoltaic technology aiming to emulate the natural light-harvesting processes and energy
storage [35–37]. After the light absorption process of the self-assembled porphyrin, it
becomes excited through the visible light. Then, the well-defined self-assembled porphyrin
networks can be combined with molecular oxygen to produce reactive oxygen species
(ROS) for photodegrading organic pollutants in the environment [38]. As the energy trans-
fer among porphyrin molecules and the delocalization of excited state electrons strongly
depends on the molecular packing mode, we reported the morphology-dependent photo-
catalytic performance of the porphyrin nanocrystals [34]. Another study has reported a
facile photocatalytic process to synthesize and tune the well-defined hollow Pt nanostruc-
tures through hierarchically structured templates, where the size of the Pt nanoparticles
on the surface of porphyrin nanocrystals ranges from 3.5 to 4.2 nm [39]. This study has
provided an important approach for synthesizing organic-based SPR photocatalysts with
the controllable size and spatial distribution of the metal NPs.

In this work, we proposed and developed a simple in situ photocatalytic synthesis
method to load the metal NPs (Pt, Ag, Au, and Pd) on porphyrin hexagonal submicrowires
(HW) to form SPR organic composites (M-HW). Then, the M-HW was used to photodegrade
methyl orange (MO), rhodamine B (RhB), and eosin B (Figure 1). Owing to the Schottky
junction, the M-HW nanocomposites exhibited the enhanced photocatalytic degradation of
organic dyes compared with the HW. The SPR-induced electron injection, trapping, and
recombination processes of the M-HW system were investigated.
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Figure 1. The schematic image of the photodegradation of different organic pollutants using one-
dimensional M-HW nanocomposites.

2. Materials and Methods
2.1. Reagents and Materials

Cetyltrimethylammonium bromide (CTAB) was obtained from Sigma-Aldrich, and
5, 10, 15, 20-tetrakis (4-pyridyl) zinc porphyrin (ZnTPyP) was purchased from Frontier
Scientific. Sodium hydroxide standard solution (NaOH, 1 N) was obtained from Acros, and
hydrochloric acid (HCl) was obtained from Kaifeng Dongda Chemical Co., Ltd. Methyl
orange (MO) and ascorbic acid (AA) were purchased from Aladdin. Rhodamine B (RhB)
and eosin B were obtained from J&K. N,N-dimethylformamide (DMF) was obtained from
Tianjin Deen Chemical Reagent Co., Ltd. Tetra-n-butyl hexafluorophosphate (TBAPF6) was
obtained from Alfa Aesar. All the solutions were prepared with ultrapure water from a
Barnstead Nanopure water system (resistivity of 18.2 MΩ·cm).

2.2. Synthesis of M-HW Nanocomposites

The synthesis of the ZnTPyP hexagonal submicrowires (HW): HW were prepared
via an acid-based neutralization surfactant encapsulation self-assembly method [39,40].
Typically, 0.5 mL of ZnTPyP (0.01 M) solution was quickly injected into 9.5 mL of an aqueous
solution containing cetyltrimethylammonium bromide (CTAB) (0.01 M) and NaOH (0.02 M)
and was rapidly stirred at room temperature (25 ◦C) for 48 h. The ZnTPyP hexagonal HW
was centrifuged at 9500 rpm and washed three times with water to remove the surfactant.
Then, the HW was redispersed in water with a mass concentration of 6.67 mg/mL for
preparing metal-organic composites (M-HW).

The synthesis of Pt-HW composite: K2PtCl4 (10 mM) solution and an equal volume
of AA solution (0.1 M) were added to a 20 mL glass vial containing 10 mL of dispersed
HW (0.1 mg/mL). The mixture was sonicated to ensure it was homogenized and it was
then irradiated with a photocatalytic system at room temperature. All the photocatalytic
reactions were irradiated using a 300 W xenon lamp equipped with a UVCUT400 filter
(λ ≥ 400 nm), in which the incident light passed through a 10 cm water filter. The center
of the glass vial was about 20 cm away from the light source, and the light intensity was
approximately 100 mW/cm2. After the mixture was irradiated for 30 min, the solution
changed from purple to black under visible light, indicating that the Pt metal was reduced.
After the solution was centrifuged at 9500 rpm for 10 min, monodisperse Pt-HW hybrid
material was collected. By adjusting the volume of K2PtCl4 solution with 10 µL (2.0%
Pt-HW), 30 µL (5.6% Pt-HW), 50 µL (9.1% Pt-HW), 100 µL (16.7% Pt-HW), 200 µL (28.6%
Pt-HW), 400 µL (45% Pt-HW), and the corresponding volume of AA solution, Pt-HW
composites with different platinum loading were obtained.

The preparation of the Ag-HW composite: Ag-HW composites with different silver
loadings were obtained by replacing K2PtCl4 solution with 20 mM silver(I) thiosulfate
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solution and adjusting the volume of Na3Ag(S2O3)2 solution with 30 µL (5.6% Ag-HW),
50 µL (9.1% Ag-HW), 70 µL (12.3% Ag-HW), 150 µL (23% Ag-HW), and 400 µL (45%
Ag-HW). The corresponding volume of the AA solution was the same as the preparation
method of the Pt-HW composites. Na3Ag(S2O3)2 solution was prepared according to a
published procedure [41,42].

The preparation of the Pd-HW composite: Pd-HW composites with different pal-
ladium loading were prepared by replacing K2PtCl4 solution with 10 mM of Na2PdCl4
solution and adjusting the volume of Na2PdCl4 solution with 60 µL (5.6% Pd-HW), 100 µL
(9.1% Pd-HW), 200 µL (16.7% Pd-HW), and 400 µL (28.6% Pd-HW) and the corresponding
volume of AA solution.

The preparation of the Au-HW composite: Au-HW composites with different Au load-
ings were obtained by replacing the K2PtCl4 solution with 10 mM of Au(I) thiourea solution
and adjusting the volume of Au(I) thiourea solution with 30 µL (5.6% Au-HW), 50 µL (9.1%
Au-HW), 100 µL (16.7% Au-HW), and 200 µL (28.6% Ag-HW), and the corresponding
volume of AA solution was the same to the preparation method of Pt-HW composites.
Au(I) thiourea solution was freshly prepared according to a published procedure [43].

2.3. Photocatalytic Activity

The photocatalytic activity of M-HW was evaluated through the photocatalytic degra-
dation of the organic pollutants. Precisely, 1 mg of M-HW composites (photocatalyst) was
added to 40 mL of MO (20 mg/L, target dye). The mixture was stirred continuously in
the dark for 30 min to obtain a homogenized mixture and achieve adsorption–desorption
equilibrium. Then, the mixture was transferred to the photocatalytic reaction system and
irradiated under light at a specific time, and aliquots of 4 mL of the solution were collected
in 7 mL Eppendorf (Ep) tubes every 20 min, and the supernatant was removed twice
using high-speed centrifugation at 9500 rpm for 10 min. The absorbance value of MO at
the maximum absorption wavelength (464 nm) was measured using a visible spectropho-
tometer (Shanghai Prism Technology 722SP). Different target dyes, such as rhodamine B
(1 × 10−5 M, λmax = 554 nm) and eosin B (5 × 10−5 M, λmax = 518 nm), were changed in
the same condition to record the maximum absorption value. The photocatalytic activities
of M-HW on different dyes were studied using the photocatalytic degradation curve.

The photocatalytic degradation curve of organic dyes can be fitted using the first-order
kinetic Equation (1) as follows:

In
C0

C
= kt (1)

where C0 (mg/mL) and C (mg/mL) represent the initial organic dye concentration and the
dye concentration after irradiation, respectively; k represents the apparent rate constants,
and t represents the reaction time (min) [44]. Thus, k was used to evaluate the photocatalytic
activity in this work.

2.4. Electrochemical Measurements

The electrochemical properties of the 0.1 mM ZnTPyP molecule, rhodamine B, MO,
and eosin B dichloromethane solution were measured with cyclic voltammetry (CV) using
the conventional three-electrode system, in which a 3.0 mm diameter glass carbon disk
(0.071 cm2, Shanghai Chenhua) was used as the working electrode, a platinum wire was
used as the counter electrode, and Ag/AgCl (silver/silver chloride) was used as the
reference electrode (3.0 M KCl solution. The electrode potential was +0.22 V vs. the NHE
potential, and 0.1 M of tetra-n-butylammonium hexafluorophosphate (TBAPF6) was used as
the electrolyte. The oxidation-reduction potential was measured through an electrochemical
workstation. Based on the optical and electrochemical data, the energy levels of the HOMOs
and LUMOs of the organic dyes can be estimated using Equations (2)–(4).

Eg =
hc
λabs

=
1240
λabs

(2)
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EHOMO = −Eox (vs. Ag/AgCl) − ENHE (vs. Ag/AgCl) − 4.5 (3)

ELUMO = EHOMO − Eg (4)

where Eg is the energy gap and λabs is the maximum UV–Vis absorption wavelengths value
in the dichloromethane solution. EHOMO and ELUMO are the energy levels of the HOMOs
and LUMOs, respectively. The standard hydrogen electrode (NHE) potential was −4.5 eV
relative to the vacuum level. The CV curve test ranged from −1.6 V to 1.6 V, and the scan
rate was 200 mV/s. All electrochemical tests were performed at 25 ◦C under N2 saturation.

2.5. Materials Characterization

High-resolution transmission electron microscope (HRTEM) images were recorded on
a JEOL JEM-2100 operating at an acceleration voltage of 200 kV. Field emission scanning
electron microscopy (FESEM) images were recorded using a Nova Nano SEM 450 micro-
scope. The UV/Vis spectra measurements of the M-HW dispersion were performed using
an Agilent Technologies Cary 60. A 300 W xenon arc lamp (PLS-SXE300/300UV, Beijing
Perfectlight Technology Co., Ltd., Beijing, China) installed in a laboratory lamp housing
system provided with light power. The CV curves were tested using an [H] electrochemical
workstation (Shanghai Chenhua Instrument Co., Ltd., Shanghai, China).

3. Results
3.1. Morphology and Size Distribution of M-HW Nanocomposites

The self-assembled porphyrin networks exhibited excellent photocatalytic activity
during the photodegradation of the organic pollutants, photocatalytic water splitting for
hydrogen production, and the photocatalytic reduction of metal ions [45–48]. Thus, owing
to the excellent photocatalytic recyclability of ZnTPyP porphyrin self-assembled HWs [49],
they were used as an important template to construct organic-based SPR photocatalysts
with a controllable size and spatial distribution of the metal NPs. In this study, noble metal
(including Au, Ag, Pt, and Pd) nanoparticles were loaded on the surface of HW through
a simple in situ photocatalytic reduction method. First, the zinc porphyrin HWs were
prepared using the acid-based neutralization surfactant encapsulation the self-assembly
method following the procedure of our previous report [34]. The scanning electron mi-
croscopy (SEM) image of the HWs showed that the nanostructures were well-defined
one-dimensional (1D) submicrowires (Figure 2a) with a hexagonal external profile and
a narrow size distribution in both the length and diameter. The average length and the
diameter of the submicrowires were 3.16 µm and 211 nm, respectively. Based on the
surfactant-assisted self-assembly synthesis process of HW, a thin layer of CTAB surfactants
was deposited on the surfaces of HW, resulting in the good dispersibility of the nano-
materials and the adsorption of the metal salt ions. Then, the monodisperse HWs were
used for the photocatalytic reduction of K2PtCl4 under irradiation of visible light in the
presence of AA as an electron donor. Through the photocatalytic reaction, K2PtCl4 was
initially in situ reduced to form highly uniform Pt nanoparticles on the surfaces of HW.
By changing the volume of the K2PtCl4 solution and the corresponding volume of the AA
solution, Pt-HW composites with different platinum loading were obtained. A transmission
electron microscope (TEM) was used to examine the distribution of Pt nanoparticles and
the change in their sizes on the surface of submicrowires with Pt loading progression under
standard conditions (Figure 2b–f). The results showed that the distribution amount of
Pt nanoparticles increased as the amount of feed added increased. In addition, the Pt
nanoparticles with precise dimensional control were uniformly supported on the surface of
the HWs, and the size was ~5.7 nm by size statistics, as shown in the insert of Figure 2d.
When the loading of Pt was below 23 wt%, relative to the amount of HW (Figure 2e), then
the monodispersed Pt-HW nanocomposites were obtained by controlling the feed added to
the K2PtCl4 solution. A shell of Pt nanoparticle networks gradually formed on the surface
of the photoactive porphyrin nanostructures when the Pt precursors were continuously
added to the system. When the loading of Pt was greater than 50 wt%, a shell of Pt nanopar-
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ticle networks was formed, which is consistent with the result in the literature [39]. The
shell was formed because the cationic CTAB adsorbed on the HW surface played a key
role in adsorbing the negatively charged metal salt precursor, in situ photoreducted to
the zero-valent metal, which then contributed to the uniform distribution of the metal
particles. Such uniformly distributed metal particles enhanced the plasmon resonance and
interaction between the electrons, thus contributing to the catalytic or chemical properties
of the organic functional nanostructures.
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In the same way, other noble metal nanoparticles (Ag, Au, and Pd) were successfully
deposited on the surface of HW (Figure 3). Ag-HW composites were synthesized by
replacing the K2PtCl4 solution with silver (I) thiosulfate solution (Figure 3a–d). The Ag
nanoparticles were in situ reduced and supported on the surface of HW, and the sizes of
the Ag nanoparticles were ~3.9 nm (Figure 3b) by size statistics. The loading amounts of
different metals were adjusted by regulating the feeding amount of the metal salt precursor.
However, Au and Pd NPs did not have such a feature because the strong Ostwald ripening
effect facilitated the reduced metal particles to agglomerate during the metal salt precursor
reduction process and exposed the HW surfaces [50], which might be related to the growth
rate of the crystal faces of various metals and the surface energy. The Au-HW composite
materials were shown in Figure 3e. The Au nanoparticles were uniformly supported on the
surface of HW, and the Au particle size was ~15 nm by the size statistics. The Pd particle
size of the Pd-HW composite was ~20 nm by the size statistics (Figure 3f).
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3.2. UV–Vis Absorption of M-HW Nanocomposites

The self-assembled porphyrin nanostructures exhibited a strong photoelectrochemical
response in the visible light region (300–800 nm) owing to couple interactions and their
ordered self-assembly arrays of porphyrin molecules through noncovalent interactions [51].
The UV–Visible absorption spectra of the resulting Pt-HW nanocomposites were shown
in Figure 4a. The absorption of the porphyrin HWs had the Soret band at 420 nm and
477 nm, and the Q-band at 578 nm and 617 nm. The Pt-HW nanocomposites retained the
absorption of the Soret band and the Q-band of HW. Moreover, the absorption intensity at
477 nm increased with the increase in the Pt loading amount. When the loading amount of
Pt was 0.1 mg, the enhanced absorption reached the maximum value. Then, the absorption
intensity gradually decreased, indicating that the excess Pt gradually covered the porphyrin
HWs and blocked the surface absorption, suggesting that the Pt particles were evenly
distributed on the surface of porphyrin HWs rather than agglomerated into large particles
during the Pt reduction process. However, other precious metals, including Ag, Au, and Pd,
did not have such features because the strong Ostwald ripening effect leaded to the reduced
metal particles agglomerations into large particles on the surface of HW. The absorption
intensity gradually decreased with the loading amount of Ag NPs (Figure 4b). The reaction
solution of Pt-HW initially appeared to be purple under incandescent light due to light
scattering by the porphyrin nanostructures. As the loading amount of Pt NPs increased,
the dispersion of the Pt-HW nanomaterial gradually turned black (Figure 4c). Thus, the
in situ photocatalytic synthesis method of SPR-based metal semiconductors M-HW is a
promising photovoltaic technology aiming to emulate natural light harvesting processes
and the energy storage.
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3.3. Pt-HW Nanocomposites Photodegradation of Different Dyes

Uniformly distributed SPR metal particle semiconductors (M-HW) enhanced the cat-
alytic or chemical properties of the organic functional nanostructures, such as the visible
light photocatalytic degradation of the organic pollutants. The Pt-HW nanocomposites
were used to photodegrade different organic pollutants, including MO, rhodamine B (RhB),
and eosin B. A series of degradation curves with different Pt loadings on different organic
substrates were obtained (Figure 5). Several interesting catalytic features were observed:
(1) when 0.1 mg of Pt was loaded on the surface of 1 mg of HW, the photocatalytic degrada-
tion performance of MO of 9.1% Pt-HW was three times that of HW (Figure 5a). (2) The
photocatalytic performance gradually increased with increasing the Pt loading and became
a plateau at 9.1 wt% Pt. However, excessive Pt loading hindered the absorption and the light
irradiation, thus decreasing the catalytic effects of the photocatalysts (Figure 5b). (3) Then,
the photocatalytic performances of Pt-HW were evaluated by degrading rhodamine B,
and the photocatalytic degrading rate of RhB of 9.1% Pt-HW was improved by four times
that of HW (Figure 5c). The absorbance of RhB almost declined to 0 after 2 h, indicating
the high photocatalytic activity of the photocatalyst (Figure 5d). (4) The photocatalytic
performance of degrading eosin B was improved by 2.6 times that of HW (Figure 5e).
(5) Figure 5f compares the photodegradation activity of different dyes of the prepared
samples. Pt-HW (9.1 wt%) exhibited an enhanced photocatalytic activity compared with
HW and exhibited the substrates-dependent photocatalytic activity of different dyes. We
attempted to correlate the relationship between Pt-HW and different substrates to study
the cocatalyst pairs of metal particles in the porphyrin assemblies to provide additional
surface sites, enhance the probability of photogenerated charge transport separation in the
photocatalytic process, and improve the effect of the interface charge-transfer efficiency
because of the SPR effect.
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The experimental results showed that the higher the HOMO orbit energy, the easier it
loses electrons [52–54]. Porphyrins are a class of organic complexes with unique macrocyclic
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conjugated structures. ZnTPyP molecules had higher HOMO orbital energy levels than the
dye molecules (Figure 6 and Table 1). The ZnTPyP molecules in HW were more likely to
lose electrons and create photogenerated holes under UV–Vis light radiation. The holes had
strong oxidizing effects and captured the electrons of the dye molecules in the excited state.
The excitation electrons of the HW combined with oxygen to produce superoxide radicals,
which evolved into hydroxyl radicals, further leading to the degradation of the dyes [55].
The different oxidation potentials of the organic dyes and the complexity of the molecular
structures led to different enhancement effects of the same catalyst on different dyes.
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Figure 6. (a) Cyclic voltammograms of different dyes (test conditions: 0.1 M TBAPF6 in methylene
chloride solution as an electrolyte solution). (b) The UV−Visible absorption spectrum of different dyes.

Table 1. Electrochemical starting potential and electronic energy level table of zinc porphyrin and
different dyes.

Compound λmax (nm) Eg
opt (eV) Eox EHOMO (eV) ELUMO (eV)

ZnTPyP 624 nm 1.99 0.73 V −5.45 −3.46
RhB 596 nm 2.08 1.05 V −5.77 −3.69
MO 513 nm 2.42 1.01 V −5.73 −3.31

Eosin B 578 nm 2.14 1.12 V −5.84 −3.70

3.4. M-HW (M = Ag, Au, and Pd) Effects on the Enhancement of Photodegradation

The photocatalytic degradation curves of Ag-HW (Figure 7a), Au-HW, and Pd-HW
(Figure 7b) nanocomposites were obtained. The first order kinetics of the visible light pho-
tocatalytic degradation curve of MO (Figure 7c) using different nanocomposites, namely
Ag-HW, Au-HW, and Pd-HW, of the same metal loading were performed using Equation (1).
Under the same SPR metal loading (0.1 mg), the photocatalytic performance of Ag-HW
toward MO degradation was the best among the nanocomposites. The photocatalytic per-
formance of kAg-HW (0.043 min−1) increased by three times that of HW, followed by kPt-HW

(0.0417 min−1) > kAu-HW (0.0312 min−1) > kPd-HW(0.0198 min−1) > kHW (0.014 min−1),
suggesting that the M-HW degradation efficiency was higher than that of HW (Figure 7d).
These results showed that M-HW exhibits a good enhancement effect. The result of kAg-HW

and kPt-HW were 24% and 20% higher than that of knanodisc (0.0347 min−1), respectively.
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The above experimental results showed that the Ag-HW nanocomposite had the
best photocatalytic degradation performance among the other composites. On the one
hand, the surface plasma enhancement effect of Ag enhanced the separation of the charge.
On the other hand, a small amount of the Ag2S/Ag heterojunction was formed after the
photoreduction process of silver-(I) thiosulfate used as a precursor [56]. We further detected
the hydroxyl radicals (·OH) and singlet oxygen (1O2) yield of the prepared samples under
light irradiation. After Pt NPs were loaded on HW, the productions of ·OH (Figure 7e) and
1O2 (Figure 7f) using Pt-HW were almost twice of using HW, which further confirmed the
excellent catalytic activity of the SPR photocatalysts.

4. Photocatalytic Degradation Analysis

The large π-electron conjugated systems and close packing between zinc porphyrin
molecules endowed them with long-wave absorption, the low energy level of the molecules,
and the charge transfer between the molecules. The HW photodegradation of the organic
dyes underwent three steps (Figure 8): first, the zinc porphyrin molecule was irradiated
under visible light, the electrons in the HOMO orbital of HW were excited and transferred
to the LUMO orbital, and the electrons in the LUMO orbital combined with the oxygen
in the air to generate superoxide radicals, which in turn evolved into hydroxyl radicals
and further degraded the dye. However, the holes had oxidizing properties to despoil the
electrons of the dye molecule, resulting in the continuous oxidization and decomposition of
the dye molecules. The different oxidation potentials of the organic dyes and the complexity
of the molecular structure enhanced the catalytic effect of the catalyst on different dyes.
When certain amounts of precious metals (including Ag, Au, Pt, and Pd) were loaded
on the surface of HW, the M-HW photodegradation of organic dyes underwent three
steps (Figure 8). The improved efficiency of the visible light photocatalytic degradation
of the organic dyes could be attributed to the following reasons: (1) these precious metal
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nanoparticles had SPR in the visible light region, which enhanced the light absorption of the
porphyrin organic functional nanostructures, improved the energy conversion efficiency,
and resulted in a good photostability, and (2) the electron interactions between precious
metals nanoparticles and organic functional nanomaterials formed a higher Schottky bar-
rier, which could effectively prevent the recombination of the photogenerated electrons
and holes, and change the transmission route of the photogenerated electrons, thereby
promoting the interface electrons. The charge transfer process enhanced the photocatalytic
activity of the porphyrin self-assemblies [57–60]. (3) The work functions of Ag, Au, Pd, and
Pt were 4.26, 5.1, 5.12, and 5.65 eV, respectively; that is, the Schottky barrier height after
the HW was loaded with different metals (Ag < Au< Pd < Pt), which was responsible for
the differences in the photocatalytic performance. However, the catalytic properties of the
experiment did not correspond with these results due to the size of the metal particles, and
the Pt and Ag nanoparticles were smaller in size, thus exhibiting better photocatalytic prop-
erties. This result showed that a substantial part of the electrons from the LUMO of HW
was injected into the M NPs through the SPR excitation, which significantly enhanced the
photogenerated charge transport separation and retarded the charge recombination during
the photocatalytic process, thereby improving the visible light photocatalytic activity for
the degradation of the organic pollutants. This result showed that the SPR metals provided
an additional active site that enhanced the photogenerated charge transport separation
during the photocatalytic process and improved the transfer efficiency of the interface
charge. These findings provide an important reference into the application of organic-based
SPR photocatalysis.
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5. Conclusions

In summary, we successfully modified noble metal nanoparticles (Au, Ag, Pt, and
Pd) on the surface of ZnTPyP HWs (M-HW) using an in situ photocatalytic method. The
prepared M-HW nanocomposites photocatalysts were used to photodegrade different or-
ganic pollutants, and the results showed the photocatalytic degradation constant of kAg-HW

(0.043 min−1) was the highest, followed by kPt-HW (0.0417 min−1) > kAu-HW (0.0312 min−1) >
kPd-HW (0.0198 min−1) > kHW (0.014 min−1) under the same loading conditions (0.1 mg).
The degradation efficiency of M-HW was superior to that of nanodisc, indicating that
M-HW had the best photocatalytic degradation activity. The result of kAg-HW and kPt-HW
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was 24% and 20% higher than that of knanodisc (0.0347 min−1), respectively. These precious
metal nanoparticles had an SPR in the visible light region, which enhanced the visible light
absorption of porphyrin self-assemblies. The special base barrier enhanced the separation
of the photogenerated charge during the photocatalytic process and improved the interface
charge-transfer efficiency, thereby enhancing the photocatalytic activity of the porphyrin
self-assemblies. As a novel technology, surface plasmon was first applied to porphyrin
self-assemblies, which increased their light absorption and improved the energy conver-
sion efficiency without changing the organic nanostructure. In addition, it has a unique
advantage, making it a promising technology for preparing self-assembled nanostructures
for photovoltaic and energy storage devices.
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