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Abstract: Bifunctional materials possess remarkable properties that allow them to store and convert
electrical energy easily. In this paper, diatomite-like potassium iron disulfide (KFeS2) was synthesized
by a multistep sacrificial template method, and its morphological, electrochemical, and oxygen
evolution reaction (OER) properties were investigated. KFeS2 was found to be porous, hollow,
and cake-like, which suggests a high specific surface area (SSA) and abundant electrochemically
active sites. A very high specific capacitance of 651 F g−1 at 1.0 A g−1 was also obtained due to the
substance’s unique structure and high porosity. Additionally, the diatomite-like KFeS2 possessed a
very low overpotential η10 of 254 mV at a current density of 10 mA cm−2 and a small Tafel slope of
about 48.4 mV dec−1. Thus, the diatomite-like KFeS2 demonstrates broad application prospects for
both energy storage and conversion.

Keywords: KFeS2; diatomite; hydrothermal synthesis; supercapacitors; oxygen evolution reaction

1. Introduction

Energy storage and conversion are two key points related to many proposed solutions
for serious environmental problems to energy production, and both have already received
considerable academic attention over the years [1–4]. As a type of electrochemical energy
storage device, supercapacitors can be widely used in many “new energy” vehicles, camera
flashes, and energy back-up systems because of their higher power density, faster charge
and discharge rates, and longer cycle lives compared to conventional batteries [5–7]. In
addition, the electrochemical energy conversion pathway of the oxygen evolution reaction
(OER), which is one half of the electrochemical decomposition of water, is environmentally
friendly, low cost, emits no carbon, and can be used to produce clean hydrogen energy.
OER has also already been widely studied, and the performance of supercapacitance and
OER relies on the active materials used. Iron-based compounds have been used as a
primary electrode material for supercapacitors due to the various valence states of Fe, as
well as their high specific capacitance, wide potential window, low cost, and their own
environmental friendliness [8,9]. Among them, iron-based sulfides have become one of
the most important electrode materials for supercapacitors due to their high electrical
conductivity and unique physicochemical properties [10–13]. Furthermore, iron-based
sulfide nanomaterials are considered to be efficient electrocatalytic materials due to their
high abundance, low toxicity, and high electrochemical activity [14–18].

Among all iron-based compounds, ternary KFeS2 possesses variable physical and
chemical properties because of its mixed-valence Fe [19,20]. Thus, ternary KFeS2 shows
broad application prospects in energy storage and electrocatalysis [21–26]. However, the
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electrochemical properties of most KFeS2 nanostructures are much lower than their theoreti-
cal values because of their low specific surface area (SSA) resulting in poor electrochemically
active sites [27–29]. Additionally, KFeS2 has also been found to exhibit the phenomenon of
easy agglomeration [21]. Therefore, shaping KFeS2 into a unique morphology that both
prevents agglomeration and enhances its SSA would have immediate benefits.

To this end, as a sacrificial template material, diatomite has become one of the most
popular templates for preparing porous structures due to its own high porosity, low
volumetric weight, high chemical stability, and high SSA [30,31]. In addition, the three-
dimensional structure of diatomite has been shown to be able to solve the problem of
material agglomeration effectively [6,32,33]. Thus, in this work, we propose a simple
and controllable method for the synthesis of KFeS2 with diatomite morphology using a
multistep sacrificial template.

2. Materials and Methods

All chemicals were purchased from Aladdin (Shanghai, China) and were of analytical
purity and thus used without further purification. The diatomite material was also supplied
from Aladdin.

2.1. Synthesis of FeOOH@D Nanorods on Diatomite (D)

MnO2@D was prepared by modifying a one-step hydrothermal method that has been
previously published by our research group [6]. KMnO4 solution (70 mL, 0.05 M) and
diatomite (100 mg) were placed into a Teflon-lined stainless-steel autoclave (Henan Gongyi
Yuhua Instrument Co. LTD, Henan, China) that was subsequently maintained at 160 ◦C
for 24 h. The sample was then removed, washed with distilled water and ethanol, and
dried at 60 ◦C to obtain MnO2 composites. Subsequently, 150 mg FeSO4·7H2O and 80 mg
MnO2@D were dissolved and dispersed in 70 mL of an ethylene glycol–water solution
(ethylene glycol:water = 1:7) successively, and the mixture was transferred to a Teflon-lined
stainless-steel autoclave and rotated at 120 ◦C for 12 h. After cooling to room temperature,
the product was washed with de-ionized (DI) water and dried at 60 ◦C for 12 h.

2.2. Synthesis of Diatomite (D)-like KFeS2

The as-prepared FeOOH@D (100 mg), Na2S·9H2O (2.88 g), and KOH (19.6 g) were
next dispersed and dissolved in 70 mL of the ethanol–water solution (water: ethanol = 1:1).
Then, the mixture was transferred into a Teflon-lined stainless-steel autoclave and rotated
constantly at 120 ◦C for 12 h. After cooling to room temperature, the product was washed
with DI water and dried at 60 ◦C for 12 h.

2.3. Synthesis of FeS2-Modified Diatomite

To create the FeS2-modified diatomite, the as-prepared FeOOH@D (100 mg) and
Na2S·9H2O (2.88 g) were dispersed and dissolved in 70 mL of the ethanol–water solution
(water:ethanol = 1:1). Then, the mixture was transferred into a Teflon-lined stainless-steel
autoclave and constantly rotated at 120 ◦C for 12 h. After cooling to room temperature, this
product was washed with DI water and dried at 60 ◦C for 12 h.

2.4. Synthesis of KFeS2

The MnO2 composites were prepared using a one-step hydrothermal method. As
is typical, KMnO4 solution (70 mL, 0.05 M) was placed into a Teflon-lined stainless-steel
autoclave at 160 ◦C for 24 h. The sample was then removed, washed with distilled water
and ethanol, and dried at 60 ◦C to obtain the MnO2 composites.

Next, 150 mg FeSO4·7H2O and 80 mg MnO2 were then and dispersed in 70 mL of an
ethylene glycol–water solution (ethylene glycol:water = 1:7) successively. The mixture was
subsequently transferred to a Teflon-lined stainless-steel autoclave and rotated constantly
at 120 ◦C for 12 h. After cooling to room temperature, the product was washed with DI
water and dried at 60 ◦C for 12 h.
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Finally, the as-prepared FeOOH (100 mg), Na2S·9H2O (2.88 g), and KOH (19.6 g) were
dispersed and dissolved in 70 mL of the ethanol–water solution (water:ethanol = 1:1), and
the mixture was then transferred into a Teflon-lined stainless-steel autoclave and rotated
constantly at 120 ◦C for 12 h. After cooling to room temperature, the product was washed
with DI water and dried at 60 ◦C for 12 h.

2.5. Characterization of Materials

The crystal structures of the KFeS2 and diatomite-like KFeS2 were determined by
X-ray diffraction (XRD) (Panaco, Almelo, The Netherlands) at a scanning angle of
2θ = 5–80 degrees. The chemical constituents of the samples were determined by X-ray
photoelectron spectroscopy (XPS) (Thermo Fisher Technology, Waltham, MA, USA) as
well, and the micromorphology and structure were characterized using scanning electron
microscopy (SEM) (Zeiss, Germany) at 5 kV and transmission electron microscopy (TEM)
(Zeiss, Germany).

2.6. Electrochemical Measurements

A working electrode was prepared by mixing 70 wt% active materials (diatomite-like
KFeS2), 20 wt% acetylene black, and 10 wt% polyvinylidene fluoride (PVDF) in N-methyl-
2-pyrrolidone (NMP), and the slurry was spread onto a foam nickel current collector
(1 × 1 cm2). This electrode was then heated to 120 ◦C for 12 h in order to evaporate the
solvent and was then uniaxially pressed under 10 MPa. A three-electrode was then used to
evaluate the capacitive performance of the electrode materials.

The electrochemical performance of the as-prepared electrode was carried out using
the CHI 660E electrochemical station (Shanghai Chenhua Instrument Co., LTD, Shanghai,
China). For the three-electrode configuration, the working electrodes (1 × 1 cm2) were the
diatomite-like KFeS2, a platinum plate was used as the counter electrode, and silver chloride
electrode was used as the reference electrode. Cyclic voltammetry (CV), linear sweep
voltammetry (LSV), and galvanostatic charging/discharging (GCD) were employed to
investigate the electrochemical performance of the composites, where the applied potential
window ranged from 0 to 0.6 V in a 6 M KOH electrolyte. CVs were recorded at scan rates
of 10, 20, 40, 50, 80, and 100 mV s−1, and GCD curves were obtained at constant current
densities of 1, 2, 4, 5, 8, and 10 A g−1. CV and GCD had potential windows of 0.6 V and
0.45 V, respectively. Finally, electrochemical impedance spectroscopy (EIS) was conducted
in the frequency range of 100 kHz to 0.01 Hz with a perturbation amplitude of 5 mV versus
the open-circuit potential.

3. Results and Discussion

As shown in Scheme 1, the diatomite-like KFeS2 was synthesized using a sacrificial
template method that combined the etching of sulfide and diatomite into one step. In the
first step of the process, MnO2@diatomite (MnO2@D) was prepared using a hydrothermal
method according to the self-decomposition of KMnO4. Then, the prepared MnO2 was
replaced by hydroxyl iron oxide (FeOOH) based on the spontaneous redox reaction between
Fe2+ and MnO2. After becoming vulcanized by Na2S·9H2O in the alcohol–water solution
under high temperature, FeOOH was transformed into KFeS2 and the diatomite was
dissolved by KOH, resulting in a hollow diatomite-like KFeS2 structure.
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electrode materials with bifunction of supercapacitance and hydrolysis: (i) Conversion of MnO2

nanosheets to FeOOH nanorods on the surface of diatomite template; (ii) Etching of diatomite in
FeOOH@D template and sulfation of FeOOH by KOH and Na2S·9H20 at the same time to prepare
diatomite-like KFeS2.

Figure 1 shows the morphology of diatomite-like KFeS2. In Figure 1a, after the
multistep sacrificial template method, the KFeS2 also kept a diatomite-like round cake
shape that consisted of numerous nanosheets that joined together with each other to form
a porous structure (Figure 1b,c). This structure could also be observed inform the TEM
images (Figure 1d–f). This unique nanostructure definitely increased the SSA of KFeS2,
which is very important for improving its electrochemical and OER properties. Moreover,
a lattice spacing of 0.564 nm, as shown in Figure 1g, can be indexed to the (0 2 0) plane
of KFeS2, and the typical EDS spectrum in Figure 1h reveals that the atomic percentage
of elements K, Fe, and S followed a ratio of 1:1:2, which indicates the presence of KFeS2.
Furthermore, the element mapping images and scatter superimposed graph in Figure 1i
also show that K, Fe, and S were uniformly distributed in the material. These results point
to the successful synthesis of KFeS2 with the 3D morphology and dimensions of diatomite.

For comparison, FeS2-modified diatomite was produced but without diatomite etching.
Figure 2a shows the composition and crystalline phase of purified diatomite, FeS2-modified
diatomite, and diatomite-like KFeS2. The diffraction peaks of purified diatomite were ob-
served at 22.0◦, 28.4◦, 31.5◦, and 36.1◦, which refer to SiO2 (JCPDS No. 39-1425, α = 4.937 Å,
b = 4.937 Å, c = 6.924 Å), indicating a chemical composition of diatomite. For FeS2-modified
diatomite, only weak diffraction peaks were found for diatomite because the template of
diatomite was not etched. However, the diffraction peaks of diatomite-like KFeS2 were
observed as 15.6◦, 27.4◦, 30.7◦, and 40.9◦ (JCPDS No. 80-0581, α = 7.089 Å, b = 11.304 Å,
c = 5.398 Å), demonstrating its high crystallinity, and the average crystallites size is about
27.5 nm. Additionally, the diffraction peaks of purified diatomite could not be observed,
which confirmed that the diatomite was completely etched by KOH. Moreover, the sam-
ple without etching was also studied and clearly showed that the synthesis of KFeS2
had occurred as a product of the co-heating of KOH with Na2S·9H2O and hydroxy-iron
oxide. Figure 2b depicts the FTIR spectrum of the diatomite-like KFeS2. The peak at
3420 cm−1 corresponds to strong stretching vibrations of the O–H bond (H2O), and the
bands at 1126 cm−1 and 829 cm−1 correspond to the asymmetric stretching of sulfur func-
tional groups (S–O). Finally, the peaks at 708 cm−1, 665 cm−1, 614 cm−1, and 539 cm−1

correspond to disulfide stretching vibrations (S–S) [34].
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Figure 1. (a–c) Magnification increases for the SEM images of the diatomite-like KFeS2; (d–f) Mag-
nification increases for the TEM images of the diatomite-like KFeS2; (g) Typical TEM image of the
diatomite-like KFeS2 single wire; (h) EDS mapping of diatomite-like KFeS2; (i) HAADF-STEM images
and corresponding EDS mapping of diatomite-like KFeS2.

The surface properties of the prepared diatomite-like KFeS2 were tested by Brunauer–
Emmett–Teller (BET) and N2 adsorption–desorption measurements. Figure 2c shows
the corresponding N2 adsorption–desorption isotherms and the pore size distribution
curves of the samples. As shown in Figure 2c, the isotherm surface is that of a typical
mesoporous material with a sharp increase in N2 adsorption near a relative pressure of 1,
which indicates the presence of macropores in the diatomite-like KFeS2. This sharp increase
is due to the presence of macropores on the surface of the diatomite template. According to
BET analysis, the synthesized diatomite-like KFeS2 exhibited a large specific surface area
of 42.35 m2 g−1, which is much higher than that of the modified diatomite studied in our
previous work [35]. From the pore size distribution curves, the diatomite-like KFeS2 shows
a wide pore size spread, and the average pore diameter was 29.03 nm in 4 V A−1 by BET,
which formed a layered porous structure possessed by the composite. This type of layered
surface morphology with good pore structure is beneficial for enhancing the performance of
electrochemical capacitors because the large pore channels allow fast electrolyte transport,
and the small pores provide more active sites for chemical reactions to take place.
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Figure 2. (a) XRD patterns of purified diatomite, KFeS2 with diatomite morphology, and FeS2-
modified diatomite; (b) FT-IR spectra of diatomite-like KFeS2 in the range of 500–4000 cm−1; (c) N2

adsorption–desorption isotherms and the corresponding pore size distribution of the diatomite-
like KFeS2; high-resolution XPS spectra of K 2p, Fe 2p, and S 2p of the diatomite-like KFeS2

(d–f), respectively.

To explore the chemical composition of the structure further, X-ray photoelectron spec-
troscopy (XPS) was performed to examine the elemental states of the diatomite-like KFeS2.
The corresponding high-resolution spectra of K, Fe, and S are displayed in Figure 2d–f. The
XPS spectrum of K 2p in Figure 2d shows two typical peaks at 295.40 eV and 292.61 eV,
corresponding to the K 2p1/2 and K 2p3/2 spin–orbit peaks of diatomite-like KFeS2, re-
spectively. Figure 2e shows the spectra of Fe 2p for the diatomite-like KFeS2, where the
peaks located at binding energies 722.53 eV and 708.32 eV belong to Fe 2p1/2 and Fe 2p3/2,
respectively, suggesting the presence of Fe3+ [36,37]. In Figure 2f, the peaks at 161.81 eV
and 160.67 eV correspond to S 2p1/2 and S 2p3/2, respectively, and we attribute the addi-
tional weak peak at 167.74 eV to a sulfur–oxygen bond that was possibly caused by air
contact [38].

Next, in order to compare the electrochemical performance of diatomite-like KFeS2,
FeS2@D, and KFeS2, the CV curves at a scan rate of 20 mV s−1 with GCD curves at a current
density of 4 A g−1 are shown in Figure 3a,b. Evidently, the area surrounded by the curve of
the diatomite-like KFeS2 was larger than the others. The GCD curves of the diatomite-like
KFeS2, FeS2@D, and KFeS2 are shown in Figure 3b. The discharge time of the diatomite-like
KFeS2 was longer than that of FeS2@D or KFeS2, which indicates its larger capacitance. In
addition, the areas of the CV curves of the diatomite-like KFeS2 and FeS2@D were larger
than that of KFeS2, and their discharge times were also longer than KFeS2, indicating
enhancement in electrochemical capacitance from diatomite morphology. Additionally,
the CV curves of the diatomite-like KFeS2 electrodes in 6 M KOH aqueous electrolyte at
various scan rates are shown in Figure 3c, where an obvious redox peak can be seen that
indicates that a typical faradaic pseudo reaction occurred between the KFeS2 electrode and
the KOH electrolyte. As shown in Figure 3d, stable platforms can also be observed in the
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charge–discharge curves, indicating a pseudo-reaction response of the active material. The
specific capacitance Cm (F g−1) can be calculated using Equation (1):

Cm =

∫
Udt × I

0.5m × ∆V2 (1)

where I is the discharging current, U is the potential, t is the discharging time, and m is
the weight of the active materials. The specific capacitance of diatomite-like KFeS2 was
calculated to be 651 F g−1 at a current density of 1.0 A g−1, highlighting its unique porous
structure and high SSA. High porosity makes it easier for ions to be transferred into the
structure, leading to more redox reactions and surface adsorption of electrolyte ions.
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Figure 3. (a) The comparison of cyclic voltammograms at a scan rate of 20 mV s−1 between diatomite-
like KFeS2, FeS2@D, and KFeS2; (b) GCD curves of diatomite-like KFeS2, FeS2@D, and KFeS2 at a current
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density of 4 A g−1; (c) cyclic voltammograms of diatomite-like KFeS2 composite at different scan rate
(10, 20, 40, 50, 80, and 100 mV s−1) in a 6 M KOH aqueous electrolyte; (d) GCD curves of diatomite-like
KFeS2 electrodes at different current densities (1, 2, 4, 5, 8, and 10 mA cm−2); (e) specific capacitances
of diatomite-like KFeS2, FeS2@D, and KFeS2 measured under different current densities; (f) the
electrochemical impedance spectrum of the diatomite-like KFeS2 electrodes at open circuit potential
in the frequency range from 0.01 Hz to 100 kHz (the inset is a partial enlargement of the curve).

Table 1 shows the comparison of iron-based sulfide electrodes and highlights the excel-
lent electrochemical performance of diatomite-like KFeS2. In addition, the rate capabilities
of diatomite-like KFeS2, FeS2@D, and KFeS2 are displayed in Figure 3e. Obviously, the
slope of the diatomite-like KFeS2 was lower than that of FeS2@D or KFeS2, meaning that
the diatomite-like KFeS2 had a better rate capability. The overall specific capacitance of the
diatomite-like KFeS2 also showed a slightly decreasing trend as current density increased
from 1.0 to 10.0 A g−1. However, a slight increase at low current density (1.0 to 4.0 A g−1)
can be ascribed to the thermal effect caused by repeated charging and discharging of the
electrode [39]. After increasing the current density to 10 A g−1, about 66.8% of the initial
capacitance remained for the diatomite-like KFeS2 electrode, which serves to highlight is
rate capability further. Specifically, this rate in FeS2@D was about 70.6% and in KFeS2 was
about 54.6%.

Table 1. Various iron-based sulfide electrode materials with their specific capacitance.

No. Materials Morphology Electrolyte Specific Capacitance Reference

1 Diatomite-like KFeS2 Diatomite-like 6 M KOH 651 F g−1 at 1 A g−1 This work
2 FeS2 CNFs Nanosphere 6 M KOH 203.4 F g−1 at 1 A g−1 [20]

3 Fruit-like FeS2@Carbon
microspheres Microsphere 1 M KOH 278.4 F g−1 at 1 A g−1 [40]

4 N-doped FeS2 nanosphere Nanosphere 0.5 M NaOH 238.2 mF g−1 at 3 mA g−1 [41]

5 50% FeS2/3DPC (FeS2 content
at 50% weight percent) Nanoparticles 1 M KOH 304 F g−1 at 2 A g−1 [30]

6 Donator-FeS/C Nanoparticles 2 M KOH 275.65 F g−1 at 30 mA cm−2 [42]
7 FeS2/PVP/NF Nanoparticles 3 M KOH 526.08 F g−1 at 1 A g−1 [12]
8 FeSx grown on stainless steel Cuboidal-like 1 M Na2SO4 730 mF g−1 at 1 mA g−1 [43]

9 Hierarchical FeS/RGO/FeS@Fe
foil Nanosheets 2 M KOH 206.25 F g−1 at 20 mA cm−2 [44]

The rate capabilities of the diatomite-like KFeS2 and FeS2@D were both better than
KFeS2, which indicates improvement from introducing the diatomite morphology. Fur-
thermore, Figure S1 shows the cycle performance of the diatomite-like KFeS2 at a current
density of 4 A g−1. Here, we see that the impedance of the diatomite-like KFeS2 electrode
was calculated over a frequency range of 100 kHz–0.01 Hz by applying an AC voltage
with an amplitude of 5 mV at the open circuit potential. As shown in Figure 3f, the
impedance patterns had a half arc at high frequencies and a linear part at low frequencies.
The equivalent circuit of the Nyquist plot is shown in Figure 3f, where we can see that the
impedance arc in the high frequencies region can be replaced by an interfacial Faraday
charge transfer resistor (Rct) and a parallel constant phase element (Cd) for the double layer
capacitance. A straight line with a slope of 45◦ in the mid-frequency region along the arc
indicates the finite-length diffusive Warburg impedance (Zw), which is associated with the
diffusion/transport of electrolyte ions in the electrode. The vertical line in the very low
frequency region shows the ideal capacitive behavior of the diatomite-like KFeS2 electrode
material, and the EIS results show the pseudo-capacitive properties and porous structure
characteristics of the diatomite-like KFeS2 electrode.

The catalytic performance of the diatomite-like KFeS2 was also evaluated in 1 M
KOH. For comparison, FeS2-modified diatomite and iron-based sulfide without diatomite
morphology (KFeS2) were set as controls. The electrocatalytic activities of the diatomite-like
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KFeS2, FeS2@D, and KFeS2 nanostructured electrodes were investigated using linear sweep
voltammetry (LSV) measurements at a scan rate of 5.0 mA s−1, and the results are shown in
Figure 4a. The overpotential (η) for the diatomite-like KFeS2 was estimated to be ~0.25 mV,
which was much lower than both KFeS2 (~0.29 mV) and FeS2@D (~0.37 mV at a current
density of 10 mA cm−2. In addition, the Tafel slopes of the diatomite-like KFeS2, KFeS2, and
FeS2@D were estimated as 48.4 mV dec−1, 52.7 mV dec−1, and 155.4 mV dec−1, respectively,
as shown in Figure 4b. The Tafel slope of the diatomite-like KFeS2 was lower than the
other two structures, indicating its superior reaction kinetics characteristics and excellent
oxygen evolution performance. The EIS impedance spectrum in Figure 4c also shows that
the impedance of the diatomite-like KFeS2 was much lower than that of KFeS2 or FeS2@D,
which indicates its superior electrical conductivity. The lowest impedance of diatomite-like
KFeS2 favors the transfer of electrons and results in the lowest overpotential among the
three substances as well. This low impedance is also beneficial for the adsorption and
desorption of intermediates during the reaction process and contributes to the excellent
catalytic performance of diatomite-like KFeS2.
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is shown in the inset); (d) current–time curves of diatomite-like KFeS2, KFeS2, and FeS2@D for 24 h.

Cycling performance was further tested using the time–current method, and the results
for the diatomite-like KFeS2, KFeS2, and FeS2@D at an initial potential of 0.53 V, 0.62 V,
and 0.67 V for each after 24 h are shown in Figure 4d. Analysis of the time–current curve
results shows that the cycling stability of the diatomite-like KFeS2 and FeS2@D were much
higher than that of the KFeS2 without the morphology of diatomite. The cyclic curves of the
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diatomite-like KFeS2 and FeS2@D were noticeably similar, indicating that the morphology
of diatomite made a central contribution to its cycling performance.

The electrocatalytic performance of catalysts for hydrolysis is highly dependent on
their catalytic activity and the number of active sites, which are closely related to the
morphology, size, and structure of the catalyst [45]. Indeed, we found that the extremely low
overpotential, good electrical conductivity, and superior cycling stability of the diatomite-
like KFeS2 synthesized in this study were due to its unique diatomite nanostructure, which
increased the number of active centers. According to the adsorbate evolution mechanism
(AEM), an increased number of metal active sites can adsorb more intermediates and can
facilitate the synergistic effect of Fe and S, thus accelerating the electrocatalytic performance
of water decomposition [46]. Finally, we provide a table of comparisons (see Table 2) of the
results for the diatomite-like KFes2 with other sulfides that have been reported earlier, and
these results show that the prepared diatomite-like KFeS2 had excellent OER performance.

Table 2. Various iron-based sulfide electrode materials with their Tafel slopes and overpotentials.

No. Materials Morphology Tafel Slope
(mV dec−1) Overpotential (mV) Reference

1 Diatomite-like KFeS2 Diatomite-like 48.4 254@10 mA cm−2 This work
2 FeNi(OH)x/FeS/IF Nanosheets 53 273@10 mA cm−2 [47]
3 FeS/Fe2O3 heterogeneous nanosheets Nanosheets 51.71 266.5@10 mA cm−2 [16]
4 Fe2O3/FeS Nanorods 90 370@40 mA cm−2 [15]
5 Hybrid nanoarray Nanoarray 80 260@10 mA cm−2 [14]
6 FeS-Co9S8/IF Heterostructure 50.3 332@500 mA cm−2 [48]
7 FeS - 69 320@10 mA cm−2 [49]
8 FeSx/CF Heterostructure 105 340@10 mA cm−2 [50]
9 FeS2@MXene Nanoparticles 58.6 240@10 mA cm−2 [51]

4. Conclusions

In summary, diatomite-like KFeS2 was successfully synthesized using a simple multi-
step sacrificial template method. The nanostructure exhibited the potential for a broad set of
applications, such as in supercapacitor anodes and electrocatalysts for OERs. The diatomite-
like KFeS2 also exhibited extremely high specific capability (651 F g−1 at 1.0 A g−1). In
addition, as an electrocatalyst, the diatomite-like KFeS2 possessed a lower overpotential
(η10 of 254 mV at a current density of 10 mA cm−2) during OERs, compared to other iron-
based sulfide composite materials. These results indicate that diatomite-like KFeS2 shows
promise for use in the assembly of supercapacitors and oxygen precipitation reactions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13040643/s1, Figure S1: Cycle performance of diatomite-
like KFeS2.
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