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Abstract: Photocatalysis plays a vital role in sustainable energy conversion and environmental reme-
diation because of its economic, eco-friendly, and effective characteristics. Nitrogen-rich graphitic
carbon nitride (g-C3N5) has received worldwide interest owing to its facile accessibility, metal-free
nature, and appealing electronic band structure. This review summarizes the latest progress for
g-C3N5-based photocatalysts in energy and environmental applications. It begins with the synthesis
of pristine g-C3N5 materials with various topologies, followed by several engineering strategies for
g-C3N5, such as elemental doping, defect engineering, and heterojunction creation. In addition, the
applications in energy conversion (H2 evolution, CO2 reduction, and N2 fixation) and environmental
remediation (NO purification and aqueous pollutant degradation) are discussed. Finally, a summary
and some inspiring perspectives on the challenges and possibilities of g-C3N5-based materials are
presented. It is believed that this review will promote the development of emerging g-C3N5-based
photocatalysts for more efficiency in energy conversion and environmental remediation.

Keywords: nitrogen-rich graphitic carbon nitride; defect engineering; heterojunction; energy conver-
sion; environmental remediation

1. Introduction

As civilization has developed, energy crises and environmental contaminations have
become major obstacles to the further development of human society [1–4]. Semiconductor-
based photocatalysis is regarded as one of the most efficient technologies to address serious
energy and environmental issues [5–7]. The mass production of highly efficient, dependable,
and reasonably priced photocatalysts with strong charge carrier segregation, plenty of
active sites, a broad optical absorption range, and high redox potentials is crucial for the
commercialization of photocatalytic technology [8–10]. As a result, much effort has been
devoted to designing more robust and efficient photocatalysts.

Graphitic carbon nitride (g-C3N4) has sparked extensive interest because of its metal-
free nature, facile accessibility, excellent physicochemical stability, and appealing electronic
band structure [5,6,11]. However, the inherent disadvantage of carrier recombination and
the restricted light absorption range dramatically hampered the practical application of
g-C3N4 [12,13]. To elevate the photocatalytic performance of g-C3N4, versatile modification
procedures, such as doping, heterojunctions, and chemical structural regulation (tuning the
C/N ratio), have been implemented [14,15]. Compared with g-C3N4, g-C3N5 has piqued
particular interest because of its nitrogen-rich moiety and sp2 hybridized atoms, which
assist in the optimization of the electronic band structure [16].

The researchers have recently synthesized 2D g-C3N5 with different structures using
diverse precursors. For example, g-C3N5 with heptazine moieties linked together by
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azo linkage (−N=N−) was synthesized by thermal deamination of 2,5,8-trihydrazino-s-
heptazine [17]. Terminal triazole-based g-C3N5 was fabricated via straightforward self-
condensation of 3-amino-1,2,4-triazole [18–20], while g-C3N5 with one-triazole and two-
triazine combinations was formed via self-assembly of 5-amino-1H-tetrazole (5-ATTZ) [21].
Furthermore, a variety of techniques for modifying g-C3N5 have been developed, including
element doping, defect engineering, and heterojunction engineering. To date, g-C3N5-based
materials have been widely employed in energy conversion and environmental remediation
as a new style of carbon nitride specimen [17,22–24]. However, a comprehensive review of
g-C3N5-based photocatalysts for energy and environmental applications is still lacking.

This review summarizes the latest progress of g-C3N5-based photocatalysts for energy
and environmental applications. Various synthesis topologies of pristine g-C3N5 and
several engineering strategies for g-C3N5 (such as elemental doping, defect engineering,
and heterojunction creation) are presented. In addition, the photocatalytic applications
in H2 evolution, CO2 reduction, N2 fixation, NO purification, and aqueous pollutant
degradation are discussed. To the best of our knowledge, this is the first review of g-C3N5-
based photocatalysts. It is anticipated that this review will provide readers with a deep
understanding of emerging g-C3N5-based photocatalysts, which might promote the design
of more robust metal-free photocatalysts.

2. Synthesis Strategies of Pristine g-C3N5

In this section, the synthesis techniques and mechanisms of pristine g-C3N5 with
various structures derived from various precursors will be thoroughly explored. The
pristine g-C3N5 can be divided into three types, i.e., g-C3N5 with triazine and triazole
(Figure 1a), g-C3N5 with terminal triazole (Figure 1b), and g-C3N5 with azo-linked hep-
tazine (Figure 1c). They can be synthesized by one-step polymerization of inexpensive
nitrogen-rich precursors such as 5-amino-1H-tetrazole [21], 3-amino-1,2,4-triazole [18,19,25],
and melamine [17].
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2.1. g-C3N5 Containing One-Triazole and Two-Triazine

Unlike g-C3N4, which has three triazine moieties, g-C3N5 has one triazole and two
triazine moieties, with one triazole ring replacing one triazine ring in g-C3N4. Compared
with triazine or heptazine moieties, the triazole moiety possesses more electrons and more
pyrrolic N sites than triazine or heptazine, which provides more numbers of the basic sites
and enhances the basic catalytic activity. In this section, we will describe the templated and
template-free methods for such g-C3N5 preparations.

2.1.1. The Hard Template Approach

According to the literature, KIT-6 and SBA-15 are two commonly used templates
for the synthesis of g-C3N5. Vinu and co-workers prepared porous g-C3N5 (MCN-11)
via a simple self-assembly of the 5-amino-1H-tetrazole (5-ATTZ) in the presence of hard
template KIT-6. In brief, 5-ATTZ was impregnated into the pore channels of the KIT-6
template, carbonized for 4 h at 400 ◦C, and the template was removed with 5% HF acid
to obtain MCN-11. It was demonstrated that the structure of MCN-11 was composed of
one triazole and two triazine moieties by DFT calculations (Figure 2a–d) and spectroscopic
analyses (Figure 2e,f) [21]. Additionally, the impact of temperature on the material’s
nitrogen content, structure, and surface functional groups was also investigated. As the
carbonization temperature ascended from 350 to 550 ◦C, the C/N ratio increased from
1.43 to 1.62, representing the structural change from g-C3N5 to g-C3N4. g-C3N5 containing
1-NH2/NH-1,2,4-triazole units (MCN-11) (Figure 2g) was obtained at 350 and 400 ◦C,
whereas g-C3N4 containing 2-NH2/NH-1,3,5-triazine units (Figure 2h) was obtained at 450,
500, and 550 ◦C [26]. Vinu’s group also synthesized g-C3N5 nanorods with a combination of
triazine and triazole groups, named MCN-14-X, using SBA-15 as a hard template instead of
KIT-6. The preparation process is briefly summarized as follows: 5-ATTZ was impregnated
into the porosity canals of the SBA-15 template, then carbonized for 4 h at 400 ◦C, and the
template was etched with 5% HF acid to obtain MCN-14 [27]. The obtained mesoporous
carbon nitrides, MCN-11 and MCN-14, have a good effect on the adsorption and conversion
of CO2 and are the catalysts for Knoevenagel condensation. However, this hard template
still suffers from cumbersome template preparation processes and an unfriendly template
removal process.

Nanomaterials 2023, 13, x FOR PEER REVIEW 3 of 32 
 

 

2.1. g-C3N5 Containing One-Triazole and Two-Triazine 
Unlike g-C3N4, which has three triazine moieties, g-C3N5 has one triazole and two 

triazine moieties, with one triazole ring replacing one triazine ring in g-C3N4. Compared 
with triazine or heptazine moieties, the triazole moiety possesses more electrons and more 
pyrrolic N sites than triazine or heptazine, which provides more numbers of the basic sites 
and enhances the basic catalytic activity. In this section, we will describe the templated 
and template-free methods for such g-C3N5 preparations. 

2.1.1. The Hard Template Approach 
According to the literature, KIT-6 and SBA-15 are two commonly used templates for 

the synthesis of g-C3N5. Vinu and co-workers prepared porous g-C3N5 (MCN-11) via a 
simple self-assembly of the 5-amino-1H-tetrazole (5-ATTZ) in the presence of hard tem-
plate KIT-6. In brief, 5-ATTZ was impregnated into the pore channels of the KIT-6 tem-
plate, carbonized for 4 h at 400 °C, and the template was removed with 5% HF acid to 
obtain MCN-11. It was demonstrated that the structure of MCN-11 was composed of one 
triazole and two triazine moieties by DFT calculations (Figure 2a–d) and spectroscopic 
analyses (Figure 2e,f) [21]. Additionally, the impact of temperature on the material’s ni-
trogen content, structure, and surface functional groups was also investigated. As the car-
bonization temperature ascended from 350 to 550 °C, the C/N ratio increased from 1.43 to 
1.62, representing the structural change from g-C3N5 to g-C3N4. g-C3N5 containing 1-
NH2/NH-1,2,4-triazole units (MCN-11) (Figure 2g) was obtained at 350 and 400 °C, 
whereas g-C3N4 containing 2-NH2/NH-1,3,5-triazine units (Figure 2h) was obtained at 450, 
500, and 550 °C [26]. Vinu’s group also synthesized g-C3N5 nanorods with a combination 
of triazine and triazole groups, named MCN-14-X, using SBA-15 as a hard template in-
stead of KIT-6. The preparation process is briefly summarized as follows: 5-ATTZ was 
impregnated into the porosity canals of the SBA-15 template, then carbonized for 4 h at 
400 °C, and the template was etched with 5% HF acid to obtain MCN-14 [27]. The obtained 
mesoporous carbon nitrides, MCN-11 and MCN-14, have a good effect on the adsorption 
and conversion of CO2 and are the catalysts for Knoevenagel condensation. However, this 
hard template still suffers from cumbersome template preparation processes and an un-
friendly template removal process. 

                                                          
Figure 2. Theoretical and experimental results of g-C3N5 containing one-triazole and two-triazine: 
(a) Optimized geometric structure (gray for C atoms and blue for N atoms); (b) 2D charge density 
distribution; (c) Phonon DOS; (d) 3D charge density (yellow regions: electron-rich areas, cyan re-
gions: electron-deficient areas); (e) Carbon K-edge (left) and nitrogen K-edge (right) NEXAFS spec-
tra (the black line indicates MCN-11); (f) FT-IR spectra (the black line indicates MCN-11); (g) g-C3N5 
containing 1-NH2/NH-1,2,4-triazole units; (h) g-C3N4 containing 2-NH2/NH-1,3,5-triazine units. (a–
f) Adapted with permission from [21]. Copyright Wiley-VCH Verlag GmbH and Co. KGaA, Wein-
heim, 2018. (g–h) Adapted with permission from [26]. Copyright WileyVCH GmbH, 2020.  

2.1.2. The Template-Free Approach 

Figure 2. Theoretical and experimental results of g-C3N5 containing one-triazole and two-triazine:
(a) Optimized geometric structure (gray for C atoms and blue for N atoms); (b) 2D charge density
distribution; (c) Phonon DOS; (d) 3D charge density (yellow regions: electron-rich areas, cyan regions:
electron-deficient areas); (e) Carbon K-edge (left) and nitrogen K-edge (right) NEXAFS spectra
(the black line indicates MCN-11); (f) FT-IR spectra (the black line indicates MCN-11); (g) g-C3N5

containing 1-NH2/NH-1,2,4-triazole units; (h) g-C3N4 containing 2-NH2/NH-1,3,5-triazine units.
(a–f) Adapted with permission from [21]. Copyright Wiley-VCH Verlag GmbH and Co. KGaA,
Weinheim, 2018. (g–h) Adapted with permission from [26]. Copyright WileyVCH GmbH, 2020.



Nanomaterials 2023, 13, 499 4 of 31

2.1.2. The Template-Free Approach

A template-free approach was reported by Zhang et al. [28]. Two-dimension metal-
free g-C3N5 nanosheets were acquired by the polymerization of 3-AT at 500 °C for 3 h
under a half-cover air using the heating rate of 5 ◦C min−1. The prepared g-C3N5 exhibits
excellent crystal properties, which can be confirmed by the peaks of 100 (in-plane structural
ordering) and 002 (interlayer structural ordering) in XRD characterization (Figure 3a). XPS
spectra (Figure 3b–d) confirmed the presence of one-triazole and two-triazine. Compared
with g-C3N4, g-C3N5 exhibits a better visible light response (Figure 3e), a lower band
gap (Figure 3f), and a more effective separation of photogenerated electrons and holes
(Figure 3g). It may be due to the abundance of unpaired electrons on g-C3N5, confirmed
by the ESR spectra (Figure 3h). Meanwhile, the orbital calculations (Figure 3i,j) also
confirm that g-C3N5 has better photo-generated carrier separation efficiency than g-C3N4.
Therefore, the prepared g-C3N5 displays better photocatalytic performance than g-C3N4.
This approach is simple, time-saving, energy-saving, and environment-friendly, which
makes it conducive to large-scale production and application of materials.
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2.2. g-C3N5 with Terminal Triazole

The structure of g-C3N5 with terminal triazoles is constructed by 1,2,4-triazoles and 1H-
1,2,3-triazoles, which replace two hydrogens on the terminal amino moiety of one triazine
ring in g-C3N4. This replacement both enhanced conjugation and increased nitrogen
content (-NH2, -NH), which was beneficial to expand the photo-absorption range and
enhancing the selectivity and adsorption of acidic gases, respectively. In this section, we
will summarize the methods for producing terminal triazole-based g-C3N5 using KIT-6
and KBr templates.

2.2.1. The Method Using the KIT-6 Template

Vinu et al. [18] have achieved a remarkable breakthrough in the synthesis of meso-
porous g-C3N5, which was named MCN-8. It was synthesized by a thermal condensation
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process of the 3-amino-1,2,4-triazole precursor in a KIT-6 silica template using a nano-
casting technique. In order to detect the structures and properties, advanced characteriza-
tion techniques are used. XRD measurements reveal the structural ordering and graphitic
character of MCN-8 (Figure 4a). According to the low-angle powder XRD pattern, the
MCN-8 materials have a highly organized three-dimensional porous mesostructure. The
diffraction peak at 2θ = 27.28 (002) verifies the CN framework’s strong crystallinity and
interlayer turbostratic ordering, as does a faint peak at 2θ = 13.48 (100), which confirms
the in-plane structural ordering. The TEM (Figure 4d) and SEM (Figure 4e) images clearly
demonstrate MCN-8’s lattice stripes and porous structure. The N2 adsorption-desorption
measurement (Figure 4b) also reveals that the MCN-8 has organized mesopores and a large
specific surface area, both of which contribute to improved adsorption. The near-edge X-ray
absorption fine structure (NEXAFS) (Figure 4c), high-resolution XPS (Figure 4f), and energy
loss (EEL) spectra (Figure 4g) demonstrate the existence of the terminal triazole unit and tri-
s-triazine ring in the CN framework. This chemical structure not only reduces the bandgap
to 2.2 eV (Figure 4h), which is crucial for extending visible light absorption for a faster rate
of H2 evolution (Figure 4i), but it also demonstrates improved selective sensing of toxic acid
molecules (Figure 4j). However, the fabrication of the nano-template (KIT-6) requires a high
temperature (540 ◦C) and a long time, which consumes both energy and time. In order to
save energy, Vinu and co-workers [19] used ethanol washing instead of high-temperature
calcination to obtain the KIT-6 for synthesizing 3D mesoporous g-C3N5 (MCN-8E). It was
found that the porous structure and graphite essence of MCN-8E are strikingly similar to
those of MCN-8. Considering the use of a hazardous etching chemical (HF) for template
removal causes the loss of active sites and degrades photocatalytic efficacy as well as the
cumbersome preparation of the template KIT-6, the search for an energy-saving, non-toxic,
and environment-friendly synthesis route has attracted the attention of researchers.
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Figure 4. Structural characterization and applications of MCN-8: (a) Low-angle powder XRD pattern
(inset: wide-angle powder XRD pattern); (b) N2 adsorption-desorption isotherm; (c) Carbon K-edge
and nitrogen K–edge NEXAFS spectra (red line for MCN-8, blue line for g-C3N4, and the inset for the
proposed molecular structure); (d) TEM image; (e) FE-SEM images; (f) High-resolution XPS spectra:
C1s and N1s; (g) EEL spectrum; (h) UV–Vis absorption spectrum; (i) H2 evolution amount in visible
light; (j) Gas adsorption detected by the QCM sensor. Adapted with permission from [18]. Copyright
Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 2017.
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2.2.2. The Method Using the KBr Template

Greener synthesis approaches are urgently needed to eliminate the use of the toxic HF
etchant in g-C3N5 production. Wang et al. [20] fabricated g-C3N5 with mesoporous and
rod-like morphology (RN-g-C3N5) via thermal condensation of the 3-amino-1,2,4-triazole
with KBr as the template. Figure 5a,b reveal that the prepared RN-g-C3N5 has a rod-like
porous structure due to the guiding effect of KBr. This special structure expands the visible
adsorption range (Figure 5c), reduces the bandgap to 1.90 eV (Figure 5d), and improves the
separation of electron-hole pairs (Figure 5e,f). As a result, the RN-g-C3N5 displays superior
photocatalytic performance and reusability in MB degradation (Figure 5g,h). It shows
greater potential for applications in the field of environmental remediation. Compared with
the traditional silica templates, the KBr template is an environmentally friendly strategy
for avoiding structural damage, the loss of active sites, and significant environmental
contamination caused by HF. In short, this procedure is straightforward, environmentally
friendly, and inexpensive.
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2.3. g-C3N5 Consisted of Heptazine Units Bridged by Azo

g-C3N5, consisting of heptazine units (tri−s−triazine) bridged by azo, is an analogue
of g-C3N4, which is derived by replacing the tertiary nitrogen in the g-C3N4 structure with
azo. The extended π−conjugation formed by coupling the orbitals of the azo-linkage with
the π-conjugated structures of the heptazine narrowed its bandgap, which expanded the
optical absorption range. The theoretical design and experimental fabrication of g-C3N5
(−N = N−) will be summarized in this section.

2.3.1. Theoretical Design

Cao et al. [29] designed a 2D crystalline graphitic g-C3N5 material by employing
the heptazine structure as the node and the azo group as the linker. Density functional
theory (DFT) was employed to investigate the material’s optical, electrical, and catalytic
characteristics. It was found that 2D g-C3N5 has an excellent performance in non-metal
oxygen reduction reactions, gas adsorption, separation, and conversion.

2.3.2. Experimental Fabrication

In terms of experimental fabrications, two methods for synthesizing the g-C3N5
framework are presented. As shown in Figure 6a, Kumar et al. [17] synthesized this
g-C3N5 via thermal deamination of melem hydrazine (MH), also named 2,5,8-trihydrazino-
s-heptazine, which was obtained by polymerization of melamine at 425 ◦C for overnight,
followed by a hydrothermal process with hydrazine hydrate. Characterization techniques
such as XPS (Figure 6c) and NMR (Figure 6d) indicated that the structure is made up of
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two s-heptazine units connected by an azo linkage. The overlap of azo atoms with the
aromatic network of heptazine units extends conjugation and increases electron density
on the heptazine nucleus (Figure 6b). The lower EPR signal strength of g-C3N5 compared
to g-C3N4 indicates that the number of lone pair electrons in g-C3N5 drops, confirming
that extra N atoms bond with tertiary nitrogen atoms outside the heptazine nucleus to
form azo rather than substitute C atoms in the heptazine motif (Figure 6h). This structure
increases visible light responsiveness and photogenerated electron-hole separation, as
seen by increased visible light absorption in Figure 6e, lower PL intensity in Figure 6f,
and a shorter average lifetime of the photogenerated charge carrier in Figure 6g. The 2D
g-C3N5 containing s-heptazine units and azo was successfully prepared by this approach,
although the process was complicated and time-consuming. In another work, Liu et al.
synthesized g-C3N5 nanosheets by heating a mixture of NH4Cl and 3-amino-1,2,4-triazole
(3-AT), followed by protonation exfoliation. It was found that the morphology of the
nanosheet increases the specific surface area, facilitates charge separation, and modifies the
band structure [30].
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In summary, the preparation methods of g-C3N5 with three different structures,
namely, g-C3N5 with a terminal triazole, g-C3N5 containing s-heptazine linked by azo, and
g-C3N5 containing 1 triazole and 2 triazines, are presented. It has been witnessed that
breakthroughs and progress have been made in the field of g-C3N5 synthesis, from scratch
and complexity to simplicity. It is necessary to further explore more environmentally
friendly, energy-saving, time-saving, and labor-saving preparation methods.

3. Functional Engineering of g-C3N5

Pristine g-C3N5 performs better in the applications of CO2 adsorption and conversion,
pollutant degradation, and H2 evolution. However, pristine g-C3N5 still suffers electron-
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hole recombination and limited use of visible light. To address the aforementioned issues,
g-C3N5 functional materials have been designed and fabricated to broaden their uses in a
variety of domains. We will go over the preparations of g-C3N5 functionalized materials in
this section, including defect engineering and heterojunction engineering.

3.1. Defect Engineering

One strategy for improving the photocatalytic properties of g-C3N5 is to introduce
structural defects into the surface. Defects are produced by the dislocation of an atom, which
breaks the periodic arrangement. Doping and vacancy are the two types of engineering
defects. Doping usually involves adding atoms to the original structure, while vacancies
occur when a host atom is losing its position in the original crystal structure. The defects
can cause electronic redistribution in the material, which can regulate spectral absorption
and affect the excitation, migration, and recombination of photogenerated electron holes.

3.1.1. Doping Design

Doping is a good strategy because it not only changes the electronic structure, resulting
in the band gap and the visible light absorption variation, but it also changes the surface
properties, which affect the photocatalytic performance. Next, we will discuss metal doping,
non-metal doping, and both metal and non-metal doping in the functional engineering
of g-C3N5.

Metal doping can create defect states in the band structure of g-C3N5, which trap
holes or electrons to change interface charge transfer, inhibiting the recombination of
photogenerated holes and electrons. As a new type of N-rich material, the N-rich sites
of g-C3N5 with stronger electronegativity are easy to combine with positive metal ions.
Transition metals with unoccupied d orbitals, which may function as electron donors or
acceptors, can easily form complexes with g-C3N5 through electron transfer. The feasibility
of transition metal doping g-C3N5 is verified by Niu’s team [31] through first-principles
calculations. They designed a set of models for depositing transition metal (TM) atoms
(V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Pd, W, and Pt) on g-C3N5 to construct transition
metal (TM) doped g-C3N5 single-atom catalysts (SACs), TM-g-C3N5. The adsorption
energies calculated by DFT are all negative, which demonstrates that the structures of all
12 TM-g-C3N5 are stable. This study has significant implications for future research into
g-C3N5-based stable photocatalytic materials.

In terms of material fabrication, Fang et al. [32] prepared pristine g-C3N5 according to
Zhang’s method [28] and pyrolyzed a mixture of it with potassium chloride, lithium chlo-
ride, and cobalt chloride dihydrate to prepare cobalt-doped g-C3N5, whose doping pattern
is shown in Figure 7a. HR-TEM images (Figure 7b), HAADF-STEM images (Figure 7c), and
elemental mapping (Figure 7d–f) all show that individual nitrogen atoms are uniformly
doped into g-C3N5. In addition, it was also confirmed that the configuration of Co-N4 was
formed by the combination of Co with pyridine nitrogen in g-C3N5, as confirmed by the
XANES spectra (Figure 7g) and R-space of XANES (Figure 7h). The prepared Co-C3N5
has stable catalytic performance for PCB28 degradation, which is attributed to sulfate
radicals from PMS activated by Co-N4. Similar work has also been done by Gan et al. [33].
They prepared pristine g-C3N5 according to Vinu’s method [18] and pyrolyzed the mixture
of pristine g-C3N5 with 1,10-phenanthroline monohydrate and (CH3COO)2Co·4H2O to
prepare another cobalt-doped g-C3N5. The structure of Co-N binding was confirmed by
advanced characterization methods, such as a peak at 2170 cm−1 in FT-IR spectra (Figure 7i)
and a Co-Nx peak in the XPS spectra of Co2p (Figure 7j). Cobalt doping significantly
enhances optical properties, such as reducing the band gap from 1.80 to 1.63 eV in Tauc’s
plot (Figure 7k), which helps to activate PMS for the generation of active species, including
free radicals (·O2

−, SO−4·, and ·OH) and non-free radicals (1O2 and tetravalent cobalt
oxide). In SMX degradation experiments, it can be degraded with a removal rate of 99.57%
in 20 min. The tetravalent cobalt oxide performed a vital role, whereas the other species
made a minor contribution. In addition, Vinu’s team [34] synthesized mesoporous titanium
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carbonitride, named MTiCN. It was obtained by carbonizing the mixture of mesoporous
C3N5 and titanium tetrachloride at 900 ◦C for 5 h. The resulting MTiCN samples have a
rod-like morphology, a mesoporous structure, and a large specific area, as well as a high
carbon content. It shows excellent H2 evolution performance similar to commercial plat-
inum/carbon. Moreover, Vivek Polshettiwar [35] synthesized K-doped g-C3N5 (K-g-C3N5)
via the thermal polymerization of 3-AT and KBr. A dipole interaction is generated between
K and N atoms as opposed to K atoms replacing N atoms, hence altering the distribution of
electrons and narrowing the band gap to increase light absorption. As an electron trap, K
also facilitates the transfer and separation of photogenerated carriers.
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Non-metallic doping is another effective method of modifying g-C3N5. Since it has a
high electron affinity and electronegativity, it may easily substitute the N atom in g-C3N5
and establish covalent bonds with the C atom. Non-metallic ions penetrate the lattice
and act as impurity energy levels in the valence band, therefore reducing the band gap,
separating electrons and holes, and enhancing the catalytic properties. To date, non-metallic
components such as N, B, P, etc. have been employed to modify g-C3N5.

Hu et al. [36] investigated the phosphorus doping of g-C3N5 (P-g-C3N5). P-doped
triazole-based g-C3N5 was produced by thermal condensation at 500 ◦C for 4 h, followed
by thermal copolymerization at 500 ◦C for another 4 h, using 3-AT and HCCP as precursors.
Figure 8a depicts its doping structures: P−N/P = N structures were formed between P and
N, which were derived from the XAFS spectra (Figure 8b) and EXAFS spectra (Figure 8c).
P2P orbitals provide donor levels in the forbidden band to donate more electrons, narrowing
the band gap and increasing the visible light usage rate, as confirmed by UV-vis spectra
(Figure 8d). Compared with the undoped g-C3N5 specimen, P-g-C3N5 demonstrated a
higher separation efficiency of photogenerated charges, which was confirmed by PL spectra
(Figure 8e). As a result, the P-g-C3N5 displays an excellent rhodamine B and tetracycline
degradation rate.
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Li et al. [38] constructed 18 varieties of B-doped g-C3N5, including substitution doping
and pore doping, followed by investigating the impact of B-doping on the material’s
photo-absorption range, band structure, and charge separation. The results revealed
that the optimal impurity levels increased light absorption, minimized the recombination
of photogenerated charge, and improved the performance of the catalyst. In terms of
material preparation, Qu et al. [37] synthesized boron-doped g-C3N5 (B-C3N5) by a one-
step pyrolysis process employing ammonium borate and 3-AT, whose structure is shown
in Figure 8f. The increased ID/IG (Figure 8h) shows that the graphite-like structure was
distorted, confirming the B as the heteroatom doped into the structure of the CN. Indeed,
the decreased C/N ratio calculated by element analysis confirmed the loss of carbon atoms.
The doping of B makes up for the loss of the C atom, as confirmed by the decreased ESR
spectra intensity of B-C3N5 (Figure 8g). That is to say, B tends to occupy the C vacancy
sites in C3N5 to form the B-O-H functional group, which can expand the light absorption
range (Figure 8i), enhance the charge transfer ability (Figure 8j), and optimize the structural
stability. In the photocatalytic nitrogen fixation experiments, it can achieve a photocatalytic
nitrogen fixation rate of 421.18 µmol·h−1·g−1, demonstrating its superior performance. The
B-O-H groups play the most important role; B can absorb and activate nitrogen using its
Lewis acid characteristics, and O-H can provide H protonate to activated nitrogen for NH3
formation using its Bronsted acidic characteristics.

Ding et al. [39] synthesized an N-doped carbon catalyst (PDA-g-CN) by pyrolyzing
g-C3N5@PDA hybrid, which was created by the polymerization reaction of dopamine
hydrochloride and g-C3N5 under mild alkaline conditions, at 800 ◦C for 2 h. The developed
PDA-g-CN catalyst has shown good degradation efficiency for organic pollutants (SMX)
via the non-radical mechanism. Nitrogen with a higher electronegativity makes the surface
potential of carbon more positive, thereby enhancing the adsorption capacity of PMS and
promoting the formation of high-redox potential C-PMS* complexes, which can oxidize
organic contaminants (SMX) via electron transfer from SMX to C-PMS*.

Metal and nonmetal doping play a significant role in the modification of g-C3N5, which
can alter the band gap, light absorption, and photogenerated charge separation. Most metal
elements may enter the lattice by pore doping, whereas most non-metal elements may enter
via substitution doping. On top of that, Ao et al. [40] synthesized the metal K and nonmetal
I co-doped g-C3N5 (K, I-g-C3N5) via pyrolyzing 3-AT and KI. K may enter the lattice by
pore doping, and I may enter via substitution doping. The band gap of K and I co-doped
g-C3N5 is larger than that of pristine g-C3N5, which is unfavorable for light absorption.
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Fortunately, the more negative conduction band potential has a strong reduction ability and
can reduce O2 to produce H2O2 (O2 + 2e– + 2H+ → H2O2). It was also confirmed that the
co-doping of metal and non-metal is an effective way to improve the properties of g-C3N5.

3.1.2. Vacancy Engineering

Vacancy defects also play an important role in enhancing photocatalytic capacity,
which can be summarized as having three important aspects: light absorption ability,
carrier separation efficiency, and surface reaction ability. In the field of materials, nitrogen
vacancies and oxygen vacancies are commonly used to regulate photocatalytic performance.
For example, Wang et al. [25] fabricated a triazole-based g-C3N5 material with N vacan-
cies (Nv-g-C3N5) through the thermal polymerization of 3-AT assisted by NaOH. Later,
Zhang et al. [41] used this method to fabricate the same Nv-g-C3N5 for constructing the
NV-g-C3N5/BiOBr heterojunction. The structure is shown in Figure 9a. A strong Lorentz
signal peak observed in the ESR curve of Nv-g-C3N5 confirmed the existence of nitrogen
vacancies (Figure 9c). The peak at 2170 cm−1 observed in the FT-IR spectrum suggests the
formation of cyano groups (Figure 9b). The cyano-groups extend the photo-absorption
range (Figure 9d), reduce the band gaps from 2.08 to 1.5 eV (Figure 9e), and use N vacancies
as electron traps to capture and store excited electrons, which facilitate the separation of
photogenerated charge carriers. The Nyquist radius of NV-g-C3N5 decreases with the
increase of N vacancies in Figure 9f, which is conducive to electron and hole migration
and separation. In addition, the PL intensity of Nv-g-C3N5 decreases with the increase of
N vacancies in Figure 9g, also reflecting the enhanced separation rate of charge carriers.
Both nitrogen vacancies and cyano groups affect the photocatalytic and photoelectrochem-
ical properties of materials. We believe that this simple, effective, and low-cost vacancy
engineering is beneficial to the wide application of g-C3N5 in energy conversion and
environmental remediation.
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Figure 9. (a) Structures of g-C3N5 and NV-g-C3N5; (b) FT-IR spectra; (c) ESR spectra; (d) UV-vis
spectra; (e) Tauc’s Plots; (f) EIS spectra; (g) FL spectra of g-C3N5 and NV-g-C3N5 (0.01, 0.02, 0.05, 0.1,
and 0.2 represent the amounts of NaOH for vacancy production). (b–f) Adapted with permission
from [41]. Copyright American Chemical Society, 2020.

3.2. g-C3N5-Based Heterojunctions

Constructing heterojunctions between the two semiconducting materials is an efficient
strategy for facilitating charge transfer. The photocatalytic activity of g-C3N5 materials
can be boosted by constructing heterojunctions with another semiconductor. Until now,
many g-C3N5-based heterostructures have been synthesized for energy conversions and
environmental governance, such as g-C3N5/BiOBr [41], Bi4O5Br2/g-C3N5 [42], Bi4O5I2/g-
C3N5 [43], Bi2WO6/g-C3N5 [44], Bi2MoO6/g-C3N5 [45], CeTi2O6/g-C3N5 [46], Ag3PO4/g-
C3N5 [47], Ag2CO3/g-C3N5 [48], AgCl/g-C3N5 [49], FeOCl/g-C3N5 [50], LaCoO3/g-
C3N5 [51], and MOFs/g-C3N5 [52]. This section will give a brief overview of heterojunc-
tions based on g-C3N5, including type-I heterojunction, type-II heterojunction, Z-scheme
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heterojunction or S-scheme heterojunction, and Schottky junction. Their photoinduced
carrier transfer routes are shown in Figure 10.
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3.2.1. Type-I Heterojunction

For a type-I heterojunction (Figure 10a), the energy band structure is nested, with
the bottom of the conduction band and the top of the valence band of the narrow band
material situated inside the forbidden band of the wide band material. Both holes and elec-
trons are transmitted from semiconductor 1 to semiconductor 2, where they may combine.
Consequently, this heterojunction restricts the separation of electrons and holes. There are
few materials about type-I heterojunction among the g-C3N5-based heterojunctions. It is
worth noting that the azo and heptazine rings expand the conjugation of g-C3N5, increasing
the migration properties and separation efficiency of electrons and holes. Thus, g-C3N5
can be used to improve another semiconductor property via type-I heterojunction. For
example, Alam et al. [53] fabricated CdS/C3N5 heterojunctions with a core-shell structure
by wrapping CdS nanowires with g-C3N5 shells obtained via melamine thermal deami-
nation. It greatly outperformed CdS nanorods alone in the removal of 4-nitrophenol and
rhodamine B (RhB) (Figure 11a), which was attributed to the passivating effect generated
by the g-C3N5 shell for CdS and the effective charge separation produced by the type-I
heterojunctions between CdS and g-C3N5. Through type-I heterojunction, the electrons
transfer from CdS to g-C3N5, and the holes also transfer from CdS to g-C3N5, thus promot-
ing hole extraction on CdS. Furthermore, photoinduced electron migration and separation
are facilitated by the expanded conjugation in g-C3N5. In addition, Wang et al. [54] fab-
ricated another kind of CdS/C3N5 for enhanced H2 production. It is fabricated by the
hydrothermal reaction of the uniform suspension solution obtained by adding g-C3N5 to an
aqueous solution of NH2CSNH2 and Cd(NO3)2·4H2O at 180 ◦C for 12 h. The synthesized
CdS/C3N5 greatly decreased the electron-hole recombination rate via type-I heterojunction,
which can produce hydrogen more than four times faster than pristine g-C3N5 (Figure 11b).
Furthermore, Wang et al. [55] successfully fabricated the g-C3N4/g-C3N5 VDWs junction
via a facile calcination technique with the precursors 3-AT for g-C3N4 and melamine for
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g-C3N5. It exhibited outstanding RhB and TC-HCl degradation performance, which was
attributable to the charge transfer from g-C3N4 nanolayers to g-C3N5 nanorods through a
type-I heterojunction interface and then effectively activating molecular oxygen to generate
ROS (Figure 11c).
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3.2.2. Type-II Heterojunction

Type-II heterojunction (Figure 10b) has a staggered arrangement of energy bands;
the CB and VB potentials of semiconductor 1 are higher than those of semiconductor
2. Under visible light irradiation, photoinduced electrons may migrate from the CB of
semiconductor 1 to that of semiconductor 2, while photoinduced holes are transferred in
the opposite direction, from semiconductor 2 to semiconductor 1. Photoinduced electrons
and holes accumulated on semiconductors 2 and 1, respectively. Consequently, type-II
heterojunctions seem to achieve charge carrier separations.

In this section, g-C3N5-based type-II heterojunction materials and their synthesis
methods are briefly reviewed. The basic process is to prepare g-C3N5 material, then
mix it with other materials through precipitation or hydrothermal reaction to obtain the
corresponding heterojunction materials. For example, Sun et al. [42] constructed a g-
C3N5/Bi4O5Br2 type-II heterojunction by in-situ growth of Bi4O5Br2 on g-C3N5 nanosheets
through the hydrothermal method (Figure 12a). The interlayer morphology and N-rich
structure enhanced visible light utilization, the bismuth-rich property of Bi4O5Br2 increased
the excited charge carrier lifetime, and the type-II surface heterojunction (g-C3N5/Bi4O5Br2)
promoted charge transfer and separation. As shown in Figure 12c, the reactive species
·O2
−, produced by the reaction between separated electrons on the CB of Bi4O5Br2 and

the adsorbed O2, together with the separated holes on the VB of g-C3N5, improve the
degradation efficiency of sulfathiazole (Figure 12b). Indeed, Meng et al. [56] constructed
a 2D/2D C3N5/GO type-II heterojunction using a sonochemical self-assembly method,
achieving a U(VI) removal rate of 96.1% (Figure 12d,e). The photoreduction ability of
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the electrons on the GO conduction band and the physical adsorption ability of GO itself
play an important role (Figure 12f). In addition, p-n heterojunction, a special type-II
heterojunction, is composed of p-type and n-type semiconductors. Under visible light
irradiation, the photoexcited electrons in the conduction band of the p-type semiconductor
move to the n-type semiconductor, driven by the built-in electric field, while the holes
move in the opposite direction, forming a p-n heterojunction. For example, Zhang et al. [41]
used a hydrothermal process to make NV-g-C3N5/BiOBr. Nitrogen vacancies and P-N
heterojunction promote N2 adsorption and activation.

Nanomaterials 2023, 13, x FOR PEER REVIEW 15 of 32 
 

 

 
Figure 12. (a) g-C3N5/Bi4O5Br2 preparation routes; (b) Photocatalytic degradation of STZ by g-
C3N5/Bi4O5Br2; (c) Photoreaction mechanism of STZ by g-C3N5/Bi4O5Br2; (d) Diagram of the g-
C3N5/GO preparation; (e) U(VI) removal ratio; (f) Mechanism schematic of U (VI) extraction by 
C3N5/GO. (a–c) Adapted with permission from [42]. Copyright Elsevier B.V., 2021 (d–f) Adapted 
with permission from [56]. Copyright Elsevier B.V., 2021. 

However, the theory of type-II heterojunctions has also been questioned. Yu et al. 
[57,58] have presented the inadequacies of the theory of type-II heterojunction from ther-
modynamic, kinetic, and energy viewpoints. First, the carrier migration to lower CB or 
higher VB reduces the redox ability of the material accompanying the energy loss. Sec-
ondly, this transfer is also kinetically unfavorable because of the repulsive forces between 
electrons and electrons and holes and holes. 

Z-scheme or S-scheme heterojunction (Figure 10c) has the same interleaved energy 
band structure as a Type-II heterojunction but a completely different mechanism for 
charge transfer. Electrons migrate from a high Fermi energy level to a low Fermi energy 

Figure 12. (a) g-C3N5/Bi4O5Br2 preparation routes; (b) Photocatalytic degradation of STZ by g-
C3N5/Bi4O5Br2; (c) Photoreaction mechanism of STZ by g-C3N5/Bi4O5Br2; (d) Diagram of the
g-C3N5/GO preparation; (e) U(VI) removal ratio; (f) Mechanism schematic of U (VI) extraction by
C3N5/GO. (a–c) Adapted with permission from [42]. Copyright Elsevier B.V., 2021 (d–f) Adapted
with permission from [56]. Copyright Elsevier B.V., 2021.
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However, the theory of type-II heterojunctions has also been questioned. Yu et al. [57,58]
have presented the inadequacies of the theory of type-II heterojunction from thermody-
namic, kinetic, and energy viewpoints. First, the carrier migration to lower CB or higher
VB reduces the redox ability of the material accompanying the energy loss. Secondly, this
transfer is also kinetically unfavorable because of the repulsive forces between electrons
and electrons and holes and holes.

Z-scheme or S-scheme heterojunction (Figure 10c) has the same interleaved energy
band structure as a Type-II heterojunction but a completely different mechanism for charge
transfer. Electrons migrate from a high Fermi energy level to a low Fermi energy level
when two semiconductors come into contact, creating an internal electric field (IEF) and
energy band edge bending. Additionally, there are also Coulomb interactions between
electrons and holes. As a result of the three aforementioned actions, electrons and holes
with low redox potential merge, leaving electrons and holes with high redox potential in
the conduction band of semiconducting 1 and the valence band of semiconductor 2. As a
result, Z- or S-scheme heterojunctions can achieve excellent separation of photogenerated
carriers while retaining a high redox capacity.

Z-scheme heterojunction is developed on the basis of liquid-phase and solid-state
Z-scheme heterojunction. Yu et al. [57,58] demonstrated that the charge transfer hypothesis
of liquid-phase and all-solid Z-scheme heterostructures is unfavorable in thermodynamics
and dynamics, proposing that the “Z-scheme” name be abandoned and substituted with a
new name: S-scheme heterostructure. In accordance with the literature, we will discuss the
S- and Z-scheme heterostructures, respectively.

3.2.3. Z-Scheme Photocatalyst

Z-scheme heterojunction (Figure 10c) has been shown to be a promising technique for
improving a single semiconductor’s photocatalytic efficiency. It can also be employed to
modify g-C3N5 materials without doubt. To enhance the photocatalytic performance of
g-C3N5, C3N5-based Z-scheme heterojunctions composed of g-C3N5 and the other semicon-
ductor have been investigated. Herein, g-C3N5-based Z-scheme heterojunction materials
and their synthesis methods are briefly reviewed. The basic process is to prepare the g-C3N5
material first, then mix it with other materials through liquid phase mixing, in-situ precipi-
tation, hydrothermal reaction, and calcination to obtain the corresponding heterojunction
materials. For example, Shi et al. [52] fabricated NH2-UiO-66/N-CN Z-scheme heterojunc-
tion photocatalysts via assembly in liquid mixing (Figure 13a). Taking Pt as a cocatalyst,
the fabricated NH2-UiO-66/N-CN-2 displays a high hydrogen evolution rate (Figure 13b),
which is attributed to the separation of photo-generated carriers facilitated by the close
contact interface of Z-scheme heterojunction. This charge transfer mechanism was also
verified by the density functional theory calculation (Figure 13c). This provides an effective
method to improve the performance of the g-C3N5 photocatalyst by adjusting the electron
distribution to promote charge separation through heterojunction interface engineering.
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Z-scheme charge transfer mechanism. Adapted with permission from [52]. Copyright American
Chemical Society, 2022.

3.2.4. S-Scheme Heterojunction

The reported C3N5-based S-scheme heterostructure consisting of g-C3N5 and another
oxidizing semiconductor may improve the photocatalytic activity of g-C3N5. Through
charge transfer at the interface of the S-scheme heterojunction, the holes in g-C3N5 may
be coupled with the electrons in another semiconductor through charge transfer at the
interface of an S-scheme heterojunction. The electrons in g-C3N5 and holes in another
semiconductor were preserved, which successfully separates electrons and holes and main-
tains a high redox capability. Herein, g-C3N5-based S-scheme heterojunction materials and
their synthesis methods are briefly reviewed. The basic process is to prepare the g-C3N5
material first, then mix it with other materials through wet chemical synthesis, hydrother-
mal reactions, and a solvothermal approach to obtain the corresponding heterojunction
materials. For example, Li et al. [45] constructed a Bi2MoO6/C3N5 S-scheme heterojunction
with oxygen vacancies (OVs) via in-situ solvothermal synthesis (Figure 14a). Benefiting
from the efficient separation and transfer of photogenerated charge carriers by S-scheme
charge transfer, enriched structural defects, and the close contact interface formed by the
in-situ growth, this material remarkably enhanced visible-light photocatalytic degradation
efficiencies for TC and Cr(VI) (Figure 14b), whose degradation mechanisms are shown
in Figure 14c. The development of S-scheme heterojunctions holds great promise for the
design of g-C3N5-based photocatalysts and the applications of g-C3N5-based materials in
energy conversion and environmental remediation.
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3.2.5. Schottky Junction

A Schottky junction is made from a metal and an n-type semiconductor material,
similar to a p-n junction. N-type semiconductors have a higher Fermi energy level than
metal, so electrons flow from the semiconductor to the metal. This makes an electron
accumulation layer on the metal side and an electron depletion layer on the semiconductor
side. This creates an electric field from the semiconductor to the metal, or a “Schottky
barrier”, permitting electrons to go from the semiconductor to the metal but not return.
The metal plays the role of converging electrons and promotes the effective separation of
electrons and holes. In this section, we will talk about three types of Schottky materials
for g-C3N5: conventional structures, core-shell structures, and two-dimensional nanosheet
structures.

In conventional Schottky connections, metal particles are dispersed or deposited on the
semiconductor surface. For example, Zhang et al. [59] fabricated Pt-C3N5 and P-Pt-C3N5 by
loading Pt on g-C3N5 through NABH4 reduction and in-situ photo-deposition, respectively.
Chen et al. [60] constructed a Ni-C3N5 material by loading Ni onto g-C3N5 using a simple
annealing method. The Schottky barrier allows electrons to pass from the g-C3N5 conductor
band to Pt (Ni) but not back, thereby preventing the combination of photogenerated
electrons and holes in g-C3N5 and enhancing the photocatalytic performance of Pt- and
Ni-C3N5.

The core-shell structure is formed by wrapping metal nanoparticles with semicon-
ductor materials, thus forming strong contact between two materials at the interface.
Li et al. [61] synthesized HCNs@ATTZ by impregnating 5-amino-1H-tetrazole (5-ATTZ)
into hollow carbon nanospheres (HCNs), which were subsequently carbonized at 400 ◦C to
produce HCNs@g-C3N5 (Figure 15a). This is a core-shell-structured Schottky heterojunc-
tion in which HCNs are the core and g-C3N5 is the shell (Figure 15b). The difference in
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Fermi levels produced band bending and an internal electric field. They act similarly to a
Schottky heterojunction to promote the separation of electrons and holes.
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Two-dimensional (2D) nanosheet materials with chemically active surfaces or edges
have a larger specific surface area, which may provide more active sites for photoelectro-
chemical reactions compared to pristine particles. Meng et al. [62] fabricated the Schottky
heterojunction C3N5/RGO containing 2D-structured g-C3N5 and 2D-structured reduced
graphene oxide (Figure 15c). Electrons were transported from g-C3N5 to RGO through a
Schottky heterojunction, efficiently separating electrons and holes. Moreover, RGO with
high electrical conductivity was favorable for electron migration. As a result, the produced
C3N5/RGO exhibits good photoreduction for uranium (Figure 15d,e).

4. Environmental and Energy Applications

g-C3N5 has been extensively applied in two major areas: energy conversion (H2 evo-
lution and N2 reduction) and environmental remediation (pollutant degradation, CO2
reduction, NO removal, and peroxide activation). They will be discussed in the subse-
quent chapters.

4.1. H2 Evolution Reaction (HER)

Solar-driven water-splitting technology has become a research hotspot for sustainable
hydrogen manufacturing technology. According to the thermodynamic properties, the
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process of overall H2O spitting for hydrogen and oxygen evolution is non-spontaneous
with a Gibbs free energy of 237.2 kJ·mol−1, which is equal to a potential of 1.23 eV. For the
hydrogen evolution reaction (HER), the potential at the semiconductor’s conduction band
bottom must be more negative than the hydrogen evolution potential (H+/H2 = 0 eV). For
the oxygen evolution reaction (OER), the potential at the valence band top must be more
positive than the oxygen evolution potential (H2O/O2 = 1.23 eV). If you want to achieve H2
and O2 evolutions at the same time, the band gap of the semiconductor photocatalyst must
be greater than 1.23 eV. For example, Liu et al. [30] synthesized pristine C3N5 nanosheets
with a band gap of 1.5 eV, a CB potential of −0.333 eV, and a VB potential of 1.217 eV. The
conduction band bottom is more negative than 0 eV, which satisfies the hydrogen evolution
conditions. The hydrogen evolution rate of 28.97 µmol·g−1·h−1 was achieved. Although
the band gap is greater than 1.23 eV, the valence band potential is less than 1.23 eV (the
OER potential), which means OER cannot take place.

In addition, the g-C3N5 functional materials have also been employed for H2 evo-
lution and exhibit excellent performance. For example, NixSy-C3N5 [63], S-Ni(OH)2-
C3N5 [64], Pt-C3N5 [59], CD/MoS2/C3N5 [65], CdS/C3N5 [54], CdS/C3N5(CCN) [66],
g-C3N5/Zn0.5Cd0.5S [67], NH2-UiO-66/N-CN-2 [52]. The applications of g-C3N5-based
photocatalyst in H2 production are summarized in Table 1.

Table 1. Summaries of g-C3N5 composite materials on photocatalytic H2 production.

Catalyst Reaction Conditions H2 Evolution
(mmol·g−1·h−1)

Quantum
Efficiency Ref.

g-C3N5(MCN-8)

300 W Xe lamp (λ > 420 nm)

2.67 [18]Catalyst (1g L−1)
TEOA (10 vol%)
Pt cocatalyst

Ultrathin C3N5
nanosheets

300 W Xe lamp (λ > 420 nm)
0.03 [30]Catalyst (0.5 g L−1)

TEOA (10 vol%)

NixSy-C3N5

300 W Xe lamp (λ > 420 nm)

35.44
37.0%

(at 420 nm) [63]Catalyst (1.5 g L−1)
TEOA (10 vol%)
Pt cocatalyst

S-Ni (OH)2-C3N5

300 W Xe lamp (λ > 420 nm)

32.22
30.9%

(at 420 nm) [64]Catalyst (1.5 g L−1)
TEOA (10 vol%)
Pt cocatalyst

Pt-C3N5

300 W Xe lamp (λ > 420 nm)
28.96

28.7%
(at 420 nm) [59]Catalyst (1.5 g L−1)

TEOA (10 vol%)

CD/MoS2/C3N5

300 W Xe lamp (λ > 420 nm)
0.45 [65]Catalyst (0.5 g L−1)

Na2S and Na2SO3 (0.35 M)

CdS/C3N5

300 W Xe lamp (λ > 420 nm)

0.50 [54]Catalyst (0.5 g L−1)
TEOA (10 vol%)
Pt cocatalyst (3 wt%)

CdS/C3N5 (CCN)

300 W Xe lamp (λ > 420 nm)

2.69 [66]Catalyst (0.5 g L−1)
Na2S and Na2SO3 mixtures (0.35 M)
Pt cocatalyst (3 wt%)
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Table 1. Cont.

Catalyst Reaction Conditions H2 Evolution
(mmol·g−1·h−1)

Quantum
Efficiency Ref.

C3N5/Zn0.5Cd0.5S
300W Xe lamp(λ > 420 nm)

142.8
33.7%

(at 420 nm) [67]Catalyst (0.05 g L−1)
Na2S (0.35 M) and Na2SO3 (0.25 M)

NH2-UiO-66/N-
CN-2

visible light (λ ≥ 420 nm)

3.94
6.8%

(at 420 nm) [52]Catalyst (0.05 g L−1)
TEOA (10 vol%)
Pt cocatalyst (2 wt%)

C3N4/rGO/C3N5

300 W Xe-lamp(λ ≥ 400 nm)

6.38
3.5%

(at 420 nm) [68]Catalyst (1 g L−1)
TEOA (10 vol%)
Pt cocatalyst (1.0 wt%)

4.2. CO2 Reduction Reaction (CO2RR)

CO2, being the primary byproduct of burning fossil fuels, may considerably con-
tribute to global warming and environmental harm. Photocatalytic CO2 reduction reactions
(CO2RR) are a promising technique that converts CO2 to hydrocarbon fuels. It not only
lowers CO2 contaminants but also supplies clean fuels such as methane (CH4), methanol
(CH3OH), and ethanol (CH3CH2OH) that can replace fossil fuels. However, because the
linear CO2 molecule has a relatively stable physical chemistry property with a Gib free
energy of 394.28 KJ·mol−1, it is difficult to convert CO2 into C1 compounds (CO, CH4,
and CH3OH) and C2 compounds (CH3CH2OH). To break the initial carbon-oxygen bond
(750 KJ·mol−1), a tremendous amount of energy is required. Due to the remarkable im-
provement in visible light utilization, g-C3N5-based materials are expected to be candidates
for CO2RR. The photogenerated holes can oxidize H2O into O2 and H+, which H+ can
couple with electrons to reduce CO2 to C1 products, followed by coupling C and C to
obtain the C2 product. In order to accomplish the above reduction process, the potential at
VB must be more positive than that of O2/H2O, and the potential at CB bottom must be
more negative than that of C1/CO2.

Adsorption is the key step for CO2 conversion. Cao et al. [29] demonstrated that
g-C3N5 (−N = N−) with basicity groups exhibits preferable affinity and notable adsorption
selectivity for CO2 by DFT calculation. At 298 K, the adsorption capacities of CO2, CH4,
and H2 are 11.8 mmol g−1 at 30 bar, 7.9 mmol g−1 at 50 bar, and 0.75 mmol g−1 at 50 bar,
respectively (Figure 16a). It indicated that g-C3N5 is a viable choice for the adsorptive sepa-
ration of CO2/H2 and CH4/H2, particularly CO2/H2 (Figure 16b). Vinu et al. [19] prepared
the ordered mesoporous g-C3N5 (MCN-8E-T) for CO2 adsorption with 5.63 mmol g−1 of
capacity at 273 K and 30 bar (Figure 16c). Vinu’s colleagues [27] also investigated MCN-14
materials with different pore sizes, which exhibit 5.6–9.1 mmol g−1 of CO2 adsorption
abilities at 0 ◦C and 30 bar and 14–38% of Faraday efficiencies for CO formation. Except
for this conversion from CO2 to CO, Morikawa et al. [69] demonstrated that g-C3N5 (-N =
N-) can efficiently catalyze CO2 to CH4 and CH3CH2OH under visible light illumination
by DFT calculation, with −0.54 eV (Figure 16d) and −0.61 eV (Figure 16e) of limiting
potentials, respectively. Both of them were less than HER free energy (1.18 eV) (Figure 16f),
which indicated that g-C3N5 is an effective catalyst for CO2RR due to its strong suppressing
effect on HER. Bharati Debnath and coworkers [35] reported that 1% K-doped g-C3N5 (-N
= N-) could convert CO2 to CH4 with H+ provided by H2O, displaying 100% selectivity
(Figure 17g–i). The keys to improving CO2 absorption and reduction may be a large specific
surface area, the suitable size of pores, a more negative conduction potential with strong
reduction capacity, and effective charge separation.
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4.3. Nitrogen Reduction Reaction (NRR)

Inspired by the process of biological nitrogen fixation, photocatalytic nitrogen reduc-
tion for ammonia synthesis has garnered attention. As the g-C3N5 is excited by photons, the
generated holes can oxidize H2O into O2 and H+, and electrons may activate N2 with the aid
of H+ to generate NH3. Compared with the Haber-Bosch method, this progressive hydro-
genation method avoids energy waste and CO2 emissions, which is both energy-saving and
environmentally friendly. The potential at the CB bottom needs to be more negative com-
pared to the N2/reduction products (N2/N2·, N2/N2H, N2/N2H2, N2/N2H4, N2/N2H5

+,
and N2/NH3), while the potential at VB top needs to be more positive compared to that of
O2/H2O.

Bharati Debnath [70] designed a g-C3N5/NiCr-LDH heterostructure, a hybrid of g-
C3N5 and NiCr-layered double hydroxide. DFT calculations showed its ability to adsorb
and activate N2 molecules. The possible adsorption configurations and binding sites, the
optimized configurations and adsorption energy (Eads), and the N–N bond lengths of
the adsorbed N2 molecules are presented in Figure 17a–d, Figure 17e–h, and Figure 17i–l,
respectively. The lesser absorption energy (−0.64 eV/N2) confirmed that the Cr atom
is the best adsorption site of the N2 molecule. The increased N–N bond length (1.16 Å)
compared to the free N2 molecule (1.078Å) suggests the activation of the N2 molecule. The
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experimental results also confirmed that the outstanding NH3 yields of g-C3N5/NiCr-LDH
were 7.51 and 2.86-folds larger than those of pristine g-C3N5 and NiCr-LDH, respectively
(Figure 17m). This is mainly due to the separation of electrons and holes produced by the
heterojunction interface between g-C3N5 and NiCr-LDH, which facilitates more electrons
for reducing N2 to NH3 (Figure 17n).

B-C3N5, produced by doping boron into g-C3N5, was used to immobilize N2 for
NH3 synthesis, as confirmed by in-situ DRIFTS spectra (Figure 17o–p), with an NH3 yield
1.72 times that of pristine g-C3N5 (Figure 17q). B-doping enhances light absorption and
electron-hole separation and also provides B-O-H functional groups. The B site is capable
of adsorbing and activating nitrogen, while the O-H site supplies the H+ to N2 for NH3
formation [37]. Moreover, Fe, an essential element of nitrogenase, plays an important
role in N2 fixation; abundant oxygen vacancies (OVs) generated by W18O49 can adsorb
and activate N2, and the narrow band gap of g-C3N5 expands the use of light. Based on
these advantages, Li et al. [71] constructed Fe-W18O49/g-C3N5 hybrids for NH3 production
at a rate of 131.6 mol·g−1·h−1, which was much superior to that of pristine g-C3N5 or
Fe-W18O49.
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4.4. NO Removal

Nitrogen oxides (NOx), especially NO, present a grave risk to global ecosystems.
Photocatalysis is a viable NO removal technique that can convert NO to NO under visible
light illumination. For example, Zhang et al. [60] constructed a Ni-C3N5 photocatalyst
for NO removal. Under light irradiation, it increased O2 absorption (Figure 18a) and
e−/h+ separation, promoting O2 activation and the production of more reactive oxygen
species (ROS). In-situ DRIFT spectroscopy was used to investigate the conversion of NO
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to NO3
−(Figure 18b). Ion chromatography was used to identify the formation of NO3

−

(Figure 18c). Degradation experimental results show that 0.1-Ni-C3N5 has the largest NO
removal efficiency (about 54%) (Figure 18d). A series of quenching experiments confirmed
that the ROS (·O2

−, 1O2, and ·OH) play an important role in NO removal (Figure 18e).
The mechanism of NO removal by g-C3N5-based photocatalyst is further understood, as
can be seen in Figure 18f. When photons with sufficient energy irradiate the Ni-C3N5, the
electrons leap to the conduction band, forming holes in the valence band. The electrons
can activate O2 to generate reactive oxygen species (·O2

−, 1O2, and ·OH). The h+ and the
generated ·O2

−, 1O2, and ·OH can convert NO to NO3
−. Moreover, TiO2 (P25)-C3N5 [72]

Z-scheme heterojunctions displayed a NO removal rate of 67.1%, which is attributed to the
effective separation of photogenerated e− and h+ and the reserve of strong redox potentials
provided by Z-scheme heterojunctions, promoting more ROS formation. Table 2 presents
applications of g-C3N5-based materials for photocatalytic NO removal.
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Table 2. Summary of applications in photocatalytic NO removal using g-C3N5-based materials.

Catalysts Reaction Conditions Removal Efficiency
(%) Reactive Species Ref.

NixSy-C3N5 flow reactor and visible LED 40% h+, ·OH, ·O2
−, and 1O2 [63]

S-Ni (OH)2-C3N5

25 mg catalyst
NO (~600ppb at 1000 mL min−1)

A 30 W visible LED
42% h+, ·OH, ·O2

−, and 1O2 [64]

TiO2(P25)-C3N5

300 W Xe lamp (λ > 400 nm)
20 mg catalyst;

NO: 450 ppb and RH: 15%
67 % e−, h+, and ·O2

− [72]

Ni-C3N5 NO:600 ppb 54% ·OH, ·O2
−, and 1O2 [60]
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4.5. Pollutant Degradation

Semiconductor materials based on g-C3N5 have been used extensively for the removal
of different pollutants from water. Figure 19 summarizes the application of g-C3N5-based
materials in the degradation of pollutants, including direct photocatalytic degradation and
activated peroxide degradation. We first summarized the direct photocatalytic processes of
the g-C3N5-based materials alone. When g-C3N5 is irradiated with photons of sufficient
energy, electrons jump to the conduction band and generate holes in the valence band.
Electrons oxidize O2 to generate ROS (·O2

−, 1O2, ·OH), whereas holes oxidize H2O to
generate ·OH. The resultant h+, ·O2

−, 1O2, and ·OH may oxidize organic pollutants to
form CO2 and H2O, while electrons can photo-reduce pollutants from high valence to
low valence. For example, Cr (VI) and U (VI) can be reduced to Cr (IV) and U (IV),
respectively [44,45,62,73]. Meanwhile, the h+ can also oxidize Hg0 to Hg2+ [43].

Nanomaterials 2023, 13, x FOR PEER REVIEW 25 of 32 
 

 

processes of the g-C3N5-based materials alone. When g-C3N5 is irradiated with photons of 
sufficient energy, electrons jump to the conduction band and generate holes in the valence 
band. Electrons oxidize O2 to generate ROS (·O2-, 1O2, ·OH), whereas holes oxidize H2O to 
generate ·OH. The resultant h+, ·O2-, 1O2, and ·OH may oxidize organic pollutants to form 
CO2 and H2O, while electrons can photo-reduce pollutants from high valence to low va-
lence. For example, Cr (VI) and U (VI) can be reduced to Cr (IV) and U (IV), respectively 
[44, 45, 62, 73]. Meanwhile, the h+ can also oxidize Hg0 to Hg2+ [43]. 

 
Figure 19. Photo-degradation processes of pollutants by g-C3N5-based materials. 

Moreover, persulfate (PMS/PDS) and sodium percarbonate (SPC) can be activated by 
g-C3N5-based materials to produce ROS for pollutant degradation. There are both free 
radicals and non-free radicals in the persulfate activation by g-C3N5-based materials. The 
free radical process refers to the oxidative degradation of pollutants by active species, such 
as SO4−·, ·OH, and ·O2−, produced by activating persulfate; the non-radical process includes 
the oxidation of pollutants by 1O2, electron transfer between persulfate and pollutants, 
and the direct oxidation of pollutants by persulfate. For example, Zhu et al. [28] demon-
strated that g-C3N5 can activate PMS or PDS with the assistance of visible light to degrade 
emerging micropollutants. PMS can be activated by g-C3N5 to produce SO4−‧ and ‧OH. 
Meanwhile, electrons in the g-C3N5 conduction band can react with O2 to produce ·O2− and 
1O2. The above species (h+, ·O2−, SO4−·, 1O2, and ·OH) are jointly involved in the degradation 
process of EMs. Ding et al. [39] demonstrated PDA-g-CN-1.0 obtained by coating g-C3N5 with 
polydopamine could effectively activate PMS without light to generate high-potential C-PMS* 
complexes, which could completely oxidize SMX within 5 min. Fang et al. [32] demonstrated 
that Co-C3N5 can activate PMS without light to completely degrade PCB28 within 30 min, 
which was significantly superior to the traditional metal-based activation. It was found that 
sulfate radical was the main active species for PCB28 degradation, which was generated from 
the decomposition of PMS activated by Co-N4. In contrast to this conclusion, Zhu et al. [33] 
discovered that high-valent cobalt oxides play an important role in SMX degradation by an-
other Co-C3N5 activating PMS with the help of visible light. This difference may be caused by 
the combination of photocatalysis and the transition metal cobalt under visible light irradia-
tion. 

Sodium percarbonate (SPC, Na2CO3·1.5H2O2), as a solid carrier of H2O2, not only has 
the properties of H2O2, but also has the possibility of producing carbonate radicals. Due 
to its easy transportation, storage, and handling properties, it has been used as a substitute 
for H2O2 in AOPs. Zhang et al. [67] employed ultrathin-C3N5 and SPC coupling photocata-
lytic techniques to degrade sulfamethoxazole, arriving at a removal rate of 93.97% in 120 
min. The main processes are as follows: (1) the separation of e- and h+; (2) the formation of 
ROS (·OH, ·O2−, and 1O2); and (3) the degradation of pollutants by ROS (·OH, ·O2−, 1O2, 
·CO3−, and h+). This work expands the application of g-C3N5-based materials in AOPs. Ta-
ble 3 summarizes the recent developments in the photo-degradation and photo-reduction 
of pollutants by g-C3N5-based photocatalyst. 

Figure 19. Photo-degradation processes of pollutants by g-C3N5-based materials.

Moreover, persulfate (PMS/PDS) and sodium percarbonate (SPC) can be activated
by g-C3N5-based materials to produce ROS for pollutant degradation. There are both
free radicals and non-free radicals in the persulfate activation by g-C3N5-based materials.
The free radical process refers to the oxidative degradation of pollutants by active species,
such as SO4

−·, ·OH, and ·O2
−, produced by activating persulfate; the non-radical process

includes the oxidation of pollutants by 1O2, electron transfer between persulfate and
pollutants, and the direct oxidation of pollutants by persulfate. For example, Zhu et al. [28]
demonstrated that g-C3N5 can activate PMS or PDS with the assistance of visible light to
degrade emerging micropollutants. PMS can be activated by g-C3N5 to produce SO4

−· and
·OH. Meanwhile, electrons in the g-C3N5 conduction band can react with O2 to produce
·O2
− and 1O2. The above species (h+, ·O2

−, SO4
−·, 1O2, and ·OH) are jointly involved in

the degradation process of EMs. Ding et al. [39] demonstrated PDA-g-CN-1.0 obtained by
coating g-C3N5 with polydopamine could effectively activate PMS without light to generate
high-potential C-PMS* complexes, which could completely oxidize SMX within 5 min.
Fang et al. [32] demonstrated that Co-C3N5 can activate PMS without light to completely
degrade PCB28 within 30 min, which was significantly superior to the traditional metal-
based activation. It was found that sulfate radical was the main active species for PCB28
degradation, which was generated from the decomposition of PMS activated by Co-N4. In
contrast to this conclusion, Zhu et al. [33] discovered that high-valent cobalt oxides play an
important role in SMX degradation by another Co-C3N5 activating PMS with the help of
visible light. This difference may be caused by the combination of photocatalysis and the
transition metal cobalt under visible light irradiation.

Sodium percarbonate (SPC, Na2CO3·1.5H2O2), as a solid carrier of H2O2, not only has
the properties of H2O2, but also has the possibility of producing carbonate radicals. Due to
its easy transportation, storage, and handling properties, it has been used as a substitute for
H2O2 in AOPs. Zhang et al. [67] employed ultrathin-C3N5 and SPC coupling photocatalytic
techniques to degrade sulfamethoxazole, arriving at a removal rate of 93.97% in 120 min.
The main processes are as follows: (1) the separation of e− and h+; (2) the formation of
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ROS (·OH, ·O2
−, and 1O2); and (3) the degradation of pollutants by ROS (·OH, ·O2

−, 1O2,
·CO3

−, and h+). This work expands the application of g-C3N5-based materials in AOPs.
Table 3 summarizes the recent developments in the photo-degradation and photo-reduction
of pollutants by g-C3N5-based photocatalyst.

Table 3. Summary of the application of g-C3N5-based materials in degrading pollution.

Catalyst Pollutants Reaction Conditions Reactive Species Removal
Efficiency Ref.

RN-g-C3N5 MB
50 W halogen tungsten lamp

·O2
− , ·OH 98%, 120 min [20]Catalyst (1 g L−1)

MB (20 mL, 20.0 mg L−1)

Ultrathin C3N5
nanosheets MB

300 W Xe lamp (400 nm)
·O2

− , h+ 95%, 40 min [30]Catalyst (0.5 g L−1)
MB solution (40 mL,
2.5 mg L−1)

Nv g-C3N5-0.1
MB 50 W halogen tungsten lamp

·O2
− , ·OH

95%, 120 min
[25]RhB Catalyst (1 g L−1) 97%, 120 min

MO Pollutant (20 mL, 40.0 mg L−1) 95%, 120 min

CDs/MoS2/C3N5 MB
300 W Xe lamp (λ > 420 nm)

1O2, ·O2
− , ·OH 94%, 120 min [65]Catalyst (0.02 g L−1)

MB (50 mL, 30 mg L−1)

CdS-MHP RhB
Solar simulator (100 mW/cm2) ·O2

− , ·OH, HO2,
and e−

77%, 20 min
90%, 80 min [53]Catalyst (0.1 g L−1)

RhB (50 mL, 0.01mM)

g-C3N5/g-C3N4
RhB

TC-HCl

300 W Xe lamp (λ > 420 nm)
1O2, ·O2

− , and
·OH

98%, 30 min
92%, 60 min [55]Catalyst (0.4 g L−1)

RhB (10 mg L−1, 50 mL)
TC-HCl (10 mg/L, 50 mL)

g-C3N5/MIL-
101(Fe)/PANCMA

Carbamazepine 300 W Xe lamp (λ > 420 nm)
h+, ·O2

− , and
·OH

94%, 40 min
[74]ciprofloxacin Catalyst (0.1 g L−1) 97%, 40 min

tetracycline Carbamazepine (50 mL,
200 ng mL−1) 98%, 40 min

AgCl/g-C3N5 RhB
A halogen lamp (300 W)

O2
− , h+ 96%, 30 min [49]Catalyst (1 g L−1)

RhB solution (50 mL,
10 mg L−1)

Er3+/Tb3+@BiOBr-
g-C3N5

sulfamethoxazole
500 W tungsten halogen lamp

·O2
− , ·OH 94%, 60 min [75]Catalyst (1.3 g L−1)

SMX (75 mL, 10 ppm)

g-
C3N5/Bi4O5Br2

sulfathiazole
(STZ)

300 W Xe lamp
·O2

− , h+, and
·OH

100%, 60 min [42]Catalyst (0.5 g L−1)
STZ (200 mL, 10 mg L−1)

Ag3PO4/C3N5 TCH
A 300 W Xe lamp (λ > 400 nm)

·O2
− and ·OH 91%, 60 min [47]Photocatalyst (1 g L−1)

TCH (50 mL, 20 mg L−1)

C3N5/Ag2CO3
MB

TC-HCl

300 W xenon lamp, λ > 400 nm

·O2
− and h+ 97%, 90 min

98%, 100 min [48]Catalyst (1 g L−1)
MB (60 mg L−1, 50 mL, and
pH = 8.0)
TC-HCl (50 mg L−1, 50 mL,
and pH = 4.8)

Bi2WO6/g-C3N5

Tetracycline
2-

ercaptobenzothiazol
chlorpyrifos

under visible light
(λ > 400 nm) h+, ·O2

− , and
·OH

93%, 90 min
[16]Catalyst (0.6 g L−1) 97%, 90 min

Pollutant (10 mg L−1, 50 mL) 94%, 90 min

FeOCl/g-C3N5 TC

500 W Xe lamp (λ > 420 nm)
500 W Xe lamp

(λ > 420 nm) 95%, 40 min [50]Catalyst (1 mg mL−1)
TC (75 mL, 10 mg L−1)
H2O2 solution (30%, 200 µL)

CeTi2O6/g-C3N5
2,4

dichlorophenol

300 W xenon lamp
(λ > 420 nm) ·O2

− , ·OH 96%, 120 min [46]Photocatalyst (1.6 g L−1)
2,4-DCP solution (75 mL,
10 ppm)

C3N5@NH2-MIL-
125 RhB

300 W xenon lamp
(λ > 420 nm) ·O2

− , h+, and
·OH

93%, 120 min [76]Catalyst (0.5 g L−1)
RhB (100 mL, 10 mg L−1)
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Table 3. Cont.

Catalyst Pollutants Reaction Conditions Reactive Species Removal
Efficiency Ref.

2D/0D
C3N5/ Bi2WO6

TC
300 W Xe lamp (λ > 420 nm)

·O2
− , h+, and
·OH

94%, 60 min [44]Catalyst (0.2 g L−1)
TC (20 mg L−1, 100 mL, and
pH 5.2)

2D/0D
Bi2MoO6/C3N5

TC
300 W Xe lamp (λ > 420 nm)

·O2
− , ·OH, and

h+ 88%, 75 min [45]Catalyst (0.3 g L−1)
TC (20 mg L−1, 100 mL, and
pH 5.2)

2D/2D
Bi2WO6@g-

C3N5

TC
300 W Xe lamp (λ > 420 nm)

·O2
− , ·OH, and

h+ 100%, 60 min [77]Catalysts (0.4 g L−1)
TC (10 mg L−1, 50 mL)

2D/2D
Bi4O5Br2/g-

C3N5

Ciprofloxacin
bisphenol-A

Xe lamp at 500 W
(165 mW/cm2) ·O2

− , ·OH, and
h+

94%, 60 min
92%, 80 min [78]Catalysts (0.67 g L−1)

Pollutant (20 mg L−1, 75 mL)

2D/0D
C3N5/ Bi2WO6

Cr (VI)
300 W Xe lamp (λ > 420 nm)

·O2
− and e− 97%, 50 min [44]Catalyst (0.2 g L−1)

Cr (VI) (10 mg L−1, 100 mL,
and pH 2.5)

2D/0D
Bi2MoO6/C3N5

Cr (VI)
300 W Xe lamp (λ > 420 nm)

·O2
− and e− 97%, 60 min [45]Catalyst (30 mg)

Cr (VI) (10 mg L−1, 100 mL,
and pH 2.5)

2D/2D
C3N5/GO

U(VI)
300 W Xe lamp (λ > 420 nm)

e− 96%, 90 min [56]Catalyst (0.5 g L−1)
U(VI) solution (10 ppm,
100 mL)

2D/2D
C3N5/RGO

U(VI)

300 W Xe lamp (λ > 420 nm)

e− 95%, 100 min [62]
Catalyst (0.2 g L−1)
U(VI) (10 mg L−1, 100 mL)
pH 5.0
T = 298 K

Bi4O5I2/g-C3N5 Hg0

6 W LED lamp (λ > 400 nm)

·O2
− and h+ 93%, 60 min [43]Catalyst (40 mg)

Mercury vapors (65 µg m−3)
gas flow rate of 1.2 L min−1

C3N5 SMX

300 W xenon lamp
(λ > 420 nm) ·O2

− , h+, SO4
− ·,

1O2, and ·OH

PMS/C3N5/Vis

[28]Catalyst (0.5 g L−1) 67%, 60 min
PMS (0.125 g L−1) PDS/C3N5/Vis
SMX (5 mg L−1) 70%, 60 min

PDA-g-CN-1.0 SMX
Catalyst (50 mg L−1) C−PMS *

complexes 100%, 20 min [39]PMS (1mM)
SMX (10 mg L−1)

Co-C3N5 PCB28
Catalyst (0.2 g L−1)

SO4
− · and ·OH 96%, 30 min [32]PMS (2.0 mM)

PCB28 (0.5 mg L−1)

Co-C3N5 SMX

500 W Xe lamp (λ > 420 nm) high-valent
cobalt oxide (Co

(IV)) species
100%, 20 min [33]Catalyst (0.5 g L−1)

PMS (1.0 mM)
SMX solution (30 mL,
10 mg L−1)

U-C3N5 SMZ

visible light (λ > 420 nm)
·OH, ·O2

− , 1O2,
·CO3

− , and h+ 94%, 120 min [79]Catalyst (0.4 g L−1)
SPC (0.1 g L−1)
SMZ (100 mL, 10 mg L−1)

* indicates that C and PMS form a complex (C-PMS*)

5. Conclusions and Future Outlook

In summary, this review presents an overview of the synthesis, functionalization,
and applications of g-C3N5-based photocatalysts. Tremendous advancements have been
witnessed during the past few years. Nevertheless, there are still some challenges and
opportunities to be tackled.
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Firstly, most reported g-C3N5-based photocatalysts are limited to the laboratory scale.
To reach an industrial scale, time-saving and environmentally friendly processes for the
synthesis of g-C3N5-based materials must be investigated. The new technology for the
synthesis of g-C3N5 should be rapid, cost-effective, and time-efficient. Toxic templates,
eco-damaging etchants, and complicated procedures should be avoided. Additionally,
material recycling and sustainability are crucial elements for implementing industrial
applications at scale. Combining g-C3N5 with narrower bandgap semiconductors can
increase the efficiency of exploiting the full spectrum of sunlight; constructing suited
heterojunctions can facilitate the separation of photoinduced carriers while preserving a
high redox capacity; and coupling with magnetic materials can promote quick recycling.

Photocatalytic reactions heavily depend on separated electrons and holes. In order
to comprehend the photocatalytic mechanism of the detection and characterization of
electrons, holes, and reaction intermediates are vital. However, it is difficult to identify
the transiently changing electrons, holes, and reaction intermediates using conventional
characterization techniques. Therefore, more progressive technologies, such as in situ XPS,
in situ IR spectra, and time-resolved terahertz spectra, may be employed to unveil the
transitory processes of reactions.

As model pollutants for assessing photocatalytic activity, MB, MO, and RhB are often
used. However, their photosensitivity and adsorption affect degradation efficiency, which
is not an independent contribution of the photocatalysts. To accurately determine the
photocatalytic efficacy of g-C3N5-based materials, it is necessary to employ other model
pollutants, including medicines, pesticides, and phenols. In addition to elucidating the
efficiency and processes of degradation, the biotoxicity and other possible dangers of
degradation byproducts should be thoroughly explored.

With the further advancement of experimental research and theoretical calculations,
the underlying photocatalysis process will be better understood, and the solar-to-energy
conversion bottleneck might be overcome. Massive commercial applications of g-C3N5-
based photocatalysts will foster renewable revolutions in the fields of energy and environ-
mental engineering.
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