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Abstract: Aggregation-induced emission (AIE)-type metal nanoclusters (NCs) represent an innovative
type of luminescent metal NCs whose aggregates exhibit superior performance over that of individuals,
attracting wide attention over the past decade. Here, we give a concise overview of the progress made
in this area, from design strategies to applications. The representative design strategies, including
solvent-induction, cation-induction, crystallization-induction, pH-induction, ligand inheritance, surface
constraint, and minerals- and MOF-confinement, are first discussed. We then present the typical practical
applications of AIE-type metal NCs in the various sectors of bioimaging, biological diagnosis and therapy
(e.g., antibacterial agents, cancer radiotherapy), light-emitting diodes (LEDs), detection assays, and
circularly polarized luminescence (CPL). To this end, we present our viewpoints on the promises and
challenges of AIE-type metal NCs, which may shed light on the design of highly luminescent metal NCs,
stimulating new vitality and serving as a continuous boom for the metal NC community in the future.

Keywords: aggregation-induced emission; metal nanoclusters; luminescent nanoclusters

1. Introduction

Metal nanoclusters (NCs) typically possess sub-2 nm metal cores consisting of a few
to a hundred metal atoms that are protected by an organic ligand monolayer [1–3]. They
are a rising star in the nanoparticle community due to their significance in both basic and
applied research (e.g., as the missing link between atoms and nanocrystals, for the utiliza-
tion of their intriguing molecular-like properties, including discrete electronic transitions,
and for quantized charging) [4–7]. Among various properties, luminescence is the most
attractive property of metal NCs. Because of their facile preparation, ultrafine size, low
toxicity, high renal clearance, and excellent photostability, luminescent metal NCs have
recently emerged as a novel class of chromophores, holding great promise for practical
applications in lighting, imaging, sensing, and so on [8–13].

However, highly luminescent metal NCs are curtailed by the comparatively limited
knowledge of their fundamental aspects. In particular, the complexity, diversity, and muta-
bility in terms of their total structures preclude an in-depth understanding of their emission
origin. Because of their unclear size/composition effects and the puzzling underlying
mechanism of their luminescence, there has been limited success in attaining the desired
improvement and tailoring the luminescence property of metal NCs, thus greatly limiting
their boom in practical applications [14–16]. In this scenario, with continuous efforts in the
community, Xie et al. first presented the aggregation-induced emission (AIE) of metal nan-
oclusters in 2012, which allows for an extraordinary strength in their emission intensity and
stability [17]. In detail, the authors designed a new family of ultrabright Au(0)@Au(I)-SR
(SR: deprotonated thiol ligands) core–shell NCs by preserving a high content of Au(I)-SR
complexes in the protective shell. In this way, the intra-/intermolecular vibration and
rotation of surface motifs can be effectively suppressed, giving rise to a minimization of
non-radiative decay and hence the improved luminescence performance of metal NCs.
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Thereafter, AIE-type metal NCs have been a recognized concept and a well-developed
topic in both the fundamental and practical sectors of luminescent metal NCs (Figure 1). In
the scheme of AIE-type metal NCs, over the past decade, several significant design strate-
gies have been identified at and beyond the single-cluster level [18–20]. Their practical
applications have been well proven in broad fields and cross-disciplines. Therefore, we
deploy this review by viewing AIE-type metal NCs from their design strategies to their
practical applications (Figure 2). Together with our overviews on the promises and chal-
lenges of AIE-type metal NCs, we try to offer a brief and in-depth discussion on AIE-type
metal NCs in order to increase the acceptance of AIE-type metal NCs in various related
communities in chemistry and materials science.
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Figure 1. The increasing number of publications on AIE-type metal NCs over the years between
2012 and 2022 (data statistics from the Web of Science in January 2023, using keywords of AIE and
metal nanoclusters).
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2. Design Strategies of AIE-Type Metal NCs

AIE is an extraordinary luminescence concept, which was first proposed by Tang
in 2001 to illuminate an interesting photophysical phenomenon: the polymeric state is
brighter than the dispersed state [21]. In particular, restricted intramolecular motion (RIM)
has been proved to be the general mechanism of AIE [22]. Normally, many AIE molecules
contain molecular rotors and/or vibrators. In a solution state, these rotors and vibrators can
rotate and vibrate flexibly to consume the excited state energy, resulting in AIE molecules
being nonemissive or weakly emissive. Meanwhile, in an aggregate state, intermolecular
interactions restrict the rotation and vibration, causing radiative decay to dominate the
energy dissipation of the excited state [23–25].

Since Xie et al. introduced the concept of AIE into metal NCs in 2012 [17–19,26],
the family of AIE-type metal NCs has grown over the past decade: from a single-cluster
level to the beyond-single-cluster level, from small molecules to macromolecules, from the
solution state to the crystalline state, from condensed oligomeric complexes to scaffold
confinement-induced materials, etc. Accordingly, in this section, we rationally categorize
and discuss AIE-type metal NCs by focusing on their construction strategies.

2.1. Solvent-Induced AIE

Solvent-induced AIE is a representative strategy to trigger the aggregates from isolated
metal NCs by generally altering the solvent polarity. Xie et al. successfully designed the
first AIE-Au(0)@Au(I)-SR NCs based on this strategy by introducing ethanol (a weakly
polar solvent) into water [17]. The formation of aggregates can be attributed to two reasons:
(i) the addition of the ethanol destabilizes the Au(I)−thiolate compound, resulting in charge
neutralization; (ii) the amplification of the Au(I)···Au(I) interaction to provide momentum
for aggregation. The luminescence properties of aggregates strongly depend on the ag-
gregation degree, which can be expressed by the formula f e = volethanol/volethanol+water.
The solution exhibited non-emission before f e > 75%; when f e increases from 75% to 95%,
the aggregates began to form, emitting weak red radiation; finally, the solution turned
clarified and emitted very strong yellow luminescence at f e > 95%, as shown in Figure 3a–c.
Upon aggregate formation, owing to the multiple intra- and inter-complex interactions
(Au(I)···Au(I) interactions and van der Waals forces), intramolecular rotations and vibra-
tions are limited, therefore enhancing the luminescence. Moreover, the blueshift mechanism
is interpreted as the increase in Au(I)···Au(I) distance, because the inter-complex aurophilic
interactions are stronger than intra-complex interactions.

Au(I)x(SR)x+1 (SR = glutathione), recently proposed by Xie et al., is another typical case
to demonstrate the importance of solvents for the preparation of AIE-type metal NCs [26].
Serial AIE-type Au NCs were reported in this work, that is, the aggregates of Au10(SR)10,
Au15(SR)13, Au18(SR)14, and [Au25(SR)18]− (Figure 3d). Except for [Au25(SR)18]− NCs,
the quantum yield of Au10(SR)10, Au15(SR)13, and Au18(SR)14 was heightened at 11.4%,
4.9%, and 3.7%, respectively, as f e increased from 75% to 95%. The strong emission can
be attributed to the restricted molecular motion due to the adequate interactions between
Au(I)-thiolate motifs. As for emission energy, Au10(SR)10, Au15(SR)13, and Au18(SR)14
blue-shifted by 15, 9, and 6 nm, respectively, and [Au25(SR)18]− red-shifted by 167 nm.
The average AuI-AuI distance is affected by the competition with intra- and inter-motif
aurophilic interactions, which ultimately influences the emission peak position. A similar
phenomenon was observed in Cu NCs by the Patra group, where the solvent-induced
aggregation strategy was adopted to tune the emission peak and enhance the emission
intensity of Cu34−32(SG)16−13 (Figure 3e,f) [27]. When fe = 90%, the emission intensity
enhanced 36-fold, which was associated with a 28 nm blue-shifting (624→ 597 nm).
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tra (left) and the corresponding digital photos (right) of Au10SR10, Au15SR13, Au18SR14, and [Au25SR18]- 
with a different fraction of ethanol and water. Reprinted/adapted with permission from Ref. [26]. 
2020, copyright Wiley-VCH. (e) Digital photos and (f) PL spectra of Cu34−32(SG)16−13 with different fe. 
Reprinted/adapted with permission from Ref. [27]. 2019, copyright American Chemical Society. (g) 
Photoluminescence spectra of (i) MeOH, (ii) MeOH/water (30/70), and (iii) MeOH/water (10/90). (h) 
Mechanism model of possible aggregate forms of MeOH/water at low (i) and high (ii) WC. Re-
printed/adapted with permission from Ref. [28]. 2020, copyright American Chemical Society. 
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2.03, 5.16, and 52.2 μs, which is longer than pristine Au NCs, demonstrating that the ad-
ditive silver can crosslink AuI-GSH motifs to facilitate the evolution of denser aggregates. 
A similar phenomenon was observed in the system of [AgxAu25-x(PPh3)10(SC2H4Ph)5Cl2]2+ 
(200-fold quantum yield boosting) [31] and Au-doped Ag29(BDT)12 (TPP)4 (26-fold quan-
tum yield boosting) NCs [6].  

In addition to coinage metal ions, group IIB metal ions (Cd2+ and Zn2+) have also been 
used to promote the AIE process. Xie et al. utilized Cd2+ to induce the aggregation of Au(Ⅰ)-
thiolate complexes based on the electrostatic and coordination interactions between Cd2+ 
and GSH [17]. Kuppan et al. observed that non-luminescent 3-mercaptopropionic acid Au 
NCs can achieve strong yellow emission (106-fold improvement) by the incorporation of 
Zn2+ [32]. As depicted in Figure 4a, the self-assembly of Au NCs was efficiently induced 
by Zn2+ through two main ways: (ⅰ) the strong complexation of Zn2+ with negatively 
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Figure 3. (a) Mechanism model of solvent-induced AIE phenomenon of Au(0)@Au(I)-SR NCs. (b) Dig-
ital photos and (c) photoemission spectra of Au(0)@Au(I)-SR with different fe. Reprinted/adapted
with permission from Ref. [17]. 2012, copyright American Chemical Society. (d) Luminescence
spectra (left) and the corresponding digital photos (right) of Au10SR10, Au15SR13, Au18SR14, and
[Au25SR18]− with a different fraction of ethanol and water. Reprinted/adapted with permission from
Ref. [26]. 2020, copyright Wiley-VCH. (e) Digital photos and (f) PL spectra of Cu34−32(SG)16−13 with
different fe. Reprinted/adapted with permission from Ref. [27]. 2019, copyright American Chemical
Society. (g) Photoluminescence spectra of (i) MeOH, (ii) MeOH/water (30/70), and (iii) MeOH/water
(10/90). (h) Mechanism model of possible aggregate forms of MeOH/water at low (i) and high (ii) WC.
Reprinted/adapted with permission from Ref. [28]. 2020, copyright American Chemical Society.

Sugiuchi et al. reported the AIE phenomenon on a diphosphine-ligated [Au6]2+ cluster
by regulating the water contents (WC) [28]. The emission intensity decreased first and
then increased by increasing the WC from 0% to 90%. Specifically, the aggregation at the
water-rich conditions increased luminescence by 20 times (Figure 3g). The luminescent
performance of the aggregates is highly dependent on the WC, which can be divided into
the following three zones: (i) Zone A (WC < 40%), in which the cluster molecules separate
off from each other and randomly orient themselves due to the weak attractive hydrophobic
interactions (Figure 3h(i)). The concentration quenching would occur at this stage. (ii) Zone
B (40% < WC < 70%) is the transition stage of zone A to zone C, in which the cluster
molecules will ulteriorly agglomerate, resulting in severe concentration quenching. (iii) In
zone C (70% < WC < 90%), the clustered molecules are tightly packed, thus suppressing the
molecular motion and vibration to enhance luminescence (Figure 3h(ii)). Very recently, the
Li group also discovered the AIE phenomenon in Cu(I)-based cyclic trinuclear complexes
(Cu(I)-CTC) [29]. These NCs exhibit no photoluminescence in pure tetrahydrofuran until
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water is added. In particular, Cu(I)-CTC with a near-unity PLQY was obtained when
volwater/volwater+THF = 90%. As a result, the molecular forces including C−H···C/C−H···π
interaction are the main reasons for the cluster aggregation and thus the non-radiative
decay reduction.

2.2. Cation-Induced AIE

Like solvent-induced AIE, cation-induced AIE of metal NCs has also been well devel-
oped, due to the variations, rotations, and other movements of ligands and complexes that
can be restrained by surface charge neutralization and crosslinking. In particular, silver-
doped Au(0)@Au(I)-thiolate NCs are an important example of cation-induced AIE; their
emission is greatly enhanced by four times [30]. The Ag-doped Au NCs’ lifetimes are 2.03,
5.16, and 52.2 µs, which is longer than pristine Au NCs, demonstrating that the additive sil-
ver can crosslink AuI-GSH motifs to facilitate the evolution of denser aggregates. A similar
phenomenon was observed in the system of [AgxAu25-x(PPh3)10(SC2H4Ph)5Cl2]2+ (200-fold
quantum yield boosting) [31] and Au-doped Ag29(BDT)12 (TPP)4 (26-fold quantum yield
boosting) NCs [6].

In addition to coinage metal ions, group IIB metal ions (Cd2+ and Zn2+) have also been
used to promote the AIE process. Xie et al. utilized Cd2+ to induce the aggregation of Au(I)-
thiolate complexes based on the electrostatic and coordination interactions between Cd2+

and GSH [17]. Kuppan et al. observed that non-luminescent 3-mercaptopropionic acid Au
NCs can achieve strong yellow emission (106-fold improvement) by the incorporation of
Zn2+ [32]. As depicted in Figure 4a, the self-assembly of Au NCs was efficiently induced by
Zn2+ through two main ways: (i) the strong complexation of Zn2+ with negatively charged
carboxyl (i.e., COO−) groups by the charge screening effect, enhancing the rigidity of the
Au(I) thiolate shell; (ii) Zn2+ crosslinking with surrounding Au NCs to form tight aggregates
upon the force of van der Waals interactions. These interactions hinder the vibrations and
rotations of ligands, significantly decreasing the non-radiative relaxation. Another example
of a Zn2+ cation-induced AIE is based on Au4(MHA)4 (MHA = 6-mercaptohexanoic acid)
NCs [16]. The aggregated Au4(MHA)4 exhibits ultrabright greenish-blue emission centered
at 485 nm, with a narrow FWHM of 25 nm and a high QY of 90%. Similarly, the assembled
mechanism is attributed to the interactions between the COO− in the MHA ligand and
Zn2+, which rigidify the surrounding environment of Au4(MHA)4 NCs.

Recently, researchers have focused their attention on the rare earth ions. Luminogen
ATT-AuNCs (ATT: 6-aza-2-thiothymine) are discussed here as a representation [33]. It was
discovered that the luminescence properties of ATT-Au NCs significantly depend on the
pH. Decreasing the pH results in the red-shift of emission spectra (from 520 to 535 nm)
and significant PL quenching (Figure 4b). Sc3+ exhibits Lewis acidity and can stabilize the
ICT state, thus being used to induce aggregation of ATT-Au NCs. The addition of Sc3+

not only makes the spectrum red-shift, but also promotes the PLQY enhancement (from
0.2 to 5.5%). As a result, the role of Sc3+ mainly includes three aspects: enhancing the
ICT state; triggering the interaction between Sc3+ and the surface ligand to form the RIM
process; constructing a donor–bridge–acceptor (DBA) structure by linking ATT-AuNCs
and minocycline (Figure 4c,d).

2.3. Crystallization-Induced AIE

Crystallization-induced emission (CIE) may be treated as a derivative of AIE. In
general, the active intramolecular motion (vibrations and rotations) in the solution state
dissipates the energy of the excited state through non-radiative relaxation channels, leading
to luminescence quenching. However, the intramolecular motion is restricted in the solid
state, which minimizes energy consumption [34]. Crystallization can achieve a transition
from liquid to solid, that is, by physical constraints and intermolecular interactions to lock
the molecular conformations and hold them together. Zhu et al. presented the first CIE
metal clusters in 2017. The bimetallic NCs were protected by (diphenylphosphino)methane
(DPPM) and 2, 5-dimethylbenzenethiol (SR), which provided a guiding strategy to build up



Nanomaterials 2023, 13, 470 6 of 23

the AIE-type metal NCs [35]. The solution of Au4Ag13(DPPM)3(SR)9 is almost non-emissive
(QY: ∼4.1 × 10−5), whether in CH2Cl2 or MeOH, but its amorphization and crystalliza-
tion are fluorescent. The QY value of crystallization and amorphization is 653-fold and
278-fold higher than that of the solution state, respectively. In the solution state, the weak
interactions and random collisions of the solvent dissipate the exciton energy and reduce
luminescence. In the crystalline state, however, the inherent tri-blade fan configuration
and multiple C-H· · ·π interactions effectively restrict the molecular vibrations and rota-
tions. CIE sliver-based NCs, [Ag22(dppe)4(SR)12Cl4]2+, were discovered in subsequent
years by the Pradeep group. There exist multiple C−H···π and π···π interactions between
phenyl groups in these NCs’ crystals, enhancing their luminescence in the crystalline state
by 12 times compared to the amorphous state [36]. Two examples of CIE copper-based
NCs, Cu2(C3H3N)6I2 (1) and Cu(C9H8N)3P (2), are shown in Figure 4e. After grinding,
the intermolecular π···π interactions between adjacent ligands were breached, leading
to a 42.2% and 13.4% decrease in QY of complexes 1 and 2, respectively [37]. Recently,
Bakr et al. have observed a crystallization-induced emission enhancement phenomenon in
[Cu15(PPh3)6(PET)13]2+ (PET = 2-phenylethanthiol, PPh3 = triphenylphosphine) [38]. When
Cu NCs are dissolved, they present almost non-luminescence; however, crystallization
makes the molecules luminescent (Figure 4f). The QY value of the crystalline state is 3.2%,
which is much higher than that of the solution state (0.1%). It is worth pointing out that
the “tri-blade fan” structure configuration plays an important effect in controlling the
structural rigidity. In addition, the compact C-H···π and π···π interactions of ligands jointly
contributed to the AIE performance.

Nanomaterials 2023, 13, 470 7 of 24 
 

 

 
Figure 4. (a) Graphic illustration of self-assembly based on coordination effect of Zn2+ ions with 
different binding levels. Reprinted/adapted with permission from Ref. [32]. 2017, copyright Royal 
Society of Chemistry. (b) Photoemission spectra of ATT-AuNCs in different pH buffers. (c) Photo-
luminescence decay of ATT-AuNCs and Sc3+-ATT-AuNCs. (d) The binding model of Sc3+ to ATT-
AuNCs. Reprinted/adapted with permission from Ref. [33]. 2022, American Chemical Society. (e) 
PL spectra of crystalline and ground samples of complexes 1 and 2. Reprinted/adapted with per-
mission from Ref. [37]. 2019, copyright Royal Society of Chemistry. (f) PL spectra of 
[Cu15(PPh3)6(PET)13]2+ NCs in crystalline and solution state. Reprinted/adapted with permission 
from Ref. [38]. 2021, copyright Wiley-VCH. 

2.4. pH-Induced AIE 
The pKa of ionizable groups strongly affects the structure and activity of molecules, 

which determines the state of the complex in water: solution, gel, or suspension. In other 
words, the aggregation of metal NCs would be pH-dependent in most cases. Bimetallic 
Au-Cu GSH NCs (GSH: glutathione reduced), for example, show a typical pH-dependent 
AIE phenomenon [39]. They are weakly fluorescent in neutral or alkaline EtOH/aqueous 
solution, whereas regulating the pH < 5 produces intense radiation at 584 nm. This aggre-
gation is assigned to the COO− and NH3+ interactions between electron-donating groups 
in a lower pH. However, in neutral or alkaline conditions, negative charges exhibit strong 
electrostatic repulsion, resulting in the dispersion of clusters. As a result of structural sim-
ilarity, the pH-induced AIE phenomenon of GS/C-Au NCs (GS/C: glutathione and citrate) 
was discovered by Tao’s group, which benefits from the changes in surface charge density 
[40]. In those NCs, three noticeable features were observed in the process of regulating 
pH: (ⅰ) the luminescence intensity of GS/C-Au NCs was positively correlated with their 
surface charge density at 4.1 < pH < 5.6; (ⅱ) when pH > 8.66, the luminescence intensity 
began to decrease due to the formation of carboxylate groups; (ⅲ) when pH > 9.12, the 
Au(I)···Au(I) interaction was destroyed, because the bonds between the thiol group and 
Au(I) begin to dissociate, resulting in a further decrease in luminescence. Huang et al. 
explored the AIE mechanism by adjusting the pH to determine the charge state of ligands 
on Cu NCs [41]. As the pH was adjusted to alkaline, the structure of Cu NCs changed 
from the aggregate to the solution state, and the luminescence performance decreased 
significantly. The high pH makes the ligand of Cu NCs form a deprotonated state (COO−), 
which suppresses the formation of aggregates. Similarly, Ag NCs have been verified to 
achieve aggregation-induced emission based on the same mechanism. A typical case was 
exemplified by Zhou et al. in 2018, who demonstrated that the weak emission in TSA-Ag 
NCs (TSA: thiosalicylic acid) was dramatically improved in an acidic environment [42]. 
In summary, the pH-induced AIE offers a simple and efficient route to optimize the per-
formance of metal NCs. 

Figure 4. (a) Graphic illustration of self-assembly based on coordination effect of Zn2+ ions with
different binding levels. Reprinted/adapted with permission from Ref. [32]. 2017, copyright Royal
Society of Chemistry. (b) Photoemission spectra of ATT-AuNCs in different pH buffers. (c) Photolumi-
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2.4. pH-Induced AIE

The pKa of ionizable groups strongly affects the structure and activity of molecules,
which determines the state of the complex in water: solution, gel, or suspension. In other
words, the aggregation of metal NCs would be pH-dependent in most cases. Bimetallic
Au-Cu GSH NCs (GSH: glutathione reduced), for example, show a typical pH-dependent
AIE phenomenon [39]. They are weakly fluorescent in neutral or alkaline EtOH/aqueous
solution, whereas regulating the pH < 5 produces intense radiation at 584 nm. This
aggregation is assigned to the COO− and NH3+ interactions between electron-donating
groups in a lower pH. However, in neutral or alkaline conditions, negative charges exhibit
strong electrostatic repulsion, resulting in the dispersion of clusters. As a result of structural
similarity, the pH-induced AIE phenomenon of GS/C-Au NCs (GS/C: glutathione and
citrate) was discovered by Tao’s group, which benefits from the changes in surface charge
density [40]. In those NCs, three noticeable features were observed in the process of
regulating pH: (i) the luminescence intensity of GS/C-Au NCs was positively correlated
with their surface charge density at 4.1 < pH < 5.6; (ii) when pH > 8.66, the luminescence
intensity began to decrease due to the formation of carboxylate groups; (iii) when pH > 9.12,
the Au(I)···Au(I) interaction was destroyed, because the bonds between the thiol group
and Au(I) begin to dissociate, resulting in a further decrease in luminescence. Huang
et al. explored the AIE mechanism by adjusting the pH to determine the charge state of
ligands on Cu NCs [41]. As the pH was adjusted to alkaline, the structure of Cu NCs
changed from the aggregate to the solution state, and the luminescence performance
decreased significantly. The high pH makes the ligand of Cu NCs form a deprotonated
state (COO−), which suppresses the formation of aggregates. Similarly, Ag NCs have
been verified to achieve aggregation-induced emission based on the same mechanism.
A typical case was exemplified by Zhou et al. in 2018, who demonstrated that the weak
emission in TSA-Ag NCs (TSA: thiosalicylic acid) was dramatically improved in an acidic
environment [42]. In summary, the pH-induced AIE offers a simple and efficient route to
optimize the performance of metal NCs.

2.5. AIE Inheritance from Ligands

Using the AIE properties of organic ligands to endow clusters with AIE activity is
an ordinary and remarkable strategy to construct AIE-type metal NCs. 3,5-dimethyl4-(4-
(1,2,2-triphenylvinyl)benzyl)-1H-pyrazole (DTBP), a typical AIE luminogen, was selected
as an organic ligand for the synthesis of the polymeric clusters M3(DTBP)3 (M = Cu, Ag or
Au) by Mak and co-workers [43]. These clusters showed similar blue-green emission and
lifetimes and a strong AIE response in solution. In the solid state, a 7.55-fold QY boosting
was found (from 1.59% to 12.01%). From the perspective of structure, each pyrazolyl group
connects two metal ions by µ2–η1, η1 ligation type, which constructs a stable triangular
structure. Moreover, molecular layers are stacked in an ordered arrangement, with an
interlayer spacing of Cu3, Ag3, and Au3 of 3.37, 3.26, and 3.45 Å, respectively (Figure 5a).
A stable structure restricts the intermolecular motions, thus reducing the non-radiative
decay and improving AIE intensity. 4-(3,5-dimethyl-1H-pyrazol-4-yl) benzaldehyde (HL)
was selected as a ligand to form clusters, because its structure is similar to DTBP [44].
CuI-HL exhibits AIE behaviors with a 20-fold fluorescent enhancement when it aggregates,
which is ascribed to the multiple intermolecular hydrogen bonds and rigid structure. Very
recently, Perruchas et al. prepared two [Cu4I4L4] copper iodide clusters, with PPh2(C6H4-
CH2OH) and PPh2(C3H7) as ligands, showing AIE photophysical behaviors in solution
and obviously enhanced luminescence intensity in the solid state [45]. Interestingly, the
decay lifetime was significantly prolonged, and the biexponential was transformed to
monoexponential with the formation of a solid-state phase, which can be ascribed to the
suppression of non-radiative relaxation in a rigid state.
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2.6. Surface Constraint-Induced AIE

As a key component of AIE-type metal NCs, the restraining action of surface ligands
can give a more rigidified molecular conformation, thereby preventing energy loss and max-
imizing emission efficiency. Thus, the better AIE performance of clusters could be triggered
by adding mutually constrained ligands. A representative example is Ag29(BDT)12(TPP)4
NC (BDT: 1,3-benzenedithiol; TPP: triphenylphosphine), reported by Zhu et al. in 2018,
which exhibited obvious red fluorescence [46]. However, adding additional TPP in the
DMF of Ag29(BDT)12(TPP)4 can significantly increase the luminous intensity (about 13-fold,
from 0.9% to 11.7%) (Figure 5b). The main reason for this phenomenon is that the TPP
dissociation–aggregation stage on the cluster surface is prevented, due to the excess TPP
ligands. The as-paired ligands/molecules rigidify the out-shell ligands and motifs to reduce
nonradiative relaxation decay in LMCT and LMMCT processes. Based on the strong inter-
molecular and ion-pairing forces between glutathione (GSH) and T-tetraoctylammonium
(TOA), the Lee group achieved rigidity of the Au22(SG)18 shell (Figure 5c) [10]. The mea-
sured QY value for the Au22-TOA NCs was 62%, which is nine-fold higher than that of
Au22 NCs (~7%). The better fluorescence behavior in Au22-TOA is attributed to the sup-
pressed nonradiative relaxations by TOA cations, which is demonstrated by the extended
decay lifetime (from 380 ns to 2.44 µs). In 2017, the Chen group incorporated L-arginine
(Arg) on 6-aza-2-thiothymine (ATT)-protected Au NCs to yield supramolecular host–guest
assemblies [47]. As shown in Figure 5d, a strong hydrogen-bonding interaction was formed
based on the guanidine group of Arg and ATT, keeping these clusters’ surface rigid and
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suppressing the intramolecular rotation and vibration of ATT. As a result, the Arg/ATT-Au
NCs show an excellent QY (65%), which is much better than that (1.8%) of ATT-Au NCs.

Endowing ligands with multiple interaction sites to anchor metal cores can effectively
enhance the structural rigidity of metal NCs. Zhang et al. obtained two Ag(I) carbonyl
clusters: PMVEM-Ag NCs and PMAA-Ag NCs (PMVEM: polymethyl vinyl ether-alt-
maleic acid; PMAA: poly(methacrylic acid)), which showed distinct AIE photophysical
behaviors [48]. Both PMVEM-Ag NCs and PMAA-Ag NCs show a short decay lifetime
(1.0 ns) and poor QY values (1.0%) in water solution. The precise control of the aggregation
degree is realized by adding dimethyl sulfoxide (DMSO) as a solvent. For PMVEM-Ag
NCs, as DMSO is gradually added to water, the spectral peak gradually splits from a broad
emission band (500 nm) to two peaks (460 and 530 nm). Moreover, the intensities of these
two new peaks are enhanced by 3-fold and 54-fold, respectively. In particular, the 530 nm
emission peak shows a long decay lifetime (97.1 µs) and higher QY (40%), which is different
from the intrinsic fluorescence. Hydrogen bond evolution is the main factor affecting the
aggregation of carbonyl groups. As shown in Figure 5e, in water, the interaction of carbonyl
with a metal core is significantly weaker than that of water and carboxyl, which inhibits
the aggregation of carbonyl. Meanwhile, in the DMSO solution, the strong hydrogen
bond interactions are weakened, creating dense aggregation of the carbonyl groups on
the surface of the metal nucleus, finally resulting in a strong electron delocalization effect.
For PMAA-Ag NCs, DMSO fails to achieve delocalized electrons’ conjugation between
carbonyl groups because of the large steric hindrance effect of methyl groups in PMAA.

2.7. Mineral-Confined AIE

Minerals, with unique topology, uniform micro-pores, and abundant acid–base sites,
can effectively anchor metal NCs’ surface ligands to improve the AIE. Zeolites are an
excellent candidate, because their spatial structure can be easily adjusted by changing
coordination properties, total charge, and surface counter-ions. Inducing silver NCs into the
rigid cavities of zeolites to trigger excellent luminescence properties has been an effective
strategy. As an example, (Ag0.5Na6)+[Al6.5Si17.5O48] (referred to as FAUY[Ag0.5]) was
prepared by calcining the combined parent zeolite and silver nitrate aqueous solution
at 450 ◦C in the air [49]. The PLQY rises to near unity based on the regulation of non-
framework metal cations, which is the highest QY of Ag clusters reported so far in the
zeolite framework. Ag4(H2O)x

2+ was presented by Marta and co-workers in 2018; its
structure is shown in Figure 6a [50]. This structure produces long decay lifetime triplet
emission from a superatom quantum system constructed by hybridized silver atoms and
oxygen orbitals. Lievens et al. studied this material in detail, including the crystal structure
and the ultrafast electron dynamics [51]. Temperature-induced emission tuning of silver-
loaded zeolite from green to white was reported by the Li group in 2019 [52]. It was clear
that the luminescence color was related to the Ag state: green emission comes from Ag3

n+,
and white emission comes from (Ag2)+ and (Ag+)2.

Layered double hydroxides (LDHs) with adjustable interlayer space can anchor guest
molecules (such as metal NCs) in periodic long-range ordered arrays. The confinement of
LDH can promote aggregation and restrict the movement of clusters, further enhancing
the electron–hole pairs’ recombination efficiency and fluorophore luminescence intensity.
The first report of 2D LDH-confined gold NCs dates back to 2015, when (Au NCs/LDH)n
films were obtained by a layer-by-layer assembly process (Figure 6b) [53]. Much stronger
QY (from 2.69 to 14.11%) and a longer average decay lifetime (from 1.84 to 14.67 µs)
were observed for (Au NCs/LDH)n complexes. In detail, the COO− group in Au NCs
was adsorbed by LDH nanosheets due to hydrogen bonds and host–guest electrostatic
interactions, which inhibit the rotation and vibration of Au NCs, further resulting in boosted
optical performance. In the following year, the same group constrained Au NCs using
2D exfoliated layered double hydroxide (ELDH) nanosheets to attain a QY of 19.05% [54].
Chromotropic acid (CTA) and LDH-confined Ag NCs (CTA-AgNCs/LDH) are another
representative case of mineral-confined AIE of metal NCs, reported by Jin et al. in 2016 [55].
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Based on the confinement effect of host–guest interactions, the CTA-AgNCs/LDH shows
a high QY of 12.08% with an emission peak at 565 nm, which is much better than CTA-
Ag NCs with a QY of 2.15% at 540 nm. Moreover, the Jia group observed a 14-fold QY
improvement (from 0.11 to 14.27%) after achieving the assembly of Cu NCs and LDH [56].
The improved fluorescence intensity was attributed to the electron–hole being trapped in
the quantum well structure of LDH.

2.8. MOF-Confined AIE

Metal-organic frameworks (MOFs) have proven to be an excellent carrier for metal
NCs due to their ideal pore size, high loading capacity, abundant surface ligands, and
cluster-based metal nodes. Metal NCs were rigidified in MOFs, which effectively limited
nonradiative transition caused by intramolecular vibration and rotation, finally gener-
ating intense luminescence. A classical and interesting case presented by Zang et al.
demonstrated the anchoring effects of MOF well [57]. By using 4,4′-bipyridine (bpy) to
replace the CH3CN ligands, [(Ag12(StBu)8(CF3COO)4(bpy)4)]n (Ag12bpy) with high sta-
bility (>1 year) and QY (12.1%) was constructed. From the perspective of structure, the
bidentate ligands of bpy act as bridges to link Ag12 clusters to form a double-layer structure
in the a and b directions. Moreover, the double-layer structure is stacked in the c direc-
tion, forming an ordered arrangement and a structurally rigidified composite framework
(Figure 6c). The enhanced luminescence was achieved mainly through the following factors:
(i) inhibited nonradiative relaxation decay; (ii) improved metal AuI to ligand bpy charge
transfer (MLCT), and (iii) improved ligand (S, O) to ligand (bpy) charge transfer (LLCT).
Further, Zang introduced a −NH2 group based on Ag12bpy to obtain a fluorescence-
phosphorescence dual-emission cluster [58]. The 456 nm blue emission originates from
the amino group, and the yellow emission at 556 nm comes from the phenyl groups. The
lone-pair electrons of −NH2 strengthen spin–orbit coupling, resulting in the phosphores-
cence lifetime increasing from 0.2 µs to 3.12 ms. In 2019, the Tang group reported an Ag
cluster (1⊃ ⋂

DMAC, DMAC = dimethylacetamide) from the self-assembly of the AIEgens
1,1,2,2-tetrakis(4-(pyridin-4-yl)phenyl)-ethene (tppe) and silver chalcogenolate cluster [59].
Interestingly, 1⊃ ⋂

DMAC showed a fluorescence color transition from blue (470 nm) to
green (532 nm) when exposed to the atmosphere. Moreover, the fluorescence could return
to blue immediately with treatment with DMAC. The free rotation of conjugated groups
(e.g., phenyl and pyridyl) being restricted in the MOF is the fundamental reason for this
reversible fluorescence change.

Among various MOFs, Zeolitic Imidazolate Framework-8 (ZIF-8) is considered a promis-
ing candidate for encapsulating metal NCs. Two representative examples are Au25(SG)18@ZIF-
8 and Au25(SG)18/ZIF-8, reported by the Shi group in 2018 [60]. The Au25(SG)18@ZIF-8 was
prepared by intercalating Au25(SG)18 into the ZIF-8, and Au25(SG)18/ZIF-8 was achieved by
impregnating Au25(SG)18 NCs on the surface of ZIF-8 (Figure 6d). For Au25(SG)18@ZIF-8, the
orientations of thiolate ligands were strictly restrained, thus showing similar luminescence as
Au25(SG)18 solids. Concretely, it exhibited red emission centering at 680 nm and a weak in-
frared emission. For Au25(SG)18/ZIF-8, its fluorescence resembled Au25(SG)18 NCs’ solution,
with a broad near-infrared emission (700–800 nm) accompanying a 665 nm red emissive. This
behavior was attributed to the coordination effect between Zn2+ ions and surface carboxyl
groups. Other representative examples of ZIF-8-based NCs have also been reported, such as
Ag NCs-BSA@ZIF-8 [61], Ag NCs/ZIF-8 [62], Au NCs/ZIF-8 [63], etc.
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3. Applications of AIE-type metal NCs

AIE-type metal NCs retain both the excellent properties of metal NCs and AIE activity,
attracting a large amount of research on cutting-edge applications. Over the past decade,
plentiful sensory systems and optoelectronic devices have been studied based on AIE-type
metal NCs, including bioimaging, photodynamic therapy, light-emitting diodes (LEDs),
detection assays, circularly polarized luminescence (CPL), etc. In this section, we will
briefly describe the recent developments in this field.

3.1. Bioimaging

The high emission efficiency of AIE-type metal NCs (especially Au NCs), combined
with superior biocompatibility and little cytotoxicity, make them ideal candidates for
bioimaging. Among them, peptides and alkaloid-capped Au NCs are promising [64–68].
For example, the Cheng group showed the potential in deep tissue visualization by em-
ploying NIR-II Au25(SG)18 (SG: glutathione) as translatable probes [69]. The Au25(SG)18
significantly combines with hydroxyapatite (HA) of the bone matrix and shows the bone
structure in vivo in high resolution and contrast. Due to the ultrasmall size, these Au NCs
could be rapidly excreted and hardly accumulate in the liver and spleen. Qu and coworkers
designed nucleic acid-driven AIE-type Au NCs for telomerase detection with favorable
sensitivity [70]. As shown in Figure 7a, strand A was modified on the surface of Au
NCs through sulfhydryl groups and hybridized with telomerase substrate oligonucleotide
(TS primer). In addition, the hairpin structure will be opened and connected to strand
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B-modified Au NCs under the impact of telomerase, resulting in the aggregation of Au
NCs and thus enhanced fluorescence. In this vein, significantly, the in situ visualization of
telomerase activity in cells and in vivo can be achieved.

Based on pH sensitivity, Au NCs can be used to sense and monitor intracellular
pH [71]. Cao et al. confined Au NCs in MOFs to hold aggregation and limit the rotation
of ligands to enhance luminescence. Moreover, this complex was applied for real-time
monitoring of drug release in vivo due to its pH-dependent luminescence (Figure 7b) [63].
Au NCs-MOF is stable in neutral and alkaline environments but quickly decomposes in
acidic environments, resulting in reduced luminescence. Au NCs-MOF can transport drugs
(e.g., CPT: camptothecin) into cancer cells. Drugs and Au NCs escaped from the MOF due
to acidic environments (pH = 5–6) when CPT@Au NCs-MOF was close to cancer cells. Thus,
drug release can be monitored in real time via Au NCs luminescence. Ligand-functionalized
Au NCs can be used to target intracellular high reactive oxygen species (hROS, e.g., •OH,
ClO−, and ONOO−) to prevent oxidative stress diseases [72]. Au NCs protected by
quaternary ammonium with oligopeptides as a linker have been developed by Jiang et al.
to be utilized for intracellular imaging (Figure 7c) [73]. The AuNCs became smaller, and
their valence changed from Au(0) to Au(I) after the hROS effect, which caused the loss
of fluorescence. To improve sensitivity and selectivity, the Quan group developed dual-
emission ratiometric fluorescent probes, CNC@GNCs RFP, consisting of Au NCs, cellulose
nanocrystals (CNCs), and nonluminous o-phenylenediamine (o-PD) [74]. Au NCs emit
blue fluorescence, and o-PD can be oxidized through hROS to form 2, 3-diaminophenazine
(o-PDox) to emit yellow fluorescence. Thus, based on the action of hROS, this probe can
achieve an obvious color transition. Zebrafish experiments confirm the probe’s potential for
biological applications in both tissue penetrability and ROS responsiveness (Figure 7d–f).
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3.2. Biological Diagnosis and Therapy

Besides bioimaging, AIE-type metal NCs are promising candidates for biological
diagnosis and therapy, including antibacterial agents, cancer radiotherapy, and so on.

As early as 2013, the Xie group demonstrated that glutathione (GSH)-protected Ag NCs
can generate a high concentration of reactive oxygen against the bacteria pseudomonas
aeruginosa [75]. Furthermore, a higher antibacterial activity of Ag(I) than Ag(0) was
revealed, and the corresponding Ag NCs have been applied against gram bacteria [76]. In
2016, antibiotic-grafting Ag NC technology was developed, raising the level of antibacterial
ability (Figure 8a) [77]. D-Ag NCs can effectively destroy the bacterial membrane to
form larger pores and continuously generate ROS, resulting in strong damage to bacterial
DNA. There are also other antibacterial agents, such as Au NCs, which could interact
with bacteria to cause an imbalance in bacterial cell metabolism, resulting in increased
intracellular reactive oxygen species, and thereby killing bacteria [78–80]. Further research
found that the more negatively charged Au NCs, the more ROS produced, allowing for
a better bacterial killing efficiency (Figure 8b) [81].

The study of AIE-type metal NCs for the diagnosis and treatment of cancer is of great
value for both basic research and practical applications [82,83]. GSH-Au29–43(SG)27–37 [12],
GSH-Au25 [84], and GSH-Au10−12(SG)10−12 [85], for example, could increase tumor uptake
and targeting specificity via an improved EPR effect. Au8(C21H27O2)8 was developed
by Zang et al. for a radiosensitizer (Figure 8c) [86]. Au8(C21H27O2)8 produced ROS
after X-ray exposure, causing irreversible cell apoptosis. Through rational structural
design, AIE-type metal NCs can be used for photodynamic therapy (PDT) to achieve
more effective anticancer treatments. Liu and coworkers have designed amine-terminated,
PAMAM dendrimer-encapsulated Au NCs, which can consume H2O2 through catalase in
the physiological pH range [87]. The possible mechanism was attributed to the fact that
tertiary amines are easily protonated in acidic solutions, resulting in pre-adsorption of OH
on the metal surface, thereby promoting catalase-like reactions. NIR-II-triggered PDT shows
significantly increased tissue penetration, bypassing the limitations of conventional PDT.
In the alkyl-thiolate Au NC@HSA/CAT system (HAS: serum albumin and CAT: catalase),
the Au NCs can generate singlet oxygen to trigger PDT under 1064 nm laser excitation.
Further, the HSA can improve the physiological stability of the nanoparticles. CAT is also
used to enhance the efficacy of PDT by triggering the decomposition of tumor endogenous
H2O2 into oxygen (Figure 8d–e) [88]. In addition, other biomedical applications of Au
NCs have also been explored (e.g., for Parkinson’s disease treatment). N-isobutyryl-L-
cysteine (L-NIBC)-protected Au NCs significantly reversed dopaminergic (DA) neuron loss
in substantia nigra and striatum, preventing the fibrillation of α-Synuclein (α-Syn) [89].
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3.3. Light-Emitting Diodes (LEDs)

With the advantages of high luminescence efficiency, excellent durability, and low produc-
tion costs, LEDs have led to innovations in the entire lighting industry. Normally, white light
can be achieved by combining UV/n-UV/blue chips with polychromatic phosphors [90–93].
The AIE-type metal NCs are highly emissive in the solid state and are thus promising for
LED phosphor applications [50,52]. Through ordered structure self-assembly technology,
AIE NCs with emission colors can be easily designed and generated. A white device with
color coordinates at (0.32, 0.36) was built by coating Cu and Au NCs on a 365 nm GaN LED
chip [94]. Zn-coordinated glutathione-stabilized NCs (ZnGsH-Au NCs) have been reported
for conversion layers. The device performance of its assembled LED showed (0.38, 0.38) of
the CIE index and a CRI value of 75 [94]. CPL NCs can also be prepared for LED devices.
For example, a circularly polarized light source was successfully realized based on copper(I)-
iodide hybrid clusters [95]. Highly quantum-efficient (>95%) chiral silver clusters Ag6L6 were
prepared into a WLED by combining 465 nm blue LEDs, which emitted nearly identical white
emission as commercial lighting systems (blue chips + YAG: Ce3+) [15].

Besides pc-WLED, the Zang group demonstrated that Au NCs (e.g., (Au4L4)n/(Au4D4)n)
also have significant application potential in OLEDs [96]. (Au4L4)n/(Au4D4)n) was fabri-
cated into multilayer OLED devices with the configuration poly(3,4-ethylenedioxythiophene):
poly(styrenesulfonic acid) (PEDOT: PSS) (50 nm)/enantiomers (50 nm)/1,3,5-tris(N-phenyl-
benzimidazol-2-yl)benzene (TPBi) (50 nm)/8-hydroxyquinolinolato-lithium (LiQ) (2 nm)/Al
by a solution process. The OLEDs had a maximum EQE and dissymmetry factor of 1.5% and
1.12 × 10−2, respectively. Koen Kenne’s group reported ZEOLEDs based on silver-exchanged
zeolites [97]. They showed that the key factors affecting the device performance were the con-
centration of metal NCs and the degree of zeolite anode contact. Last year, Li and coworkers
introduced aggregation-enhanced Cu3(L2)3 (L2 = 4-hexyl-3,5-dimethyl-1Hpyrazole) acting as
an emissive layer into OLEDs [29], where the OLED exhibited red emission centering at 610 nm,
with a current efficiency (of 7.21 cd/A), a luminance (1200 cd/m2), as well as EQE (4%).

3.4. Detection Assays

Because of the sensitivity of luminescence to the surrounding environment, AIE-type
metal NCs can be used as fluorescent probes to detect metal ions, small organic molecules,
polypeptides, amino acids, and proteins. For example, Au+ ions have a high affinity for Hg2+

ions, which leads to the luminescence quenching of NCs [98]. Based on this principle, a series
of clusters were prepared, such as lysozyme- [99], cytidine- [100], and protein-Au NCs [101]
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for the detection of Hg2+ ions, and the range of the detection limit was 0.5–60 nM. Similarly,
metal NCs can detect other metal ions such as Cu2+, Pb2+, Ag+, Fe3+, and so on [102–105].

The luminescence of Au NCs heavily relies on the valence state of Au, thus enabling
the detection of small molecules with redox properties. Chang et al. used cholesterol
oxidase (ChOx) to reduce cholesterol to H2O2 and then quenched the luminescence of
BSA-Au NCs, thereby allowing for the quantitative detection of cholesterol. This approach
can detect cholesterol ranging from 1 to 100 µM, with a detection limit of 1.4 mM [106].
Glucose and doxycycline have also been detected through analogical means [107,108]. By
impregnating the Au NCs into glycol-chitosan (GC) nanogel, Au NCs@GC was developed
as an H2S detector by Wang et al. in 2018 [109]. The confinement effect significantly
improved sensitivity to aqueous sulfides. For amino acid and protein detection, metal NCs
are suitable due to the interaction between the clusters and the detected object. The surface
defects of Au NCs could be modified by cysteine to enhance luminescence, which allows
for the quantitative detection of cysteine [89]. Based on the static quenching and inner
filter effect (IFE), the fluorescent “on-off-on” of CQDs/Au NCs was achieved for detecting
Cd2+ and L-ascorbic acid [110]. Protein enzymes can be detected through protein-Au NCs,
because the luminescence signal intensity of Au NCs will change when enzymes degrade
the protein templates [111,112].

3.5. Circularly Polarized Luminescence (CPL)

Polarization, as an intrinsic property of light, is a prerequisite for three-dimensional
optical display, remote sensing, spin information optical communication, circular polar-
ization tomography, and information encryption. Typically, CPL can be obtained when
non-polarized light passes through a quarter-wave plate. However, energy loss and com-
plex device structure restrict the popularization of this method. As an alternative efficient
pathway, chiral luminescent materials were used to produce CPL directly [113]. The ideal
CPL materials should have both a high quantum efficiency (QE) and a large glum value.
The glum value means the luminescence dissymmetry factor, which can be defined by
Equation (1) [114,115]:

glum =
2(IL − IR)

IL + IR
(1)

where IL and IR represent the luminescence intensity of left- and right-CPL, respectively.
A high QE indicates efficient energy conversion, whereas the performance of common or-
ganic compound-based emitters is always poor due to the ACQ effect [116,117]. Fortunately,
the advent of AIE materials opens a window for CPL studies [118,119]. With the researchers’
efforts, AIE-type metal NCs have become a member of the CPL materials family.

Recently, Yao et al. worked on a design for highly efficient chiral hybrid copper(I)
halides NCs [95,120,121]. As shown in Figure 9a, R/S-Cu2I2(BINAP)2 hybrid clusters
with a layered conformation were designed and synthesized [121]. Benefiting from the
biphosphine chelating coordination of chiral ligands, the stability of the chiral cluster was
greatly improved and could be dissolved in polar solvents such as dimethyl sulfoxide
(DMSO) to achieve solution processing. Further, with the assistance of polyvinylpyrroli-
done (PVP), hexagonal flake-like microcrystals with a high glum (9.5 × 10−3) were obtained
in an ethanol solution based on intermolecular interactions (Figure 9b). On the basis above,
Yao et al. synthesized high-performance CPL materials (PLQY: 32%, glum: 1.5 × 10−2)
with the biomimetic non-classical crystallization (BNCC) strategy [95]. The main crys-
tallization process was revealed, involving nanocrystal nucleation, aggregation, oriented
attachment, and mesoscopic transformation (Figure 9c). Moreover, electrostatic interactions
and Van der Waals forces can induce these aggregated nanoparticles to assembly and chiral
adjustment. Thus, chiral polycrystals with different morphologies can be achieved by
adjusting the chiral center position, chain length, and concentration of ligands. In addition,
(R/S-MBA)2CuCl2 [122], (1-M/1-P)2Cu2I2 [123], (R/S-MBA)4Cu4I4 [124], and other chiral
copper(I) halides also enrich the database of CPL materials.
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Zang et al. incorporated (R/S)2,2-bis(diphenylphosphino)-1,1-binaphthyl on a BuSCu
copper source to yield the CPL material R/S-Cu3 [125]. In the aggregated state, R/S-Cu3 dis-
plays notable circularly polarized luminescence (glum: 2× 10−2) due to the chiral structure and
AIE feature. The luminescence comes from metal cluster-centered (MCC) and triplet metal-to-
ligand charge-transfer (3MLCT) processes and is limited by the intramolecular motion mecha-
nism. Following that, in 2020, the authors further developed a copper cluster of [Cu14(R/S-
DPM)8](PF6)6 (R/S-Cu14) by modifying (R/S)-2-diphenyl-2-hydroxylmethylpyrrolidine-1-
propyne ligands [126]. The R/S-Cu14 dilute solution was non-luminescent and CPL inactive.
However, by choosing n-hexane as the solvent, the copper clusters formed well-dispersed
colloids of dense aggregates, showing strong red emission and CPL signals (glum: 1 × 10−2),
as shown in Figure 9d. This luminescence enhancement is attributed to electrostatic inter-
action, C−H···π, C−H···F, and O−H···F interactions of ligands, which could substantially
restrict the intramolecular rotations and vibrations. Besides Cu NCs, ultrasmall Au NCs, (e.g.,
L/D-[Au4(C9H8S2N)4], abbreviated as Au4PL4 and Au4PD4; and L/D-{[Au4(C6H10S2N)4]3}n,
abbreviated as (Au4L4)n and (Au4D4)n, also have significant CPL characteristics [96]. Both
Au4PL4/Au4PD4 and (Au4L4)n/(Au4D4)n exhibited bright luminescence and were CPL active
(glum = 7 × 10−3) after adding poor solvent (H2O), with the QE increasing by 6.5% and 4.7%,
respectively (Figure 9e).
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4. Conclusions and Outlook

Looking back, AIE metal NCs have taken the first step in terms of preparation tech-
niques and practical applications. However, the current development of cluster chemistry
has not yet reached an unambiguous agreement on the AIE fundamentals of metal NC
luminescence. Moving forward, the research on AIE-type metal NCs will remain a scientific
hotspot. Herein, we elaborated our perspectives, including but not limited to:

- Composition: Except for a few structural units for the synthesis of metal NCs, most
organic ligands and noble metals (e.g., Au, Ag, and their alloys) are scarce and/or
expensive. To accommodate large-scale production for commercial purposes, the
development of low-cost metal NC materials is necessary. For instance, the AIE
properties of copper, zinc, and other transition metal NCs are also worth designing
for a breakthrough, because of their similar electronic configurations (d10s1) and wide
range of oxidation states.

- Structure: Regarding the development of metal NCs’ structural isomers, the follow-
ing issues need to be addressed urgently in the future: (i) how to synthesize and
stabilize novel structural isomers; (ii) how to rationally separate and structurally
identify isomers. For this, DFT calculation, SXRD, ESI-MS, UV-vis-NIR absorption
spectroscopy, and thin-layer chromatography techniques would help to address this
issue; (iii) accurately mapping the internal relationship between structure and AIE
properties at the molecular level, which will lay the foundation for prediction, clipping,
and preparation of excellent AIE metal NCs.

- Property: The QY directly affects the future of metal NCs for application and commer-
cialization. In particular, some red- and infrared-emitting metal NCs still have a large
gap with commercial phosphors, which limits their application. Moreover, metal NCs
easily decompose or lose their luminescent activity, exhibiting terrible thermo-stability
and chemical stability under thermal and environmental stimuli. Some strategies,
such as conferring strong chemical bond forces between the metal core and ligands,
using MOF protection, etc., have improved stability. These measures are efficient to
a certain extent but cannot solve all the problems of this issue.

- Mechanism: The current development of cluster chemistry has not yet reached an un-
ambiguous agreement on the AIE fundamentals of metal NC luminescence, such as:
(i) the correlation between metal NCs’ structural characteristics and AIE behaviors;
(ii) AIE concepts at the branch level in metal NCs such as aggregation-induced emis-
sion enhancement (AIEE) and clusterization-triggered emission (CTE); (iii) a clear
identification of similar overlapping topics between AIE-type metal NCs and other
metal counterparts. For example, the aggregation of metal nanoparticles supports the
emission of adjacently located emitter moieties, which has been well-developed in
systems such as cryosoret and soret colloid nano-assembly [127–130].

- Applications: To explore the application potential of AIE metal NCs in related bio-
logical and medical systems, the development of water-soluble AIE metal NCs with
near-infrared emission or long afterglow luminescence is still in its infancy. In addi-
tion, there is an urgent need to develop metal NC-based optoelectronics devices to
serve practical applications in various sectors. Last but not least, the preparation of
high-quantum yield AIE metal NCs is necessary to develop their applications in the
latest technologies (such as photonic crystal-coupled emission for biosensors).

The AIE mechanism has been widely accepted and continuously improved upon in
the research community of luminescent metal NCs. However, quoting Laroche, to “have
achieved unremittingly, indomitable than when subjected to failure is more important”.
AIE and/or metal NCs researchers still have a long way to go to witness the fundamentals
and applications of AIE-type metal NCs. We are hopeful that this review will accelerate the
advancement of such promising research, as well as provide models or springboards for
many pending challenges in other cross-disciplines and research fields.
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