#
X-ray Investigation of CsPbI_{3}:EuCl_{3} Infiltrated into Gig-Lox TiO_{2} Spongy Layers for Perovskite Solar Cells Applications

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Gig-Lox TiO${}_{2}$ Deposition

^{2}). The resulting growth rate is 4 nm/min. To increase the layer homogeneity throughout the sample surface, the anode–cathode spacing is fixed at 1.2 cm, and the substrate is under continuous rotation at 20 rpm. The method can be, in principle, applied to other metal oxides.

#### 2.2. Eu-Doped CsPbI${}_{3}$ Deposition

#### 2.3. Blended Material Characterization

#### 2.3.1. Spectroscopic Ellipsometry Analysis

#### 2.3.2. X-ray Diffraction and X-ray Reflection Analysis

#### 2.3.3. Photoluminescence Spectroscopy Analysis

## 3. Results and Discussion

#### 3.1. X-ray Reflection

#### 3.2. X-ray Diffraction

#### 3.2.1. Grazing Incidence XRD

**z**, is calculated starting from the imaginary parameter $\mathsf{\beta}$ of the refractive index

**n**(see Equation (1)). The absorption coefficients $\mathsf{\mu}$ of ${\mathrm{CsPbI}}_{3}$ compounds are obtained according to simple additivity of the elemental mass attenuation coefficients, ${(\mathsf{\mu}/\mathsf{\rho})}_{\mathrm{i}}$ [30]:

#### 3.2.2. $2\Theta /\mathsf{\omega}$ Scan

**z**if we consider a bulk material of pure perovskite or that of blended material, while the effective thickness

**D**that we probe in the prepared layers is highlighted depending on their real thickness. Different penetration depths at different angles also imply a different output length

**L**. In the case of pure perovskite thin film (Figure 7a), when X-rays penetrate in the substrate with an incidence angle of ${\Theta}_{1}=7.2$°, an amount of 8.6% ${\mathrm{L}}_{1}$ (output length) pass through

**D**. Increasing the incidence angle to ${\Theta}_{2}=14.4$°, an amount of 4.6% ${\mathrm{L}}_{2}$ (output length) passes through

**D**, with the consequence of a greater absorption in the first case than in the second one. In this calculation, in addition to what is expected by Density Functional Theory (DFT) calculations (see details in ref. [11]) and the related expected scattering factors, the peak intensity at $2{\Theta}_{1}=14.4$° related to the (110) planes is further depleted compared to what measured at $2{\Theta}_{2}=28.9$° related to the (220) planes of the same family of Miller indexes. In the case of the blended material reported in Figure 7b, although 28.7% of ${\mathrm{L}}_{1}$ and 14.3% of ${\mathrm{L}}_{2}$ passes through

**D**, we observe a more intense peak at $2{\Theta}_{1}$ than at $2{\Theta}_{2}$. This countertrend is under investigation. Besides this, we notice in the intensity values listed in Table 3 that the pure perovskite layer systematically has more intense peaks with respect to the blended material due to the different thicknesses of the films. A point-by-point comparison is provided in Figure 8 by the texturing coefficient defined as the relative intensity of each crystallographic plane with respect to the (220) plane. We show the values for the peaks associated with each crystallographic plane and the reference DFT [11] values normalised to what is measured or expected for the (220) crystallographic planes. We thus find a preferential growth of the perovskite crystals along the (020) planes for perovskites on glass and for the blended material with respect to what is expected by DFT.

**a**and

**c**expand on Gig-Lox ${\mathrm{TiO}}_{2}$ substrates with respect to the value obtained on the glass substrate, while

**b**maintains similar values, resulting in an overall expansion of the volume of the unit cell. The results obtained are consistent with the porous nature of the ${\mathrm{TiO}}_{2}$ substrate with the fine pores allowing an inner adaptation of the intercalated perovskite, which is indeed free to expand with respect to a constrained compact film. The effects of lattice relaxation are also evident in Figure 6 with details of convoluted peaks at 14.4° and 28.9° displayed in Figure 6b,c, wherein perovskite’s (00l) family planes are more relevant in the blended material than the thin film on the glass.

#### 3.3. Spectroscopic Ellipsometry

#### 3.4. Photoluminescence Spectroscopy

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Sample Availability

## Abbreviations

ETL | Electron-transport layer |

HTL | Hole-transport layer |

$\mathrm{T}\mathrm{i}{\mathrm{O}}_{2}$ | Titanium dioxide |

XRD | X-ray diffraction |

XRR | X-ray reflection |

GIXRD | Grazing incidence X-ray diffraction |

DFT | Density functional theory |

PL | Photoluminescence spectroscopy |

## References

- Lenssen, N.J.; Schmidt, G.A.; Hansen, J.E.; Menne, M.J.; Persin, A.; Ruedy, R.; Zyss, D. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos.
**2019**, 124, 6307–6326. [Google Scholar] [CrossRef] - Jain, P. Greenhouse effect and climate change: Scientific basis and overview. Renew. Energy
**1993**, 3, 403–420. [Google Scholar] [CrossRef] - The European Commission. REPowerEU Plan; The European Commission: Brussels, Belgium, 2022.
- Čulík, P.; Brooks, K.; Momblona, C.; Adams, M.; Kinge, S.; Maréchal, F.; Dyson, P.J.; Nazeeruddin, M.K. Design and Cost Analysis of 100 MW Perovskite Solar Panel Manufacturing Process in Different Locations. ACS Energy Lett.
**2022**, 7, 3039–3044. [Google Scholar] [CrossRef] - National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 1 November 2023).
- Raval, P.; Kennard, R.M.; Vasileiadou, E.S.; Dahlman, C.J.; Spanopoulos, I.; Chabinyc, M.L.; Kanatzidis, M.; Manjunatha Reddy, G. Understanding instability in formamidinium lead halide perovskites: Kinetics of transformative reactions at grain and subgrain boundaries. ACS Energy Lett.
**2022**, 7, 1534–1543. [Google Scholar] [CrossRef] - Lau, C.F.J.; Wang, Z.; Sakai, N.; Zheng, J.; Liao, C.H.; Green, M.; Huang, S.; Snaith, H.J.; Ho-Baillie, A. Fabrication of efficient and stable CsPbI
_{3}perovskite solar cells through cation exchange process. Adv. Energy Mater.**2019**, 9, 1901685. [Google Scholar] [CrossRef] - Montecucco, R.; Quadrivi, E.; Po, R.; Grancini, G. All-inorganic cesium-based hybrid perovskites for efficient and stable solar cells and modules. Adv. Energy Mater.
**2021**, 11, 2100672. [Google Scholar] [CrossRef] - Duan, L.; Zhang, H.; Liu, M.; Grätzel, M.; Luo, J. Phase-Pure γ-CsPbI
_{3}for Efficient Inorganic Perovskite Solar Cells. ACS Energy Lett.**2022**, 7, 2911–2918. [Google Scholar] [CrossRef] - Wang, B.; Novendra, N.; Navrotsky, A. Energetics, structures, and phase transitions of cubic and orthorhombic cesium lead iodide (CsPbI
_{3}) polymorphs. J. Am. Chem. Soc.**2019**, 141, 14501–14504. [Google Scholar] [CrossRef] - Deretzis, I.; Bongiorno, C.; Mannino, G.; Smecca, E.; Sanzaro, S.; Valastro, S.; Fisicaro, G.; La Magna, A.; Alberti, A. Exploring the structural competition between the black and the yellow phase of CsPbI
_{3}. Nanomaterials**2021**, 11, 1282. [Google Scholar] [CrossRef] - Zhang, X.; Yu, Z.; Zhang, D.; Tai, Q.; Zhao, X.Z. Recent Progress of Carbon-Based Inorganic Perovskite Solar Cells: From Efficiency to Stability. Adv. Energy Mater.
**2023**, 13, 2201320. [Google Scholar] [CrossRef] - Alberti, A.; Smecca, E.; Deretzis, I.; Mannino, G.; Bongiorno, C.; Valastro, S.; Sanzaro, S.; Fisicaro, G.; Jena, A.K.; Numata, Y.; et al. Formation of CsPbI
_{3}γ-Phase at 80 °C by Europium-Assisted Snowplow Effect. Adv. Energy Sustain. Res.**2021**, 2, 2100091. [Google Scholar] [CrossRef] - Valastro, S.; Mannino, G.; Smecca, E.; Sanzaro, S.; Deretzis, I.; La Magna, A.; Jena, A.K.; Miyasaka, T.; Alberti, A. Optical behaviour of γ-black CsPbI
_{3}phases formed by quenching from 80 °C and 325 °C. J. Phys. Mater.**2021**, 4, 034011. [Google Scholar] [CrossRef] - Valastro, S.; Smecca, E.; Bongiorno, C.; Spampinato, C.; Mannino, G.; Biagi, S.; Deretzis, I.; Giannazzo, F.; Jena, A.K.; Miyasaka, T.; et al. Out-of-Glovebox Integration of Recyclable Europium-Doped CsPbI
_{3}in Triple-Mesoscopic Carbon-Based Solar Cells Exceeding 9% Efficiency. Solar RRL**2022**, 6, 2200267. [Google Scholar] [CrossRef] - Cheng, M.; Zuo, C.; Wu, Y.; Li, Z.; Xu, B.; Hua, Y.; Ding, L. Charge-transport layer engineering in perovskite solar cells. Sci. Bull.
**2020**, 65, 1237–1241. [Google Scholar] [CrossRef] - Wei, H.; Luo, J.W.; Li, S.S.; Wang, L.W. Revealing the origin of fast electron transfer in TiO
_{2}-based dye-sensitized solar cells. J. Am. Chem. Soc.**2016**, 138, 8165–8174. [Google Scholar] [CrossRef] - Chen, K.; Jin, W.; Zhang, Y.; Yang, T.; Reiss, P.; Zhong, Q.; Bach, U.; Li, Q.; Wang, Y.; Zhang, H.; et al. High efficiency mesoscopic solar cells using CsPbI
_{3}perovskite quantum dots enabled by chemical interface engineering. J. Am. Chem. Soc.**2020**, 142, 3775–3783. [Google Scholar] [CrossRef] [PubMed] - Miyasaka, T. Perovskite photovoltaics: Rare functions of organo lead halide in solar cells and optoelectronic devices. Chem. Lett.
**2015**, 44, 720–729. [Google Scholar] [CrossRef] - Pihosh, Y.; Turkevych, I.; Ye, J.; Goto, M.; Kasahara, A.; Kondo, M.; Tosa, M. Photocatalytic properties of TiO
_{2}nanostructures fabricated by means of glancing angle deposition and anodization. J. Electrochem. Soc.**2009**, 156, K160. [Google Scholar] [CrossRef] - Chen, S.; Li, Z.; Zhang, Z. Anisotropic Ti
_{x}Sn_{1-x}O_{2}nanostructures prepared by magnetron sputter deposition. Nanoscale Res. Lett.**2011**, 6, 1–5. [Google Scholar] [CrossRef] [PubMed] - Sanzaro, S.; Smecca, E.; Mannino, G.; Bongiorno, C.; Pellegrino, G.; Neri, F.; Malandrino, G.; Catalano, M.R.; Condorelli, G.G.; Iacobellis, R.; et al. Multi-Scale-Porosity TiO
_{2}scaffolds grown by innovative sputtering methods for high throughput hybrid photovoltaics. Sci. Rep.**2016**, 6, 39509. [Google Scholar] [CrossRef] - Valastro, S.; Smecca, E.; Mannino, G.; Bongiorno, C.; Fisicaro, G.; Goedecker, S.; Arena, V.; Spampinato, C.; Deretzis, I.; Dattilo, S.; et al. Preventing lead leakage in perovskite solar cells with a sustainable titanium dioxide sponge. Nat. Sustain.
**2023**, 6, 974–983. [Google Scholar] [CrossRef] - Arena, V.; Smecca, E.; Valastro, S.; Bongiorno, C.; Fisicaro, G.; Deretzis, I.; Spampinato, C.; Mannino, G.; Dattilo, S.; Scamporrino, A.A.; et al. Lead Detection in a Gig-Lox TiO
_{2}Sponge by X-ray Reflectivity. Nanomaterials**2023**, 13, 1397. [Google Scholar] [CrossRef] [PubMed] - Spampinato, C.; La Magna, P.; Valastro, S.; Smecca, E.; Arena, V.; Bongiorno, C.; Mannino, G.; Fazio, E.; Corsaro, C.; Neri, F.; et al. Infiltration of CsPbI
_{3}: EuI2 Perovskites into TiO_{2}Spongy Layers Deposited by gig-lox Sputtering Processes. Solar**2023**, 3, 347–361. [Google Scholar] [CrossRef] - Sanzaro, S.; Zontone, F.; Grosso, D.; Bottein, T.; Neri, F.; Smecca, E.; Mannino, G.; Bongiorno, C.; Spinella, C.; La Magna, A.; et al. Bimodal porosity and stability of a TiO
_{2}gig-lox sponge infiltrated with methyl-ammonium lead iodide perovskite. Nanomaterials**2019**, 9, 1300. [Google Scholar] [CrossRef] - Wu, J.; Liu, S.C.; Li, Z.; Wang, S.; Xue, D.J.; Lin, Y.; Hu, J.S. Strain in perovskite solar cells: Origins, impacts and regulation. Natl. Sci. Rev.
**2021**, 8, nwab047. [Google Scholar] [CrossRef] - Spampinato, C.; Valastro, S.; Smecca, E.; Arena, V.; Mannino, G.; La Magna, A.; Corsaro, C.; Neri, F.; Fazio, E.; Alberti, A. Spongy TiO
_{2}layers deposited by gig-lox sputtering processes: Contact angle measurements. J. Vac. Sci. Technol.**2023**, 41, 012802. [Google Scholar] [CrossRef] - Pietsch, U.; Holy, V.; Baumbach, T. High-Resolution X-ray Scattering: From Thin Films to Lateral Nanostructures; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Dimitrievska, M.; Fairbrother, A.; Gunder, R.; Gurieva, G.; Xie, H.; Saucedo, E.; Pérez-Rodríguez, A.; Izquierdo-Roca, V.; Schorr, S. Role of S and Se atoms on the microstructural properties of kesterite Cu
_{2}ZnSn (S_{x}Se_{1-x})_{4}thin film solar cells. Phys. Chem. Chem. Phys.**2016**, 18, 8692–8700. [Google Scholar] [CrossRef] - Hubbell, J.H.; Seltzer, S.M. Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest; Technical Report, National Inst. of Standards and Technology-PL; Ionizing Radiation Div.: Gaithersburg, MD, USA, 1995. [Google Scholar]
- Parratt, L.G. Surface studies of solids by total reflection of X-rays. Phys. Rev.
**1954**, 95, 359. [Google Scholar] [CrossRef] - Patterson, A. The Scherrer formula for X-ray particle size determination. Phys. Rev.
**1939**, 56, 978. [Google Scholar] [CrossRef] - Bragg, W.H.; Bragg, W.L. The reflection of X-rays by crystals. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character
**1913**, 88, 428–438. [Google Scholar] [CrossRef] - Kelly, A.; Knowles, K.M. Crystallography and Crystal Defects; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Sutton, R.J.; Filip, M.R.; Haghighirad, A.A.; Sakai, N.; Wenger, B.; Giustino, F.; Snaith, H.J. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI
_{3}by theory and experiment. ACS Energy Lett.**2018**, 3, 1787–1794. [Google Scholar] [CrossRef] - Meng, W.; Zhang, K.; Osvet, A.; Zhang, J.; Gruber, W.; Forberich, K.; Meyer, B.; Heiss, W.; Unruh, T.; Li, N.; et al. Revealing the strain-associated physical mechanisms impacting the performance and stability of perovskite solar cells. Joule
**2022**, 6, 458–475. [Google Scholar] [CrossRef] - Kim, H.S.; Park, N.G. Importance of tailoring lattice strain in halide perovskite crystals. NPG Asia Mater.
**2020**, 12, 78. [Google Scholar] [CrossRef] - Jones, T.W.; Osherov, A.; Alsari, M.; Sponseller, M.; Duck, B.C.; Jung, Y.K.; Settens, C.; Niroui, F.; Brenes, R.; Stan, C.V.; et al. Lattice strain causes non-radiative losses in halide perovskites. Energy Environ. Sci.
**2019**, 12, 596–606. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Schematic figure of a typical structure of a perovskite solar cell coupled with a STEM image of the blended material made by ${\mathrm{CsPbI}}_{3}$:${\mathrm{EuCl}}_{3}$ and a Gig-Lox ${\mathrm{TiO}}_{2}$ layer. (

**b**) Working principle of the perovskite solar cell device integration of the blends.

**Figure 2.**Representation of the deposition method of ${\mathrm{CsPbI}}_{3}$:${\mathrm{EuCl}}_{3}$ by spin-coating into Gig-Lox ${\mathrm{TiO}}_{2}$.

**Figure 5.**${\mathrm{CsPbI}}_{3}$:${\mathrm{EuCl}}_{3}$ single-layer and blended material GIXRD patterns at different fixed angles: 0.2° (

**a**), 0.3° (

**b**), 0.4° (

**c**), 0.6° (

**d**) and 0.8° (

**e**).

**(hkl)**are the ${\mathrm{CsPbI}}_{3}$:${\mathrm{EuCl}}_{3}$ crystallographic planes, (hkl) are the anatase-Gig-Lox ${\mathrm{TiO}}_{2}$ crystallographic planes. (

**f**) Schematic representation of top layer crystallite sizes with different grazing angles (gz) on Gig-Lox ${\mathrm{TiO}}_{2}$ (top) and on bare glass (bottom).

**Figure 6.**(

**a**) Selected XRD patterns. Typical perovskite peaks appear at 14.4°, 20.6°, 28.9° and 36°. The peak at $2\Theta $ = 19.9° is due to the instrumental setup. (

**b**) Deconvolution peaks at 14.4° and 28.9° of ${\mathrm{CsPbI}}_{3}$:${\mathrm{EuCl}}_{3}$ on glass. (

**c**) Deconvolution of the peaks at 14.4° and 28.9° of ${\mathrm{CsPbI}}_{3}$:${\mathrm{EuCl}}_{3}$ on Gig-Lox ${\mathrm{TiO}}_{2}$.

**Figure 7.**Different X-rays paths of bulk perovskite (

**a**) and bulk blended material (

**b**) at ${\Theta}_{1}=7.2$° and ${\Theta}_{2}=14.4$° with their output lengths ${\mathrm{L}}_{1}$ and ${\mathrm{L}}_{2}$.

**Figure 8.**Texturing coefficient with different substrates compared to DFT calculation relative intensity.

**Figure 9.**Absorption coefficient at different energies of (

**a**) ${\mathrm{CsPbI}}_{3}$:${\mathrm{EuCl}}_{3}$ on glass and on Gig-Lox ${\mathrm{TiO}}_{2}$ (

**b**) ${\mathrm{CsPbI}}_{3}$:${\mathrm{EuCl}}_{3}$ and ${\mathrm{CsPbI}}_{3}$ on Gig-Lox ${\mathrm{TiO}}_{2}$.

**Figure 10.**PL spectra at different wavelengths of ${\mathrm{CsPbI}}_{3}$:${\mathrm{EuCl}}_{3}$ on glass and on Gig-Lox ${\mathrm{TiO}}_{2}$.

Grazing Angle (°) | Penetration Depth (nm) ${\mathbf{CsPbI}}_{3}$ | Penetration Depth (nm) Anatase ${\mathbf{TiO}}_{2}-{\mathbf{CsPbI}}_{3}$ Blend |
---|---|---|

0.2° | 3.49 | 3.86 |

0.3° | 14.68 | 25.77 |

0.4° | 37.28 | 56.84 |

0.6° | 70.45 | 104.37 |

0.8° | 98.97 | 145.77 |

**Table 2.**Crystallite size values at different scan angles using glass substrate and Gig-Lox ${\mathrm{TiO}}_{2}$ substrate.

Scan Angle (°) | FWHM (°) | Crystallite Size (nm) | FWHM (°) | Crystallite Size (nm) | ||
---|---|---|---|---|---|---|

0.2° | Glass Substrate | 0.274 | 30.49 | Gig-Lox$\mathrm{T}\mathrm{i}{\mathrm{O}}_{2}$ Substrate | 0.214 | 39.94 |

0.3° | 0.312 | 26.56 | 0.271 | 30.85 | ||

0.4° | 0.251 | 33.51 | 0.289 | 28.80 | ||

0.6° | 0.271 | 30.85 | 0.28 | 29.79 | ||

0.8° | 0.253 | 33.22 | 0.293 | 28.38 |

**Table 3.**Crystal parameters calculated at the correspondence Miller index. $\mathrm{I}/{\mathrm{I}}_{220}$ Exp are the reference intensities by DFT Simulation (DFT Sim). Bold values are the data reported in Figure 6.

Miller Index | Angle (°) | d (A) | Crystallite Sizes (nm) | Intensity | Angle (°) | d (A) | Crystallite Sizes (nm) | Intensity | ||
---|---|---|---|---|---|---|---|---|---|---|

(002) | Glass substrate | 14.21 | 6.228 | 40.65 | 73.7 | $\mathrm{T}\mathrm{i}{\mathrm{O}}_{2}$ substrate | 14.10 | 6.275 | 24.43 | 60.1 |

(110) | 14.41 | 6.143 | 25.81 | 139.1 | 14.33 | 6.174 | 29.99 | 117 | ||

(020) | 20.66 | 4.295 | 35.50 | 242.4 | 20.63 | 4.302 | 27.20 | 139.4 | ||

(120) | 23.09 | 3.848 | 30.73 | 108.5 | 23.06 | 3.854 | 30.25 | 73.0 | ||

(121) | 24.17 | 3.680 | 23.34 | 103.7 | 24.14 | 3.684 | 26.02 | 84.9 | ||

(004) | 28.90 | 3.087 | 50.13 | 36.3 | 28.47 | 3.132 | 21.38 | 24.6 | ||

(220) | 29.08 | 3.068 | 32.51 | 178.9 | 28.97 | 3.079 | 25.28 | 96.5 | ||

(130) | 32.96 | 2.715 | 28.10 | 65.1 | 32.92 | 2.719 | 28.30 | 46.1 | ||

(131) | 33.57 | 2.667 | 19.51 | 36.0 | n.a. | n.a. | n.a. | n.a. | ||

(132) | 36.05 | 2.490 | 29.15 | 115 | 36 | 2.493 | 26.66 | 79.3 |

**Table 4.**Lattice parameters of ${\mathrm{CsPbI}}_{3}$:${\mathrm{EuCl}}_{3}$ on glass substrate and ${\mathrm{CsPbI}}_{3}$:${\mathrm{EuCl}}_{3}$ infiltrated into Gig-Lox ${\mathrm{TiO}}_{2}$ compared with reference value by Sutton et al. [36].

Lattice Parameters of the Orthorhombic $\mathsf{\gamma}$-Phase | This Work Spin Coated Layers Quenched from 350 °C Using Eu Glass Substrate | This Work Spin Coated Layers Quenched from 350 °C Using Eu Blended Material | Sutton et al. Powder Fast Quenched from 347 °C in ${\mathbf{N}}_{2}$ [36] |
---|---|---|---|

a [Å] | 8.790 | 8.875 | 8.856 |

b [Å] | 8.581 | 8.580 | 8.577 |

c [Å] | 12.433 | 12.545 | 12.472 |

Unit cell [Å${}^{3}$] | 937.78 | 955.27 | 947.33 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

La Magna, P.; Spampinato, C.; Valastro, S.; Smecca, E.; Arena, V.; Mannino, G.; Deretzis, I.; Fisicaro, G.; Bongiorno, C.; Alberti, A.
X-ray Investigation of CsPbI_{3}:EuCl_{3} Infiltrated into Gig-Lox TiO_{2} Spongy Layers for Perovskite Solar Cells Applications. *Nanomaterials* **2023**, *13*, 2910.
https://doi.org/10.3390/nano13222910

**AMA Style**

La Magna P, Spampinato C, Valastro S, Smecca E, Arena V, Mannino G, Deretzis I, Fisicaro G, Bongiorno C, Alberti A.
X-ray Investigation of CsPbI_{3}:EuCl_{3} Infiltrated into Gig-Lox TiO_{2} Spongy Layers for Perovskite Solar Cells Applications. *Nanomaterials*. 2023; 13(22):2910.
https://doi.org/10.3390/nano13222910

**Chicago/Turabian Style**

La Magna, Paola, Carlo Spampinato, Salvatore Valastro, Emanuele Smecca, Valentina Arena, Giovanni Mannino, Ioannis Deretzis, Giuseppe Fisicaro, Corrado Bongiorno, and Alessandra Alberti.
2023. "X-ray Investigation of CsPbI_{3}:EuCl_{3} Infiltrated into Gig-Lox TiO_{2} Spongy Layers for Perovskite Solar Cells Applications" *Nanomaterials* 13, no. 22: 2910.
https://doi.org/10.3390/nano13222910