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Abstract: Antigenic changes in surface proteins of the influenza virus may cause the emergence of
new variants that necessitate the reformulation of influenza vaccines every year. Universal influenza
vaccine that relies on conserved regions can potentially be effective against all strains regardless of
any antigenic changes and as a result, it can bring enormous public health impact and economic
benefit worldwide. Here, a conserved peptide (HA288–107) on the stalk domain of hemagglutinin
glycoprotein is identified among highly pathogenic influenza viruses. Five top-ranked B-cell and
twelve T-cell epitopes were recognized by epitope mapping approaches and the corresponding
Human Leukocyte Antigen alleles to T-cell epitopes showed high population coverage (>99%)
worldwide. Moreover, molecular docking analysis indicated that VLMENERTL and WTYNAELLV
epitopes have high binding affinity to the antigen-binding groove of the HLA-A*02:01 and HLA-
A*68:02 molecules, respectively. Theoretical physicochemical properties of the peptide were assessed
to ensure its thermostability and hydrophilicity. The results suggest that the HA288–107 peptide
can be a promising antigen for universal influenza vaccine design. However, in vitro and in vivo
analyses are needed to support and evaluate the effectiveness of the peptide as an immunogen for
vaccine development.

Keywords: epitope mapping; immunoinformatic; hemagglutinin; nanoparticle; peptide-based
vaccine; universal influenza vaccine

1. Introduction

Influenza is considered as of the main human health problems in the world that causes
respiratory diseases with 3 to 5 million cases of severe illness and up to 500,000 deaths
reported every year [1]. Influenza A virus is classified into subtypes based on two sur-
face antigens, neuraminidase (NA) and hemagglutinin (HA) glycoproteins. Up to now,
18 different HA and 11 different NA proteins have been identified [2]. The pathogenic
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influenza A virus strains that are currently circulating in the human population include
H1N1 and H3N2 and the strains that have a high probability for future pandemic out-
breaks are H7N9, H9N2, H5N1, and H2N2 [3,4]. The most effective method to prevent
influenza infection is vaccination and currently, most influenza vaccines focus on raising
antibodies against the HA glycoprotein. This surface glycoprotein regulates the penetration
of the virus into the host cells and it consists of a globular head (HA1) and a stalk region
(HA2) [5,6].

Antigenic changes in surface proteins may cause the emergence of new variants of
the influenza virus that necessitate the reformulation of influenza vaccines every year [7].
The lack of proof-reading activity of the viral polymerase enzyme is the main reason for
changes in the genome, leading to variation in their surface antigens [8]. These antigenic
changes allow the influenza viruses to escape host antibody immunity built up through
previous vaccination or exposure and decrease the vaccine efficiency [9]. Hence, the
circulating subtypes must be recognized annually to reformulate the influenza vaccine. The
process relies on surveillance, genotype sequencing, and the measurement of the antigenic
properties of the circulating strains. Sometimes the selected strains for vaccine composition
may not match with the near future influenza viruses well enough, which may result in
increased clinical cases and reduced vaccine protection [9,10]. Moreover, the emergence of
new variants with distinct antigenic properties may happen due to the genetic reassortment
that can bring up the pandemic with considerable illness and mortality [11]. Currently,
the efficacy of the current influenza vaccines is at 44%, therefore, the National Institute
of Allergy and Infectious Diseases recently recognized the development of an influenza
vaccine with an efficacy of at least 75% as a high scientific priority in which epidemiological
impacts of seasonal influenza would be reduced significantly [12]. Hence, the primary
goal in influenza vaccine development is to direct the immune system to induce effective
responses against multiple subtypes of the virus despite antigenic differences. The strategy
to achieve this target is based on modern subunit vaccine development that uses conserved
epitopes as vaccine composition to produce a vaccine with broad protection. The main
aim is to decrease the occurrence, hospitalization, and death by at least 95%, which would
also save $3.5 billion each year in direct medical costs related to influenza. This economic
benefit exceeds the proposed and current $330 million in funding for the development of a
universal influenza vaccine [13].

Universal vaccine design and development requires precise molecular and physic-
ochemical knowledge of the antigen and its interactions with immune systems. In this
regard, in silico tools can provide helpful information to facilitate antigen selection be-
fore vaccine development and laboratory experiments [14]. These technologies combine
immunogenetics with computational tools to increase antigen selection accuracy based
on physicochemical characteristics [15]. Antigen selection, B and T-cell epitope mapping,
population coverage, and evaluation of physicochemical properties before conducting
in vitro and in vivo experiments, can accelerate the development of the novel influenza
vaccine. As studies showed that the antibodies produced against the HA2 domain have a
higher neutralization breath compared to HA1 antibodies due to the highest number of
conserved epitopes, here, we evaluated HA2 amino acid sequences of six highly pathogenic
influenza virus strains (H5N1, H7N9, H9N2, H1N1, H3N2, and H2N2) among human
populations by utilizing computational approaches to identify conserved and antigenic
peptide [16]. The set of results presented here contributes to the rational design of a uni-
versal influenza vaccine based on the conserved peptide that can potentially trigger broad
immune responses.

2. Materials and Methods

The specific steps involved in identifying and characterizing the influenza conserved
peptide are described in detail and a ketch of the entire workflow is demonstrated in
Figure 1.
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Figure 1. Workflow for in silico prediction and characterization analysis of a conserved peptide on
HA glycoprotein as a potential antigen for universal influenza vaccine design.

2.1. Multiple Sequence Alignment, Structure, and Conservancy Analysis

A total of six highly pathogenic influenza virus strains (H5N1, H7N9, H9N2, H2N2,
H1N1, and H3N2) were selected based on the Center for Disease Control and Prevention
surveillance and report. The amino acid sequences of the HA2 domain of the selected strains
were retrieved from the National Centre for Biotechnology Information (NCBI) database
(http://www.ncbi.nlm.nih.gov/protein, access date: 1 July 2023) [3]. The retrieved amino
acid sequences were subjected to multiple sequence alignment by Multalin software
(http://multalin.toulouse.inra.fr/multalin/, access date: 1 July 2023) to obtain the con-
served regions. Interactive 3D structure viewer, iCn3d, (https://www.ncbi.nlm.nih.gov/
Structure/icn3d/full.html, access date: 1 July 2023) was used to select a conserved sequence
on the HA protein based on the position of the sequence. The conservancy analysis tool
from the Immune Epitope Database (IEDB) was used to estimate the identity percentage of
the selected peptide in each strain [17]. Also, an NCBI Basic Local Alignment Search Tool
(BLAST) analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi, access date: 1 July 2023) was
performed to confirm that the selected sequence is 100% influenza virus-related.

2.2. Identification of Linear B-Cell Epitopes

Hydrophilicity, surface accessibility, antigenicity, flexibility, and beta-turn of the candi-
date peptide were analyzed using different tools from IEDB (http://tools.iedb.org/bcell/,
access date: 1 July 2023). The Emini method was used to predict linear B-cell epitope based
on surface accessibility [18] and the Karplus and Schulz method was applied for flexibility
prediction [19]. Chou and Fasman [20], Parker [21], and Kolaskar and Tongaonkar [22]
methods were utilized to predict possible B-cell epitopes based on beta-turn, hydrophilicity,
and antigenicity, respectively. Default threshold scores were used for all the methods and
the residues with value above the threshold are considered to be part of an epitope.

http://www.ncbi.nlm.nih.gov/protein
http://multalin.toulouse.inra.fr/multalin/
https://www.ncbi.nlm.nih.gov/Structure/icn3d/full.html
https://www.ncbi.nlm.nih.gov/Structure/icn3d/full.html
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://tools.iedb.org/bcell/
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2.3. Identification of T-Cell Epitopes and Population Coverage Analysis

The T-cell epitope prediction tool from IEDB was applied to calculate the bind-
ing affinity of the selected peptide to the most frequent Major Histocompatibility Com-
plex (MHC) class I and II in the human population based on software recommendation
(http://tools.iedb.org/main/tcell/, access date: 1 July 2023). For the best T-cell epitope
selection among all predicted epitopes, the identified epitopes with percentile rank less
or equal to 1% for MHC I and less and equal to 10% for MHC II were considered as the
potential MHC binder epitopes [23,24]. Later, respective corresponding alleles to the MHC
I and II epitopes on the influenza HA2 domain were evaluated for population coverage
against the whole world human population using the IEDB population coverage analysis
server (http://tools.iedb.org/population/, access date: 1 July 2023). The area option was
set to “world” and the calculation option was set to “Class I and II combined”.

2.4. Cluster Analysis of the MHC-Restricted Alleles

The MHCcluster 2.0 server (http://www.cbs.dtu.dk/services/MHCcluster/, access
date: 5 July 2023) was used to provide pictorial tree-based visualizations and highly
instinctive heat map of the functional alliance between the MHC variants that predicted
to interact with the selected peptide. The graphical tree and statistic heat map as analysis
outputs describe the functional relationship between the MHC alleles from the overlap
prediction binding specificity.

2.5. Molecular Docking Analysis

The MHC I alleles with the lowest percentile rank for each corresponding epitope (un-
derlined alleles in Table 4) were subjected to docking analysis using the ClusPro 2.0 server
(https://cluspro.bu.edu/login.php, access date: 5 July 2023). The 3D structure of MHC I
proteins was retrieved from the Research Collaboratory for Structural Bioinformatics Pro-
tein Data Bank (PDB) and was refined by Autodock software (http://autodock.scripps.edu,
access date: 5 July 2023) to prepare the pre-docking structure. Water molecules were
removed and the supporting structure, beta-microglobulin, was retained due to their
function of providing stability to the proteins in the host [25]. Also, the FASTA for-
mat of MHC I epitopes was converted into PDB format through OpenBabel GUI ver-
sion 2.3. software, to analyze the interactions with the corresponding MHC molecules
(https://openbabel.org/docs/dev/index.html, access date: 5 July 2023). The PDB files of
both the receptors and the epitopes were uploaded to the ClusPro 2.0 server to acquire the
desirable complexes in terms of free binding energy and better electrostatic interaction. The
best models were selected based on the lower global binding energy. The MHC II alleles
were not considered for the docking analysis as the structure of the predicted alleles is not
available in the PDB database.

2.6. Antigenicity, Allergenicity, and Toxicity Assessment

The VaxiJen 2.0 server (http://www.ddgpharmfac.net/vaxijen/, access date: 5 July
2023) was applied to determine the antigenicity of the selected peptide with the threshold
value of 0.4 (default) and the virus was selected as the target organism. The AllergenFP
online server (http://www.ddg-pharmfac.net/AllergenFP/, access date: 5 July 2023) was
used to evaluate the allergenicity of the peptide and the output indicates the peptide is
allergen and non-allergen [26–28]. Furthermore, ToxinPred (https://webs.iiitd.edu.in/
raghava/toxinpred/design.php, access date: 5 July 2023) was used to estimate the toxicity
of the peptide [29]. The SVM (Swiss-Prot) + Motif-based method was set for the prediction
method. Negative values indicate non-toxic classified results, while positive values indicate
the possible toxicity of the analyzed peptide [30].

2.7. Assessment of Physicochemical Properties

The ExPAsy ProtParam (https://web.expasy.org/protparam/, access date: 10 July
2023) tool was used to calculate the physicochemical properties of the conserved peptide,

http://tools.iedb.org/main/tcell/
http://tools.iedb.org/population/
http://www.cbs.dtu.dk/services/MHCcluster/
https://cluspro.bu.edu/login.php
http://autodock.scripps.edu
https://openbabel.org/docs/dev/index.html
http://www.ddgpharmfac.net/vaxijen/
http://www.ddg-pharmfac.net/AllergenFP/
https://webs.iiitd.edu.in/raghava/toxinpred/design.php
https://webs.iiitd.edu.in/raghava/toxinpred/design.php
https://web.expasy.org/protparam/
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which include molecular weight, theoretical isoelectric point (PI), instability index, amino
acid composition, chemical formula, atomic composition, estimated half-life, aliphatic
index, and grand average of hydropathicity (GRAVY) [31]. A negative GRAVY value
indicates that the peptide is non-polar and hydrophilic. Also, a value below 40 for the
instability index means the peptide is stable. Moreover, a higher aliphatic index shows
higher thermostability. The solubility of the peptide was evaluated using the Pep-Calc
protein calculator based on the PI, the number of charged residues, and the peptide length
(https://pepcalc.com/protein-calculator.php, access date: 10 July 2023) [32]. The physico-
chemical properties were used to estimate the stability, thermostability, and solubility of
the selected conserved peptide.

3. Results
3.1. Selection of Conserved Peptide

The HA2 proteome of six highly pathogenic influenza virus strains among human
populations was extracted from the NCBI database. The subtypes, NCBI accession number,
and amino acid sequences of the HA2 domains are listed in Table 1. The multiple sequence
alignment of the HA2 amino acid sequences showed two regions with the highest conser-
vancy based on the conserved amino acid distribution (Figure 2, green and yellow boxes).
The first 23 amino acids of the HA2 sequence (Figure 2, green box), which is known as
fusion peptide, is embedded in the interspace between monomers of the HA trimer in the
native conformation of the virus [33]. The second region with 20 amino acids in length
(Figure 2, yellow box), HA288–107: DVWTYNAELL VLMENERTLD, is not located at the
virus membrane-associated region (Figure 3A). As the embedded region does not meet
the peptide selection requirement for the current study, thus, only the HA288–107 sequence
was selected for further analysis. The 3D structure of the HA protein and the position of
the HA288–107 sequence are shown in Figure 3B. The conservancy analysis of the HA288–107
peptide showed an average of 84.16% identity for the peptide in the homologous protein
sets (Table 2) and the NCBI BLAST analysis confirmed that the conserved peptide was
100% originated from the influenza virus. Thus, the HA288–107 sequence was selected for
characterization and analysis as a potential antigen candidate.

Table 1. HA2 amino acid sequences of the highly pathogenic influenza A virus with their accession
number, geographical regions, and date of collection.

No. Subtype NCBI
Accession Number FASTA Format of HA2 Amino Acid Sequence

1 H1N1 YP009121767

>YP_009121767.1
FGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYAADLKSTQ

NAIDEITNKVNSVIEKMNTQFTAVGKEFNHLEKRIENLNKKVDD
GFLDIWTYNAELLVLLENERTLDYHDSNVKNLYEKVRSQLKNN
AKEIGNGCFEFYHKCDNTCMESVKNGTYDYPKYSEEAKLNREE

IDGVKLESTRIYQILAIYSTVASSLVLVVSLGAISFWMCSNGSLQCRICI

2 H3N2 ASV62273

>ASV62273.1
FGAIAGFIENGWEGMVDGWYGFRHQNSEGTGQAADLKSTQAAIN
QITGKLNRIIKKTNEKFHQIEKEFSEVEGRIQDLEKYVEDTKVDLWSY
NAELLVALENQHTIDLTDSEMSKLFERTRRQLRENAEDMGNGCFKIY
HKCDNACIGSIRNGTYDHDIYRDEALNNRFQIKGVQLKSGYKDWIL

W ISFAISCFLLCVVLLGFIMWACQKGNIRCNICI

3 H5N1 ACI06178

>ACI06178.1
FGAIAGFIEGGWQGMVDGWYGYHHSNEQGSGYAADKESTQKAID
GVTNKVNSIIDKMNTQFEAVGREFNNLERRIENLNKKMEDGFLDV
WTYNAELLVLMENERTLDFHDSNVKNLYDKVRLQLRDNAKELGN
GCFEFYHKCDNECMESVRNGTYDYPQYSEEARLKREEISGVKLESIG

IYQILSIYSTVASSLALAIMVAGLSLWMCSNGSLQCK

https://pepcalc.com/protein-calculator.php


Nanomaterials 2023, 13, 2796 6 of 18

Table 1. Cont.

No. Subtype NCBI
Accession Number FASTA Format of HA2 Amino Acid Sequence

4 H7N9 AGI60292

>AGI60292.1
FGAIAGFIENGWEGLIDGWYGFRHQNAQGEGTAADYKSTQ

SAIDQITGKLNRLIEKTNQQFELIDNEFNEVEKQIGNVINWTRDSI
TEVWSYNAELLVAMENQHTIDLADSEMDKLYERVKRQLRENAEE
DGTGCFEIFHKCDDDCMASIRNNTYDHSKYREEAMQNRIQIDPV

KLSSGYKDVILWFSFGASCFILLAIVMGLVFICVKNGNMRCTICI

5 H9N2 CAB95857

>CAB95857.1
FGAIAGFIEGGWPGLVAGWYGFQHSNDQGVGMAADRDSTQKAI
DKITSKVNNIVDKMNKQYEIIDHEFSEVETRLNMINNKIDDQIQDV
WAYNAELLVLLENQKTLDEHDANVNNLYNKVKRALGSNAMEDG

KGCFELYHKCDDQCMETIRNGTYNRRKYREESRLERQKIEGVKL
ESEGAYKILTIYSTVASSLVLAMGFAAFLFWAMSNGSCRCNICI

6 H2N2 AAY28987

>AAY28987.1
FGAIAGFIEGGWQGMVDGWYGYHHSNDQGSGYAADKESTQK

AFDGITNKVNSVIEKMNTQFEAVGKEFSNLERRLENLNKKMEDG
FLDVWTYNAELLVLMENERTLDFHDSNVKNLYDKVRMQLRDNV
KELGNGCFEFYHKCDDECMNSVKNGTYDYPKYEEESKLNRNEIK

GVKLSSMGVYQILAIYATVAGSLSLAIMMAGISFWMCSNGSLQCRICI
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Figure 2. Multiple sequence alignment of HA2 amino acid sequences from six different strains of
influenza virus using Multalin online software. The red color demonstrates the full conservancy, the
blue color indicates one amino acid alternation and the black color represents the alternation in more
than one amino acid at the specific region for different strains. The green (fusion peptide) and yellow
(HA288–107) boxes show the regions with the highest conservation distribution. The letter in the
consensus line means conservative and the dot indicates non-conservative amino acid substitution.

Table 2. HA288–107 peptide identity among the six highly pathogenic strains of the influenza virus.

HA288–107 Sequence Peptide Identity among the Strains
H1N1 H3N2 H5N1 H7N9 H9N2 H2N2

DVWTYNAELLVLMENERTLD
90% 65% 100% 70% 80% 100%

Average: 84.16%
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Figure 3. Location of the conserved HA288–107 peptide on influenza HA protein. (A) Sequence
diagram showing the polypeptide segment of the HA2 domain (222 amino acids) in its primary
structure, indicating the HA288–107 peptide is not associated with the membrane. (B) The position of
HA288–107 peptide (pink color) on the 3D full structure of HA protein (yellow color) using iCn3D
online software, access date: 1 July 2023). The green color represents the carbohydrate components of
the protein.

3.2. Linear B-Cell Epitopes of the HA288–107 Peptide

Emini Surface Accessibility [18], Karplus and Schulz Flexibility [19], Chou and Fas-
man Beta-turn [20], Parker Hydrophilicity propensity [21], and Kolaskar and Tongaonkar
Antigenicity analysis [22] methods from the IEDB server were used to identify linear B-
cell epitopes on the HA288–107 peptide (Figure 4). The amino acid sequence from 13 to
18 (MENERT) on the HA288–107 peptide showed the highest surface accessibility with a
score value of 2.745 (Figure 4A). The HA288–107 peptide had a maximum Karplus and
Schulz flexibility score value of 1.053 for the region between 13 to 19 amino acid residues
(MENERTL) (Figure 4B). The Chou and Fasman secondary structure prediction tool identi-
fied an amino acid sequence from 1 to 7 (DVWTYNA) of the HA288–107 peptide with the
highest score value of 1.034 (Figure 4C). Moreover, Parker hydrophilicity analysis indicated
that the most hydrophilic region of the HA288–107 peptide is the amino acid sequence from
14 to 20 (ENERTLD) with a score value of 4.686 (Figure 4D). Kolaskar and Tongaonkar’s
analysis displayed that the sequence from 7 to 13 (AELLVLM) of the HA288–107 peptide
had the highest score value of 1.125 (Figure 4E). Generally, the higher the score value for
the residues from the threshold might interpret that the amino acid sequence is having a
higher probability to be part of an epitope (those residues are colored in yellow in Figure 4).
In total, 20 linear B-cell epitopes were identified from which 5 of them were considered
top-ranked epitopes based on the values and were tabulated in Table 3. The B-cell epitope
identification results predicted that the HA288–107 peptide is likely able to interact with
B-cells and/or antibodies.
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Figure 4. Linear B-cell epitope identification on HA288–107 peptide. The most antigenic epitopes are
shown in yellow color above the threshold value (red line) and green areas are not considered as
an epitope. (A): Emini surface accessibility prediction with a threshold value of 1.000; (B): Karplus
and Schulz flexibility prediction with a threshold value of 0.968; (C): Chou and Fasman secondary
structure prediction with a threshold value of 0.834; (D): Parker hydrophilicity prediction with the
threshold value of 0.064; (E): Kolaskar and Tongaonkar antigenicity prediction with the threshold
value of 1.020.

Table 3. Top-ranked linear B-cell epitopes on HA288–107 peptide.

No. Methods Epitope
Sequence

Start
Position

End
Position

Score
Value

Threshold
Value

1 Emini Surface Accessibility MENERT 13 18 2.745 1.000
2 Karplus and Schulz Flexibility MENERTL 13 19 1.053 0.968
3 Chou and Fasman Beta-turn DVWTYNA 1 7 1.034 0.834
4 Parker Hydrophilicity ENERTLD 14 20 4.686 0.064
5 Kolaskar and Tongaonkar Antigenicity AELLVLM 7 13 1.125 1.020

3.3. T-Cell Epitopes of the HA288–107 Peptide and Human Population Coverage

The T-cell epitope prediction tool from IEDB analyzed the MHC I and MHC II binding
affinity of the HA288–107 peptide with recommended methods. A total of 6 epitopes with a
length of 9–11 mer each for MHC I and 6 epitopes with a length of 15 mer each for MHC II
were obtained (Table 4). The MHC epitopes of the HA288–107 were selected based on per-
centile ranks less or equal to 1% for MHC I and less and equal to 10% for MHC II [23]. These
12 epitopes showed binding affinity to a variety of MHC molecules and subsequently their
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corresponding alleles, such as various Human Leukocyte Antigen (HLA) A and HLA-B for
MHC I and HLA-DP, HLA-DQ, and HLA-DR for MHC II molecules. All the corresponding
MHC alleles to the T-cell epitopes were used to calculate the global population coverage of
MHC I and II alleles for the HA288–107 peptide through the IEDB analysis server (Table 5).
The MHC I alleles corresponding to T-cell epitopes cover more than 79.52% of the world
population (Figure 5A). The average number of epitope hits/HLA combinations recognized
by the world population was 3.12, and the minimum number recognized by 90% of the
population (PC90) was 0.49 (Table 5). The MHC II alleles corresponding to the identified
T-cell epitopes exhibited a population coverage rate of more than 99.88% (Figure 5B). The
average number of epitope hits/HLA combinations recognized by the population was
13.79 and the PC90 was 7.81 (Table 5).

Table 4. T-cell epitopes on HA288–107 peptide that bind to the human MHC class I and II alleles with
high affinity.

No. Epitopes
MHC I
Allele

Percentile
Rank < 1

Binding
Energy

(kcal/mol)
No. Epitopes

MHC II
Allele

Percentile
Rank < 10

1 DVWTYNAEL
HLA-A*68:02
HLA-A*26:01

0.29
0.55

−155.5 1
DVWTYNA
ELLVLMEN

HLA-DQA1*03:01/DQB1*03:02
HLA-DQA1*04:01/DQB1*04:02
HLA-DQA1*05:01/DQB1*02:01
HLA-DQA1*01:01/DQB1*05:01
HLA-DQA1*01:02/DQB1*06:02
HLA-DPA1*01:03/DPB1*04:01
HLA-DPA1*01:03/DPB1*02:01
HLA-DPA1*02:01/DPB1*01:01
HLA-DPA1*03:01/DPB1*04:02

HLA-DRB3*01:01
HLA-DRB3*02:02

3.7
4.6
4.8
6.3
9.4
3.8
4.4
5.2
7.8
7.4
8.2

2 TYNAELLVL
HLA-A*24:02
HLA-A*23:01

0.08
0.15

−103.2 2
NAELLVLM
ENERTLD

HLA-DRB1*04:05
HLA-DQA1*03:01/DQB1*03:02

HLA-DRB1*04:01
HLA-DRB1*01:01
HLA-DRB1*15:01

1.9
2.2
3.7
4.9
6.7

3 TYNAELLVLM
HLA-A*24:02
HLA-A*23:01

0.43
0.48

−115 3
TYNAELLV
LMENERT

HLA-DQA1*03:01/DQB1*03:02
HLA-DRB1*04:05

HLA-DQA1*04:01/DQB1*04:02
HLA-DRB1*04:01

HLA-DQA1*01:02/DQB1*06:02
HLA-DRB1*15:01

1.5
1.9
3.6
3.7
6.5
8.5

4 VLMENERTL

HLA-A*02:01
HLA-A*02:03
HLA-A*02:06
HLA-A*32:01
HLA-B*08:01

0.1
0.15
0.3
0.46
0.51

−160.8 4
VWTYNAEL
LVLMENE

HLA-DQA1*03:01/DQB1*03:02
HLA-DQA1*04:01/DQB1*04:02
HLA-DQA1*01:02/DQB1*06:02
HLA-DPA1*01:03/DPB1*02:01
HLA-DQA1*05:01/DQB1*02:01
HLA-DPA1*01:03/DPB1*04:01
HLA-DPA1*02:01/DPB1*01:01
HLA-DPA1*03:01/DPB1*04:02

HLA-DRB3*01:01

1.3
3.1
4.2
4.4
4.4
4.6
5.8
7.4
9.6

5 VWTYNAELL
HLA-A*24:02
HLA-A*23:01

0.54
0.81

−133.8 5
WTYNAEL
LVLMENER

HLA-DQA1*03:01/DQB1*03:02
HLA-DQA1*04:01/DQB1*04:02
HLA-DQA1*01:02/DQB1*06:02
HLA-DQA1*05:01/DQB1*02:01
HLA-DPA1*02:01/DPB1*01:01
HLA-DPA1*01:03/DPB1*04:01
HLA-DPA1*01:03/DPB1*02:01

1.5
3.5
4.6
4.7
7.9
8.6
10

6 WTYNAELLV HLA-A*68:02 0.38 −857.9 6
YNAELLV

LMENERTL

HLA-DRB1*04:05
HLA-DQA1*03:01/DQB1*03:02

HLA-DRB1*04:01
HLA-DQA1*04:01/DQB1*04:02

HLA-DRB1*01:01
HLA-DRB1*15:01

1.9
2

3.7
5.4
5.4
7.9
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Table 5. Population coverage of the HA288–107 peptide for MHC I and II alleles.

Population/Area
MHC Class I MHC Class II

Coverage a Average-Hit b PC90 c Coverage a Average-Hit b PC90 c

World 79.52% 3.12 0.49 99.88% 13.79 7.81
a projected population coverage. b average number of epitope hits/HLA combinations recognized by the
population. c minimum number of epitope hits/HLA combinations recognized by 90% of the population.
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Figure 5. Population coverage of the HA288–107 peptide. The world populations were evaluated for
the peptide using IEDB online population coverage analysis. (A) The graph shows a population
coverage of 79.52% for MHC I epitopes. (B) The graph indicates population coverage of 99.88% for
MHC II epitopes. The line (-o-) represents the cumulative percentage of population coverage of the
epitopes; the bars represent the population coverage for each epitope; the red line represents PC90.

3.4. Cluster Analysis of the MHC-Restricted Alleles

The MHCcluster v2.0 online software was used to perform functional clustering of
HLA molecules corresponding to the HA288–107 peptide based on correlations between
predicted binding affinities [34]. The software produced a clustering of 9 HLA class I and
6 HLA class II, which were recognized to interact with the predicted epitopes and the
output was produced through the conventional phylogenetic method based on sequence
data available for different HLA alleles. Figure 6 illustrates the function-based clustering of
the HLA alleles (heat map) with red zones demonstrating strong correlation and yellow
zones indicating weaker interaction of the alleles.
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Figure 6. Cluster analysis of the HLA alleles. (A) Representing the cluster of MHC-I alleles and
(B) Representing the cluster of MHC-II alleles. The red color indicates strong interaction and the
yellow zone indicates weaker interaction with appropriate annotation.

3.5. Molecular Docking

The ClusPro software 2.0 was used for molecular docking analysis to investigate the
binding pattern of the 6 MHC I predicted epitopes to the top-ranked corresponding HLA
molecules (Table 4). Among the 6 epitopes, two epitopes, VLMENERTL and WTYNAELLV,
interacted with the corresponding HLA molecules, HLA-A*02:01 and HLA-A*68:02, re-
spectively, with high affinity at the binding groove of the molecules based on the lowest
global energy and attractive Van Der Waals (VDW) in kcal/mol unit (Figure 7). The binding
energy scores for MHC I molecules are shown in Table 4.
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3.6. Antigenicity and Safety of the HA288–107 Peptide

The total antigenicity prediction score for the HA288–107 peptide was 0.2370 via the
VaxiJen 2.0 server which is below the threshold value of 0.4 which indicates the peptide
has low antigenicity. In addition, the AllergenFP and ToxinPred outputs suggested the
non-allergen and non-toxic nature of the peptide for humans, respectively.

3.7. Physicochemical Properties of the HA288–107 Peptide

In silico physicochemical analysis revealed that the molecular weight, PI value, and
instability index of HA288–107 peptide were 2.42471 kDa, 3.83, and 1.99, respectively. The
peptide is acidic and stable at pH 7 based on the PI and instability index values. Moreover,
the result showed the peptide is 45% hydrophobic, 25% acidic, 5% basic, and 25% neutral.
The peptide consists of 5 negatively charged residues and 1 positively charged residue.
The chemical formula is C107H166N26O36S1, and the total number of atoms is 336. The
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half-life was estimated to be 1.1 h in mammalian reticulocytes, 3 min in yeast, and >10 h in
Escherichia coli. The aliphatic index was estimated to be 112, indicating thermostability. The
GRAVY was predicted to be −0.265. A negative GRAVY value indicates that the peptide is
non-polar and hydrophilic. The peptide was evaluated as a soluble protein in water based
on the PI, the number of charged residues, and the peptide length. However, the only way
to determine the exact solubility of a peptide is by laboratory experiments.

4. Discussion

The timely development of new vaccines is a scientific challenge to combat the ever-
increasing global burden of viral diseases. In the case of the influenza virus, frequent
antigenic changes in surface proteins, necessitate the reformulation of influenza vaccines
every year [7]. So, the generation of a universal vaccine candidate that works against differ-
ent pathogenic influenza virus strains could have significant public health and economic
effects worldwide as it would surmount the current shortcomings of the annual vaccine
and also could provide a cost-effective alternative to the annual influenza vaccine [35]. To
achieve this goal, a conserved antigenic peptide needs to be identified. Thanks to advances
in sequencing technology, we have abundant information about the genomics and pro-
teomics of influenza virus. Therefore, it is possible to design peptide vaccines based on a
conserved epitope using various immunoinformatic and cheminformatic tools [36,37].

In the past century, only H1N1, H2N2, and H3N2 influenza subtypes have caused
pandemics, making these HA proteins the priority for vaccine development against future
pandemics [38]. The second priority targets for vaccine development are defined by HA
proteins from viruses that are known to have sporadically infected humans in the past such
as H5N1, H7N9, and H9N2. Although second-group viruses are not easily transmitted
to humans, they can cause very high mortality (30–60%) in the human population that
is infected with these viruses [39,40]. In the present study, HA2 amino acid sequences of
the mentioned six highly pathogenic influenza A viruses among the human population
were retrieved from the NCBI database, and conserved regions were identified by multiple
sequencing alignments. The HA288–107 peptide was selected from two identified sequences
as it was exposed on the surface of the virus compared to the other conserved regions based
on 3D structure analysis. Also, it has been shown that the region between amino acids
35 and 107 of the HA2 sequence was accessible to the antibodies and immune cells in the
native structure of the virus [41]. In general, antigens that are displayed on the surface of the
virus are more likely accessible to the immune system at the first point of the infection [42].
Moreover, the HA288–107 peptide was considered a highly conserved peptide as its average
similarity (84.16%) with the homologous protein sets was more than 70%, showing that it
may serve as a candidate antigen for the universal influenza vaccine design [43]. Although
the H3N2 subtype showed 65% similarity to the HA288–107 peptide (Table 2), the amino
acid differences were conservative replacements, which means it is an exchange between
two amino acids separated by a small physicochemical distance. It is necessary to check
the similarity between the selected peptide and self-proteins while designing vaccine
candidates to avoid any cross-reactivity of the induced immune responses [44]. The NCBI
BLAST analysis confirmed that the peptide did not have any similarity to self-proteins or
antigens from other pathogens and it 100% belongs to the influenza virus.

Epitope mapping has been performed to identify potential B and T-cell epitopes on
the conserved HA288–107 peptide to validate the antigen selection for vaccine design. An
epitope refers to a specific site on an antigen to which a complementary antibody and/or
immune cells may specifically bind. The B-cells, which are part of the adaptive immune
system, act as receptors, bind to the antigen’s epitopes, mediate humoral immunity, and
have crucial roles in influenza viral infections and vaccinations [45,46]. In general, B-cell
epitopes are categorized into linear (continuous) epitopes, which consist of a linear sequence
of residues; and conformational (discontinuous) epitopes, which consist of residues that
are brought together by folded protein structure and are not continuous in the primary
protein sequence [47]. The prediction of linear epitopes has received major attention as
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they can readily be used as antigens for vaccine and antibody production. In the case
of conformational epitopes, 3D structure information and suitable scaffolds for epitope
grafting are required. In the current study, only linear epitopes were predicted based on
amino acid propensity scales depicting the physicochemical features of B-cell epitopes [48].
Twenty linear B-cell epitopes were identified that indicated the HA288–107 peptide is likely
able to interact with B-cells. Among them, five epitopes are considered high-ranked
epitopes based on surface accessibility, flexibility, secondary structure, hydrophilicity, and
physicochemical properties.

The amino acid sequence from 13 to 18 (MENERT) on the HA288–107 peptide showed
the highest surface accessibility with a score value of 2.745. The higher surface accessibility
of the epitope means a higher chance of being recognized by B-cells or antibodies [18].
The HA288–107 peptide had a maximum flexibility score value of 1.053 for the region
from 13 to 19 amino acid residues (MENERTL). When the epitope is flexible, several
sets of conformations within the native antigen can cause the generation of different
antibodies that lead to broader antibody-mediated responses [49]. The Chou and Fasman
secondary structure analysis identified an amino acid sequence from 1 to 7 (DVWTYNA)
with the highest score value of 1.034. The tool predicts the epitope based on the beta-turn
structure scale, where the polypeptide chain folds back on itself by nearly 180 degrees
and gives a protein its globularity rather than linearity structure and the beta turns in a
protein are more surface accessible [20]. In general, the conformation of epitope allows
recognition of the epitope by B-cells or antibodies, and in this case, it is thought to be an
important aspect of vaccine design [50,51]. Furthermore, the Parker hydrophilicity analysis
indicated that the most hydrophilic region of the HA288–107 peptide is the amino acid
sequence from 14 to 20 (ENERTLD) with a score value of 4.686. As hydrophilic regions
are predominantly located on the protein surface, subsequently, they can be considered as
more antigenic regions [21,48]. The Kolaskar and Tongaonkar analysis displayed that the
sequence from 7 to 13 (AELLVLM) of the HA288–107 peptide had the highest score value of
1.125. The method uses the physicochemical properties of amino acids and their frequencies
of occurrence in experimentally known segmental epitopes to predict antigenicity [22].

On the other hand, cell-mediated immunity is another part of the adaptive immune
response responsible for long-lasting immunity. It can restrict the spread of the infection
directly and activate other immune cells to destroy pathogens, respectively [52,53]. Cy-
totoxic T-cells (CD8+) and helper T-cells (CD4+) play important roles in cell-mediated
immunity. They scan other cells through their T-cell receptors for MHC:peptide complexes
and recognize epitopes that are presented by MHC molecules [54]. When stimulated with
a MHC molecule that presents antigenic peptides, T-cells can directly restrict the spread of
infection in human cells and they have been able to provide cross-reactivity in the recogni-
tion of the different subtypes of influenza A virus when evoked by conserved regions of the
influenza virus [55–57]. The epitope hits/MHC I molecule complex can trigger the CD8+
T cells and the epitope hits/MHC II molecule complex can be detected by CD4+ T cells,
which is very important in the regulation of both CD8+ T and B-cells [58]. Thus, prediction
of interaction between T-cell epitopes and MHC molecules is required in the design of
vaccines against pathogens. Here, MHC binding prediction results demonstrated 12 T-cell
epitopes on the HA288–107 peptide that can form MHC:epitope complexes to interact with
CD8+ T and CD4+ T-cells and are considered potential epitope hits. These epitopes can
interact with various MHC molecules in humans such as HLA-A and HLA-B for MHC class
I and HLA-DP, HLA-DQ, and HLA-DR for MHC class II molecules. The epitopes were
selected based on the percentile rank, which is a transformation that normalizes the binding
affinity scores across different MHC molecules and enables MHC binding prediction and
comparisons. A lower percentile rank value indicates higher affinity [23,59].

The MHC molecules are highly polymorphic and the expression frequency of dif-
ferent MHC molecules varies in different ethnicities and geographic areas around the
world [60–62]. This polymorphism is basically in the gene region encoding the binding
groove of MHC molecules and causes widely varying binding specificities [63]. Thus, any
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selected epitope for epitope-based vaccine design should bind to several molecules of HLA
supertype for maximum population coverage, especially in the case of universal vaccine
development [43]. In general, population coverage is defined as the fraction of individuals
in a population that responds to the predicted epitopes of an antigen based on the HLA
allele frequencies of the population [64]. In the current study, all the corresponding alleles to
the epitopes from T-cell epitope identification analysis were used to indicate the population
coverage for the HA288–107 peptide. The results revealed a strong correlation between the
corresponding MHC II alleles and the population coverage rate (99.88%). Thereby, the
HA288–107 peptide can trigger CD4+ T cells and consequently, regulate CD8+ T and B-cell
responses in 99.88% of the world population. Also, based on MHC I predicted alleles, the
peptide can trigger CD8+ T cells directly in 79.52% of the world population.

Despite the high polymorphism in the human MHC genomic region, not all MHC
molecules are equally different in terms of function. Structure-based clustering methods are
effective in identifying superfamilies of MHC proteins with similar binding specificities [65].
As MHC super-families play an important role in drug development and vaccine design,
MHC cluster analysis was also applied to specify the functional relationship of MHC
variants based on correlations between predicted binding affinities [34]. The MHCcluster
v2.0 server, which provides pictorial tree-based visualizations and a heat map of the
functional association of MHC variants, generated a cluster of 15 HLA molecules identified
as interacting with our predicted epitopes. The output was generated using a standard
phylogenetic method based on available sequence data for different HLA alleles. The
result of cluster analysis can indicate these alleles are in different cluster groups (more
functionality in the population), which can strengthen the prediction from the previous
analysis in this study. Furthermore, the molecular docking analysis in vaccine design can
help researchers to model the interaction between epitopes and immune cell receptors
at the atomic level and facilitate the prediction of the epitope binding possibilities to the
immune receptors [66,67]. Hence, a docking study was performed to confirm the association
between HLA molecules and our predicted epitopes. Two epitopes, VLMENERTL and
WTYNAELLV, interacted with the corresponding alleles, HLA-A*02:01 and HLA-A*68:02,
with high affinity at the binding groove of the HLA molecules. Consequently, the peptide
is an ideal vaccine candidate for >1 billion people globally who express HLA-A*02:01 [68].

The VaxiJen 2.0 software classifies antigens based solely on the physicochemical
properties of the protein and predicts the antigenicity of an antigen in total, irrespective of
epitope mapping. The total antigenicity prediction score for the HA288–107 was below the
threshold value of 0.4 which indicates the peptide has low antigenicity [28]. In general, one
of the limitations of subunit vaccines is their low antigenicity as they mostly rely on epitopes
with the absence of immunostimulatory components from the source pathogens. Different
approaches such as the inclusion of nanoparticles and immunopotentiators into vaccine
formulation have been applied to enhance the desired antigenicity and immunogenicity of
influenza subunit vaccines [69]. For example, the Hepatitis B core Antigen was applied as
an immunopotentiator agent to increase the HA288–107 peptide antigenicity [70]. Also, the
result from VaxiJen analysis indicated that the total antigenicity score value was increased
after the HA288–107 peptide was fused to the N terminal end of the HBcAg protein, which
indicates the fusion protein can be antigenic.

The allergenicity assessment is a crucial step in the design of a peptide vaccine as it
may induce allergic reactions by initiating immunoglobin E production and enhancing
response to histamine [71,72]. The result from AllergenFP software revealed that the
HA288–107 peptide was not an allergen to humans so it should not be able to cause any
allergenic reaction within the body. The server is a binary classifier between allergens and
non-allergens and it predicts allergenicity based on the amino acid principle properties such
as size, hydrophobicity, helix, and beta-strand formations [73]. Moreover, high specificity
and low cross-reactivity are generally considered to design effective, safe, and theoretically
infallible therapeutic molecules and vaccines [30]. In particular, computational screening of
non-toxic peptide approaches is needed to improve peptide selectivity with less cost and
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time [74]. The ToxinPred tool was used to predict and evaluate the toxicity of the HA288–107
peptide in which the negative value indicated that the peptide was not toxic.

Various physicochemical properties of the peptide were analyzed. The instability
index was computed below the threshold, which classified the peptide as a stable molecule
and ensured that the construct possesses good characteristics to initialize an immunogenic
reaction in the body. The value above the threshold indicates the instability of the protein,
which can be related to the order of certain amino acids in the sequence [75]. On the other
hand, the thermostability of the conserved peptide was demonstrated by the aliphatic index.
The index is defined as the relative volume occupied by aliphatic side chains [alanine (Ala),
valine (Val), isoleucine (Ile), and leucine (Leu)]. It may be regarded as a positive factor for
the increase in thermostability of globular proteins. A high aliphatic index indicates that
a protein is thermostable over a wide temperature range [76]. Moreover, the hydrophilic
nature of the conserved peptide sequences was represented by the GRAVY value which is
calculated as the sum of hydropathy values of all of the amino acids divided by the number
of residues in the sequence. A negative GRAVY value indicates that the protein is non-polar
and hydrophilic [77]. Furthermore, the PI value and the total number of charges indicated
that theoretically, the peptide might dissolve in aqueous media at pH 7. In general, at
the PI, proteins have a zero charge and tend to associate together, resulting in insolubility,
but at the pH above the PI, the net charge is negative and solubility is likely predictable.
On the other hand, the 45% hydrophobicity may cause insolubility or partial solubility of
the peptide in an aqueous solution even if the sequence contains more than 25% charged
residues [31,77]. So, further in vitro experiment is needed to discover the exact solubility of
the conserved peptide.

5. Conclusions

In general, the influenza A virus remains a current and future threat to public health
and all outbreaks demonstrate the need to develop a universal vaccine to protect against
different strains. The computational framework is useful for evaluating the effectiveness of
an antigen generated through existing bioinformatics tools. In the current study, the results
indicated that the HA288–107 peptide can be a promising antigen for universal influenza vac-
cine design. However, we recommend further studies based on wet laboratory techniques
to validate our predicted peptide experimentally for vaccine design and development.
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