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Abstract: Fe3C nanoparticles hold promise as catalysts and nanozymes, but their low activity and
complex preparation have hindered their use. Herein, this study presents a synthetic alternative
toward efficient, durable, and recyclable, Fe3C-nanoparticle-encapsulated nitrogen-doped hierarchi-
cally porous carbon membranes (Fe3C/N–C). By employing a simple one-step synthetic method,
we utilized wood as a renewable and environmentally friendly carbon precursor, coupled with
poly(ionic liquids) as a nitrogen and iron source. This innovative strategy offers sustainable, high-
performance catalysts with improved stability and reusability. The Fe3C/N–C exhibits an outstanding
peroxidase-like catalytic activity toward the oxidation of 3,3′,5,5′-tetramethylbenzidine in the pres-
ence of hydrogen peroxide, which stems from well-dispersed, small Fe3C nanoparticles jointly with
the structurally unique micro-/macroporous N–C membrane. Owing to the remarkable catalytic ac-
tivity for mimicking peroxidase, an efficient and sensitive colorimetric method for detecting ascorbic
acid over a broad concentration range with a low limit of detection (~2.64 µM), as well as superior
selectivity, and anti-interference capability has been developed. This study offers a widely adaptable
and sustainable way to synthesize an Fe3C/N–C membrane as an easy-to-handle, convenient, and
recoverable biomimetic enzyme with excellent catalytic performance, providing a convenient and
sensitive colorimetric technique for potential applications in medicine, biosensing, and environmental
fields.

Keywords: iron carbide nanoparticles; nitrogen-doped carbon; wood-derived carbon; colorimetric
detection; ascorbic acid

1. Introduction

Ascorbic acid (AA), also called vitamin C, is a crucial water-soluble vitamin. Its
antioxidant properties are effective for developing the immune system, preventing and
treating some diseases such as cancer, and creating collagen in various tissues in the human
body [1,2]. Since the human body cannot generate this vital vitamin, gaining enough AA
from the daily diet and health supplements is essential. Consequently, developing quick
and straightforward approaches to determine the concentration of AA with high selectivity
and accuracy is required in different fields, e.g., pharmacy and food industries [3]. So
far, several methods, for instance, high-performance liquid chromatography (HPLC) [4],
capillary electrophoresis [5], fluorescence [6], and electrochemistry [7], have been used to
evaluate the AA concentration. Compared with other techniques, the colorimetric assay
has recently gained widespread attention as a reliable biosensor due to its distinctive ad-
vantages such as rapid detection, simplicity, superb sensitivity, low cost, and facile optical
detection with the naked eye [8]. To develop a quick colorimetric sensor, peroxidase, a
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kind of natural enzyme, plays a pivotal role thanks to its high catalytic efficiency and
specificity [9]. However, high cost, low stability, brief shelf life, and harsh environmen-
tal conditions significantly hamper its practical use [10]. To overcome these challenges,
researchers have developed nanomaterial-based artificial enzymes (“nanozymes”) that
can mimic the functions of natural enzymes [11]. So far, a collection of nanomaterials,
e.g., metallic nanoparticles [12,13], carbon-based nanomaterials [14,15], and metal–organic
frameworks (MOFs) [16], have been successfully crafted, which demonstrated the inherent
peroxidase-like function.

Recently, Fe3C, a member of the iron carbide family, indicated outstanding peroxidase-
like catalytic activity because of its high redox capacity, a large number of active sites,
and superior surface reactivity [17,18]. Especially, the ultrafine Fe3C-based nanoparticles
possess highly exposing active sites and could therefore be considered as a promising
catalytic agent. Nevertheless, the strong aggregation tendency of Fe3C nanoparticles
often leads to loss of surface area, reducing their catalytic capacity [19,20]. Dispersing
Fe3C nanoparticles over a porous conducting matrix, especially heteroatom-doped porous
conductive carbon, could be an effective strategy to minimize nanoparticle aggregation.
In this composite catalyst, the carbon matrix plays a dual role: first, it maintains the high
catalytically active surface area for Fe3C; second, it endows the catalyst with sufficient
conductivity and chemical stability due to the carbon component [21,22]. In addition,
the heteroatom doping of carbon may synergistically boost the catalytic process through
tuning the local electronic and chemical structure [23]. Therefore, it is of high interest to
explore synthetic strategies to synthesize ultrafine Fe3C nanoparticles dispersed over a
heteroatom-doped porous carbon matrix that can exhibit peroxidase-like activity.

Herein, we established a facile wood-based method for synthesizing a nitrogen-doped
porous carbon membrane containing well-dispersed Fe3C nanoparticles (termed “Fe3C/N–
C”) through sequential pyrolytic treatments. The as-prepared Fe3C/N–C catalyst illustrated
an excellent characteristic peroxidase-like activity to 3,3′,5,5′-tetramethylbenzidine (TMB)
oxidation due to the ultrafine Fe3C nanoparticles and their corresponding cooperative in-
terfacial effect between Fe3C nanoparticles and the nitrogen-doped carbon matrix. Because
of the elevated catalytic activity, a convenient colorimetric assay of AA has been devel-
oped. It has been proven that the optimized Fe3C/N–C composite catalysts are impressive
peroxidase mimics, which exhibit promising opportunities in the fields of biosensors and
biomedicine.

2. Experimental Section

Materials. Balsa wood was purchased from Material AB, Sweden. 1-Vinylimidazole
(99%) and sodium tetrafluoroborate were obtained from Alfa Aesar, Karlsruhe, Ger-
many. Potassium hexafluorophosphate was purchased from Acros Organics, France.
Bromoacetonitrile (95%) was purchased from TCI, Europe. Lithium bis(trifluoromethane
sulfonyl)imide (LiTFSI, 99.95%) was purchased from Io-li-tec, Heilbronn, Germany. Sodium
chlorite, sodium acetate, 3,3′,5,5′-tetramethyl-benzidine (TMB), L-ascorbic acid, and iron
(III) chloride were purchased from Sigma-Aldrich, Darmstadt, Germany. N,N-dimethylfor-
mamide (DMF) was obtained from Honeywell, Germany. H2O2 was purchased from VWR,
Leuven, Belgium. All chemicals were used without any further purification. Solvents were
of analytical grade.

Poly(ionic liquid) (PIL) synthesis. The polymer precursor with Br− as counteranion,
poly(1-cyanomethyl-3-vinylimidazoulim bromide) (PCMVImBr), was synthesized in ref-
erence to our earlier published procedure [24]. Its chemical structure was characterized
through proton nuclear magnetic resonance (1H-NMR) spectroscopy, as demonstrated in
Figure S1. Poly(1-cyanomethyl-3-vinylimidazoluim bis(trifluoromethane sulfonyl)imide)
(PCMVImTFSI) was made through an anion metathesis reaction between PCMVImBr and
LiTFSI in their aqueous solution. In a standard anion-exchange procedure, an aqueous
solution of LiTFSI was added dropwise to an aqueous solution of PCMVImBr at a con-
centration of 1 wt%. The final TFSI/Br molar ratio was set as 1.15/1. The precipitate was
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filtered off and washed with pure water several times, and finally dried at 70 ◦C under
vacuum until constant weight.

Wood delignification. Balsa wood with a density of 123 kg m−3 was sliced into
thin membranes with controllable thickness using cutting equipment (secotom-50). The
cutting direction was maintained perpendicular to the growth direction of the trunk. Before
chemical treatment, all wood slices were dried at 80 ◦C in an oven for 10 h. To extract
hemicellulose and lignin, a well-established method was employed using sodium chlorite
(1 wt%) with acetate buffer solution (pH 4.6) for 6 h at 80 ◦C. After the treatment, the
membranes were rinsed with deionized water and ethanol and dried at room temperature
until constant weight.

Preparation of the Fe3C/N–C catalyst. Amounts of 0.200 g of the as-synthesized
PCMVImTFSI and 0.030 g of iron (III) chloride were thoroughly dissolved in 2 mL of DMF
until a homogenous solution was achieved. The 0.600 g delignified wood membranes
were coated with the solution and dried at 80 ◦C for 2 h. The obtained membranes were
immersed in a 0.25 wt% aqueous ammonia solution for 2 h to generate a porous polymeric
structure on the cells of the wood. Then, the obtained membranes were washed with
pure water several times. It was finally dried under ambient conditions until a constant
weight. Next, the prepared membranes were carbonized as the following procedure in a
tube furnace. First, the membranes were heated at 300 ◦C in nitrogen flow for 1 h, heated
to 600 ◦C, and maintained at this temperature for 1 h; finally, they were heated to 900 ◦C
and kept for 10 min. For comparison, the membrane was also carbonized at different
final temperatures, including 700, 800, and 1000 ◦C. Finally, the Fe3C/N–C catalysts were
obtained.

Peroxide catalytic activity. Typically, 20 µL of the as-prepared Fe3C/N–C suspension
(3 mg mL−1) and 20 µL of TMB solution (15 mM) in DMSO were added into 3 mL of acetate
buffer solution (pH 4) containing H2O2 (50 mM) at room temperature. The oxidation of
TMB by the catalyst was studied by monitoring the absorbance peak at 652 nm after 10 min
of reaction. The other groups, including TMB + H2O2 and TMB + catalyst (Fe3C/N–C)
at the same concertation as mentioned, were selected as the controls. Photographs of
the reaction solution were obtained, and UV-Vis absorbance was collected using a UV-
Vis-NIR spectrophotometer (Agilent Technologies, Santa Clara, CA, USA). Under the
above-mentioned concentrations, the catalyst’s pH tolerance was investigated in a wide
range (2.0~11.0) at room temperature. Similarly, temperature tolerance was examined in
the reaction by altering the temperature between 25 and 60 ◦C in acetate buffer (pH 4).

Kinetic analysis. The kinetics of the reaction was considered by monitoring the
absorbance variation at 652 nm at one-minute intervals in a scanning mode. The steady-
state kinetics was analyzed using H2O2 and TMB as substrates. The tests were performed
by altering the TMB concentration at a fixed H2O2 concentration or contrariwise. The
Michaelis–Menten equation was applied to determine the kinetic parameters (Equation (1)).

Michaelis–Menten v = Vmax × [S]/(Km + [S]) (1)

where v, Vmax, [S], and Km represent the initial velocity, maximum reaction velocity, sub-
strate concentration, and Michaelis constant, respectively. The molar attenuation coefficient
of TMB at 652 nm was 39,000 M−1cm−1. The tests were carried out in a colorimetric dish of
1 cm in thickness.

Detection of ascorbic acid. AA detection was studied as follows: 15 µL of H2O2
sample, 60 µL of TMB solution, and 20 µL of catalyst dispersion in acetate buffer (pH 4.0)
with a final volume 500 µL reacted for 15 min at room temperature, and the blue color
of oxTMB was observed. Then, the ascorbic acid samples at different concentrations of
0–200 µM were individually added to the blue solution, and the UV-Vis absorbance at
652 nm was monitored. Similarly, the experiment was repeated by replacing AA with
various reagents such as sulfite, citric acid, glycine, serine, alanine, aspartic acid, tartaric
acid, arginine, and saccharides like glucose, lactose, and fructose.
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Characterization. Phase structure was examined on an X-ray diffractometer PANalyti-
cal X’Pert Pro (Malvern Instruments, Malvern, UK) applying Cu Kα radiation (λ = 1.5418 Å)
between 5◦ and 80◦ at a scan rate of 0.2◦/min. Chemical bonding characterizations were
monitored through ESCALAB 250Xi X-ray photoelectron spectroscopy (XPS) (USA). The
morphology of samples was investigated using a JEOL 7000F (JEOL Ltd., Tokyo, Japan)
scanning electron microscope (SEM) operated at 10 kV. Samples were sputtered by a thin
gold layer for 60 s before the examination. Energy-dispersive X-ray (EDX) mapping was
taken on the SEM using an EDX spectrometer. The particle size was determined through
transmission electron microscopy (TEM) using a JEOL JEM-2100 (JEOL GmbH, Eching,
Germany) operated at 200 kV. The nitrogen sorption isotherms at 77 K were performed
using the Micromeritics ASAP 2020 (Accelerated Surface Area and Porosimetry system,
Germany). Before the sorption experiments, all samples were degassed for 7 h at 373 K
under vacuum. The Brunauer–Emmett–Teller (BET) equation was used to calculate the
specific surface area. Thermogravimetric analysis (TGA) experiments were carried out at a
heating rate of 10 ◦C min−1 from 50 ◦C to 900 ◦C under air flow using a TA Instruments
Discovery TG. Raman spectroscopy was performed on a Horiba Labram HR system with
532 nm laser excitation. 1H-NMR spectra were performed at room temperature using a
Bruker DPX-400 spectrometer operating at 400 MHz. DMSO-d6 was employed as an NMR
solvent for the measurement. Additionally, the catalytic attributes were examined through
ultraviolet-visible (UV-Vis, Agilent Technologies UV-Vis-NIR spectrophotometer, Petaling
Jaya, Malaysia) measurement.

3. Results and Discussion

Fe3C nanoparticle-functionalized nitrogen-doped porous carbon membranes, termed
Fe3C/N–C, were synthesized via a facile pyrolysis of Balsa wood in the presence of a
mixture of poly(ionic liquid) and FeCl3 as N/Fe sources. It is known that the chemical
nature and microstructure of precursors strongly affect the physiochemical properties and
chemical composition of heteroatom-doped carbon products [25]. Thus, wood carrying
the elegant form of interconnected and oriented channel-like pores, in addition to its re-
newability and low cost, stands out as an attractive source for conductive porous carbon
matrix [26,27]. Obviously, various types of wood possess different internal porous struc-
tures, and Balsa wood was chosen here as a carbon precursor owing to its multi-channel
hierarchically porous structure. Furthermore, due to its high nitrogen content, poly(ionic
liquid) (PIL) as the polymerization product of ionic liquids can serve as the source of
nitrogen that endows porous carbons with target N doping; in addition, the PIL can in-
duce the formation of extra porous carbon structures through its catalytic degradation of
biomass [28]. In comparison to other types of polymers, PILs can be more thermally stable
to secure a high carbonization yield [29,30], can be rich in heteroatoms of different types
that can dope carbon products [31,32], and can molecularly disperse the iron precursor
to secure uniform formation of Fe3C nanoparticles in the porous carbon matrix [33]. To
note, the cation–anion pair in PIL is one of the key parameters in creating the tiny pores
to accommodate active sites for catalysis [24]. Using the wood slice and PIL as precursors
readily enables the formation of a thin porous carbon membrane, which is effective for the
enrichment of AA and proper for practical use in in situ detection. More significantly, as a
heterogeneous catalyst at a macroscopic size, the composite membrane can be recycled at
will from the liquid reaction system [34,35].

In a typical synthetic run, after chemical treatment of Balsa wood to remove lignin
and hemicellulose, a mixture of an aqueous solution of FeCl3 and PCMVImTFSI (TFSI
denotes the counteranion) was coated onto the wood cells’ surface through straightforward
wet-impregnation and drying under ambient conditions to constant weight. PILs are well
known for their high surface activities and attach themselves efficiently onto the wood
surface via multiple intermolecular interactions, e.g., hydrogen bonding and van der Waals
interaction. Because of the ionic complexation of the iron cation with the -CN unit and the
ion pair in the PIL, the FeCl3 can be embedded in PIL and uniformly anchor as a coating
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layer onto the porous wood surface [36]. This step is critical for forming the iron carbide
nanoparticles and minimizing their severe aggregation caused by the uneven distribution
of iron precursors. Afterward, a pyrolysis treatment at various carbonization temperatures
under nitrogen was performed to generate the target Fe3C/N–C membranes.

Because of the benefit of the facile scalable synthetic method, the technique can prop-
erly tailor the hierarchical membrane with a controllable composition and microstructure.
Since the enzyme-mimicking activities of carbon materials are obviously affected by the fi-
nal carbonization temperatures, the alteration in catalytic activity against the carbonization
temperature was studied first between 700 ◦C and 1000 ◦C, wherein 900 ◦C was identified
as the optimum temperature; thus, studies thereafter were based on this sample (Figure S2).
As shown in the inset of Figure 1a, a photograph of a spherical carbon membrane of
Fe3C/N–C of 1 cm in diameter is presented. Since the Fe3C/N–C membrane is cuttable
by a normal cutter, it can be easily produced in different sizes and shapes. Next, the
morphology of the as-synthesized catalyst was studied using scanning electron microscopy
(SEM) and transmission electron microscopy (TEM). The cross-sectional SEM images of
Fe3C/N–C (Figure 1a,b and Figure S3) show that the 3D porous structure of the Balsa wood
with well-aligned microchannels are completely preserved after the pyrolysis process [37].
This open channel in the 3D porous carbon framework with low tortuosity can significantly
lower the diffusion length, resulting in smooth and fast mass transportation to and from
the active sites [38]. Besides the large-sized channels, the SEM images further reveal the
presence of macropores of 1.75 ± 0.5 µm sitting directly on the cell wall of the carbon,
which interconnect parallel channels of the carbon framework.
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Figure 1. (a,b) Cross-sectional SEM images of Fe3C/N–C, respectively. The inset in (a) shows the
photograph of the final membrane prepared at 900 ◦C. (c) Elemental mapping of different elements
in Fe3C/N–C, (d) TEM image of Fe3C/N–C, and (e,f) HR-TEM images of Fe3C/N–C.

The decoration of Fe3C nanoparticles over the porous carbon framework was revealed
by TEM images. Figure 1d displays nanoparticles of Fe3C homogenously dispersed over
the thin carbon nanosheets without agglomeration. Importantly, the histogram of the
nanoparticles’ size distribution (Figure S4) shows that the average diameter of the Fe3C
nanoparticles is small, 4.9 ± 2.5 nm. The ultra-small nanoparticles embedded in the porous
carbons possess rich accessible active sites and therefore are beneficial to their catalytic
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performance [39]. To study the role of PIL on the formation of dispersed Fe3C nanoparticles,
a control sample was synthesized without PIL under the same condition. The TEM image
of the control sample demonstrates the aggregation of nanoparticles into a large size of
39 ± 19 nm (Figures S5 and S6), confirming the cooperative role of PIL in the formation
of well-dispersed Fe3C nanoparticles. To further analyze the successful formation of the
Fe3C/N–C catalyst, we switched to energy-dispersive X-ray (EDX) mapping and high-
resolution TEM (HR-TEM) images. First, the EDX mapping shows the microscopic uniform
distribution of Fe, N, and C elements across the catalyst surface (Figure 1c), in accordance
with the observed homogenous distribution of Fe3C nanoparticles within the porous
carbons through TEM. The presence of the N element supports the successful doping of
the carbon framework with nitrogen atoms owing to the decomposition and doping of the
carbon matrix by PIL at high temperature (>500 ◦C) [40]. From the HR-TEM images of
Fe3C/N–C (Figure 1e,f), we can clearly observe two distinct crystalline phases with lattice
spacings of 0.21 nm and 0.36 nm corresponding to the crystallographic planes (220) of Fe3C
and (002) of graphitic carbon, respectively [41,42]. The presence of a graphitic phase (002)
with an interlayer spacing of 0.36 nm suggests the occurrence of a graphitization process of
the wood/PIL mixture at a temperature of 900 ◦C due to the catalytic role of PIL to biomass
during pyrolysis [28].

The degree of graphitization and the phase structure information of the carbons in
Fe3C/N–C were studied using Raman spectroscopy. Figure 2a shows the appearance of
two distinct bands at 1350 cm−1 and at 1590 cm−1, which are assigned, respectively, to
the D-band originating from the disorder in carbon atoms and structural defects, and
the G-band, which is attributed to the ordered carbon structures [31,43]. The intensity
ratio of the D band to the G band was quantitatively calculated to be 0.98. Importantly,
graphitization improves the transport of electrons through the carbonized porous wood,
which for this sample is measured to be 232 ± 16 S/m as the apparent conductivity (due to
the presence of pores). As a result, this graphitic wood could serve as a conductive matrix
to favor peroxidase catalytic activity.
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Figure 2. (a) Raman spectrum, (b) XRD pattern, and (c) XPS full survey spectrum of the obtained
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The phase structure of as-synthesized Fe3C/N–C catalysts was analyzed via an X-ray
diffraction (XRD) study. In Figure 2b, the diffraction peaks at 25.0◦, 42.9◦, 44.4◦, 54.4◦, and
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77.9◦ could be assigned to the diffraction planes of (002), (100), (101), (004), and (110) of
the graphitic phase (JCPDS: 41-1487), respectively. The diffraction peaks at 37.7◦, 39.8◦,
40.6◦, 42.8◦, 43.8◦, 44.5◦, 45.0◦, 45.9◦, 48.6◦, and 49.1◦ can be attributed to the crystal planes
of (210), (002), (201), (211), (102), (220), (031), (112), (131), and (221) of the Fe3C phase
(JCPDS 35-0772), respectively. The iron content of the Fe3C/N–C was analyzed through
thermogravimetric analysis (TGA) (Figure S7). After aerobic pyrolysis of Fe3C/N–C, as
expected, the residue was identified as Fe2O3 (Figure S8). As shown in Figure S4, based on
the iron oxide mass after the TGA test (3.83 wt%), the iron content of the Fe3C/N–C was
calculated as 2.8 wt%.

We further analyzed the sample through X-ray photoelectron spectroscopy (XPS) to
understand the surface chemical composition and the electronic state of the elements in
the Fe3C/N–C catalyst. From the survey spectrum of the Fe3C/N–C (Figure 2c), we can
confirm the presence of C, N, O, and Fe elements, as expected [44]. The survey spectrum
further reveals the presence of 3.65 atom% and 1.02 atom% of N and Fe, respectively, on
the surface. The compound content calculated from XPS is lower than the actual amount,
which can be attributed to the fact that XPS analysis has restricted access to the iron carbide
nanoparticles and nitrogen atoms embedded inside the carbon layers due to the limited
detecting depth in XPS (~5 nm) [45,46]. The high-resolution C 1s spectrum (Figure 2d)
was fitted with four peaks corresponding to C–Fe (283.9 eV), C–C/C=C (284.6 eV), C–N
(285.6), and C=O (288.0 eV) [47,48], suggesting the existence of graphite-like carbon (in
an abundance of 50 atom%), nitrogen binding carbon (C–N), and iron binding carbon
(Fe–C). Figure 2e shows the N 1s spectrum, which can be deconvoluted into four peaks,
corresponding to the pyridinic N (398.8 eV), pyrrolic N (400 eV), graphitic N (401.1 eV), and
oxidized-N (403.6), verifying the N-doping nature of the carbon structure [49,50]. It is worth
mentioning that graphitic N sites (which, in our case, is around 45 atom%) particularly
have the capability to improve the circulation of electrons due to their smaller diameter and
higher electronegativity than carbon atoms [51]. Hence, graphitic carbon plus a significant
amount of graphitic N in the network can combine together and encourage the breakage of
the O-O bond in hydrogen peroxide [52]. As displayed in Figure 2f, the high-resolution Fe
2p XPS spectrum reveals two characteristic Fe 2p3/2 and Fe 2p1/2 peaks. The deconvoluted
Fe 2p spectrum with peak positions at Fe2+ 2p3/2 (709.9 eV), Fe3+ 2p3/2 (712.5 eV), Fe2+

2p1/2 (722.0 eV), and Fe3+ 2p1/2 (725.2 eV) demonstrates the successful formation of Fe3C
over the porous carbon framework [53,54].

Generally speaking, surface area and porous structure play a crucial role in cataly-
sis [55]. With the other conditions being the same, samples with a higher surface area show
better catalytic performance [9,56]. The surface area and pore size distribution were studied
through the nitrogen sorption isotherm (Figure S9). The isotherm exhibited an IUPAC-type
IV shape. The specific surface area (SBET) and pore volume of Fe3C/N–C were 327 m2 g−1

and 0.17 cm3 g−1, respectively. Furthermore, Figure S10 displays the pore size distribution
plot and proves the existence of dominant micropores and small mesopores [57]. The
abundant microporous structure, if accessible, is vital to improving the catalytic activity
because they can host the compact catalytic sites owing to the high surface-to-volume
ratio [58–60]. Nevertheless, it is challenging for rich micropores in the membrane to exert
their entire catalytic capacity due to the large diffusion resistance through pores below
2 nm in size. This challenge can be effectively addressed by the presence of mesopores, as
shown in Figure S10, and macropores, as proven by the SEM image. Such a hierarchy in
pores is valuable for catalysis, as micropores with rich active sites can be connected to meso-
and/or macropores to balance the catalytic activity and mass transfer kinetics [36,61].

Mimetic peroxidase activity. According to previous studies, carbon materials con-
taining iron and nitrogen species illustrated enzyme-like catalytic properties [62,63]. For
biosensors and other analytical applications, the optical properties of the sample were first
monitored and investigated. The peroxidase-like activity of Fe3C/N–C was evaluated in
the oxidation reaction of TMB in the presence of H2O2. In a typical process, the colorless
liquid reaction mixture becomes blue with a characteristic absorbance peak emerging at
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652 nm, originating from the oxidized TMB (termed ox-TMB), similar to what has been ob-
served for the well-known horseradish peroxidase (HRP) [64,65]. The TMB solution, which
only contained either H2O2 or the catalyst of Fe3C/N–C, did not show a distinguishable
UV-Vis adsorbance at 652 nm, and the reaction system remained colorless and unchanged
(curves and inset in Figure 3a). These results suggested that the oxidation reaction did not
take place. Once the catalyst, H2O2, and TMB were all combined in the system, the blue
color emerged (curve and inset A1 in Figure 3a). This proved that the Fe3C/N–C could
decompose H2O2, which is responsible for triggering the oxidation reaction of TMB into
ox-TMB that showed up as an absorption peak at 652 nm in the UV-Vis spectrum [66,67].
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Figure 3. (a) UV-Vis absorbance and the corresponding optical photographs of the ox-TMB recorded
in three systems (TMB + H2O2, TMB + Cat, TMB + H2O2 + Cat) in acetate buffer solutions at a
pH value of 4.0. (b) Time-dependent absorbance spectra of ox-TMB at 652 nm in the three systems
(TMB + H2O2, TMB + Cat, TMB + H2O2 + Cat). (c,d) Dependence of the peroxidase-like activity of
the obtained Fe3C/N–C catalyst with varied temperature and pH values, respectively. (e) UV-Vis
absorbance of the ox-TMB recorded with three catalysts (powder Fe3C/N–C, membrane Fe3C/N–C,
pure carbon membrane) in acetate buffer solutions at a pH value of 4.0. (f) The stability test of the
catalyst after 10 cycles of use.

Several parameters, such as reaction time, pH, temperature, and the concentration of
H2O2 and TMB, could affect the catalytic performance of Fe3C/N–C [11]. Figure 3b reveals
the intensity of the absorbance peak at 652 nm of the mixtures of TMB + Cat (Fe3C/N–C),
TMB + H2O2, and TMB + H2O2 + Cat systems after a reaction period of 10 min. The
significant and continuous alteration in absorbance was detected in the TMB + H2O2 + Cat
system as compared with TMB + Cat and TMB + H2O2, as the former needed a much longer
time to reach a steady state than the latter two [68]. One of the crucial factors in a catalytic
reaction is the temperature. In this study, the dependence of the catalytic activity of Fe3C/N–
C on the reaction temperature was studied in the range from 25 to 60 ◦C. Figure 3c and
Figure S11 demonstrate that the optimum reaction temperature for our peroxidase catalyst
is 40 ◦C, which is close to the human body temperature, so it is more applicable for vitamin
C detection in the biological samples, e.g., human serums. Regarding the drop in activity
over 40 ◦C, similar phenomena have been illustrated by Biswas et al. [69]. Furthermore, the
effect of pH on catalytic activity was investigated in the range of 2.0–11.0 (Figure 3d and
Figure S12). In strong acidic media (at pH of 2.0), a pale blue color was obtained. At pH 3.0
and pH 5.0, the system revealed a slight blue color with 50% relative activity. A solid blue
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color was detected at pH 4.0, suggesting the best catalytic activity of the sample at pH ~4.0.
According to previous studies, HRP also showed similar behavior [64]. Thus, the pH value
for the further catalytic studies was chosen to be 4.0. The UV-Vis absorbance spectrum
of TMB oxidation was assessed by changing the concentrations of TMB (0.02–1 mM) and
H2O2 (7–80 mM). The tests showed that optimum absorbance occurred at 0.2 mM TMB
(Figure S13) and 50 mM H2O2 (Figure S14). Furthermore, the performance of the catalyst
in both membrane and powder states was compared with each other (Figure 3e), which
illustrated that the catalytic activity of powder and membrane catalysts was practically the
same. This observation proves that the membrane shape due of its low thickness did not
retard the reaction kinetics, thanks to the hierarchical porous structure and high surface.
In addition, the activity of the nitrogen-free pure carbon membrane, obtained from the
carbonization of pure Balsa wood under the same condition, was measured as a control test;
the result asserts that the presence of Fe3C nanoparticles and nitrogen doping is essential
in this application. Due to the free-standing membrane shape of the Fe3C/N–C, it is easy
to recycle it, thus reducing the cost by simple recycling. In Figure 3f, it is observed that the
activity of our hierarchical porous membrane catalyst remains at 90% of the initial activity
after 10 cycles, demonstrating its astonishing robustness in repeated use.

The steady-state kinetic factors for the mimetic peroxidase reaction were determined
by altering the concentration of one substrate while keeping the others constant. The cat-
alytic performance of the Fe3C/N–C was profoundly probed through the kinetic analysis
employing the TMB and H2O2 concentration as the variable. Figure 4a,c reveal the typical
Michaelis–Menten curves; from the achieved curves, their Lineweaver–Burk plots were
gained, as shown in Figure 4b,d. The initial velocity of ox-TMB was analyzed from the ab-
sorbance data, and the molar attenuation coefficient of TMB at 652 nm was 39,000 M−1cm−1

by using the Lambert–Beer (Equation (2)) law as shown below.

A = εcb (2)

where A, ε, c, and b are denoted as the absorbance, molar absorbance coefficient, substrate
concentration, and the thickness of the sample, respectively. The Michaelis–Menten constant
(Km) and maximum velocity (Vmax) were obtained from Equation (3).

1
V

=
Km

Vmax
.

1
[S]

+
1

Vmax
(3)

where V represents the initial reaction rate, Vmax represents the maximum initial rate, Km
represents the Michaelis–Menten constant, and [S] represents the substrate concentration.
It is known that the catalytic power of a sample depends on the Km and Vmax values [70,71].
The Km value indicates attraction among the enzyme and substrate, with a lower Km value
representing a stronger affinity between the enzyme and substrate. The larger Vmax value
proposes a better efficiency for TMB oxidation in the presence of hydrogen peroxide. In
this study, the Km and Vmax values of the Fe3C/N–C catalyst for TMB were calculated to be
0.033 mM and 4.2× 10−8 Ms−1, respectively. The Km value was about 15 times smaller than
that of HRP (0.41 mM) [39], suggesting an improved affinity of the catalyst to TMB than that
of HRP. This effect could stem from the high surface area, the hierarchical porous structure,
and the presence of ultrafine Fe3C nanoparticles in Fe3C/N–C, which developed more
active sites for TMB and a lower Km value [3]. The Km and Vmax values were compared with
HRP and several other nanomaterials, as shown in Table S1. It is worth mentioning that less
than 5 min was required to see the distinguishable color difference in the Fe3C/N–C system.
These results suggest that Fe3C/N–C is efficient and needs a shorter time for colorimetric
study than other similar mimetic peroxidases (usually more than 10 min). Such properties
are vital factors for a rapid visual colorimetric test.
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plots for H2O2 substrate. An amount of 20 µL of catalyst (3 mg·L−1) was used in this experiment
conducted at room temperature.

Colorimetric detection of ascorbic acid using the peroxidase-like catalytic reaction
of Fe3C/N–C. Because of the intrinsic peroxidase property of the Fe3C/N–C, we designed
a colorimetric system to detect AA in aqueous solutions, using the same substrate studied
above, i.e., TMB and H2O2. The detection of vitamin C is according to its antioxidant
nature of preventing oxidation via reducing the reactive free radicals [72,73]. Hence, the
corresponding UV-Vis absorbance spectrum of the Fe3C/N–C–TMB–H2O2 system versus
vitamin C concentration ([AA]) from 0 to 200 µM is presented in Figure 5a, and the linear
relationship between ∆A (the difference between UV-Vis absorbance before and after
adding AA) and [AA] was gained in the range of 2–50 µM (R2: 0.993) (Figure 5b). The limit
of detection was around 2.64 µM, which is better than many other reports (Table S2).

To evaluate the selectivity of detection of AA by monitoring the absorbance of the
reaction systems, vitamin C was replaced by various biologically relevant species such
as sulfite, citric acid, glycine, serine, alanine, aspartic acid, tartaric acid, arginine, and
saccharides like glucose, lactose, and fructose. The significant change in the absorbance
intensity at 652 nm was not noticed after adding other interferential substrates. Figure 5c
depicts the ∆A values of those systems. The considerable difference in the ∆A values
among the mentioned interferences and vitamin C at similar concentrations can be clearly
seen. These outcomes prove the outstanding specificity of our sensing process to the
colorimetric detection of AA.
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4. Conclusions

In summary, uniformly dispersed Fe3C nanoparticles were introduced into a hierarchi-
cally porous nitrogen-doped carbon membrane derived from a thin wood slice pre-coated
by PIL and FeCl3 before carbonization. Owing to the unique interconnected and oriented
porous structure, ultrafine nanoparticles, and nitrogen doping, the as-prepared Fe3C/N–C
catalyst demonstrated outstanding intrinsic peroxidase-like catalytic activity with favorable
stability and recyclability, which could be utilized to sensitively detect ascorbic acid over a
broad concentration range with a low limit of detection (~2.64 µM). The detection system
exhibited a high selectivity and anti-interference capacity to ascorbic acid. This study
proposes a straightforward and effective way for preparing metal-containing heteroatom-
doped porous carbon membranes, which can be generalized to synthesize various other
functional carbonaceous materials such as artificial enzymes, revealing great potential in
medicine, biosensing, and environmental fields.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano13202786/s1. Additional results such as Figure S1: 1H-NMR
of the PIL, Figure S2: UV−Vis absorbance spectra of the ox-TMB, Figure S3: Cross-sectional SEM
images of Fe3C/N−C, Figure S4: Nanoparticle size distribution of Fe3C/N−C based on the TEM
image, Figure S5: TEM image of Fe3C/N−C when PIL wasn’t used to disperse iron source, Figure S6:
Particle size distribution of Fe3C/N−C when PIL wasn’t used to disperse iron source, Figure S7: TGA
curve of Fe3C/N−C under air, Figure S8: PXRD diagram of the TGA residue of v, Figure S9: Nitrogen
sorption isotherm of Fe3C/N−C, Figure S10: Pore size distribution plot of Fe3C/N−C, Figure S11:
Temperature dependence plot of the peroxidase-like activity, Figure S12: pH dependence of the
peroxidase-like activity, Figure S13: TMB concentration dependence of the peroxidase-like activity,
Figure S14: H2O2 concentration dependence of the peroxidase-like activity, Table S1: Comparison
of the apparent Michaelis constant (Km) and maximum reaction rate (Vmax) between our work
and other groups’ work, Table S2: Analytical characteristics of different colorimetric AA measuring
system. References [74–82] are cited in the supplementary materials.
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