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Abstract: Previous studies have shown that the nano-crystallization process has an appreciable impact
on the luminescence properties of nanocrystals, which determines their defect state composition,
size and morphology. This project aims to explore the influence of nanocrystal size on the electrical
and optical properties of Cr2+:ZnSe nanowires. A first-principles study of Cr2+:ZnSe nanowires
with different sizes was carried out at 0 K in the density functional framework. The Cr2+ ion was
found to prefer to reside at the surface of ZnSe nanowires. As the size of the nanocrystals decreased,
a considerable short-wave-length shift in the absorption of the vis-near infrared wavelength was
observed. A quantum mechanism for the wavelength tunability was discussed.

Keywords: Cr2+:ZnSe nanowires; size effect; first-principles; quantum confinement effects; quantum
size effects

1. Introduction

Mid-infrared lasers play a critical role in the areas of science, economy and national
defense because they are widely used in molecular spectroscopy, non-invasive medical
diagnostics, the processing of polymers and many other areas [1,2]. TM-doped II–VI com-
pounds stand out among other laser crystals as they have a wide bandgap and possess
several important features [3]. Cr2+:ZnSe attracts attention due to its outstanding proper-
ties, such as low optical phonon cutoff, large absorption and emission cross-section, and
high quantum efficiency [4]. After recent decades of development, continuous (CW) and
pulsed laser technologies based on Cr2+:ZnSe have matured [5–10], and entered practical
applications [11]. To date, works aiming to achieve miniaturization, integration, portability,
broad tunability, a high peak and average power micro-nano lasers are of the greatest
interest [12,13]. Although successful experiments have been reported for the emission of
TM2+-doped II–VI nanoparticles [10,11], few have been performed in the mid-IR spectral
range [12,13]. Studying the properties of TM2+-doped II–VI nanocrystals is of great impor-
tance. First-principles calculations make it easier to obtain the properties of nanomaterials
and provide a theoretical basis for the design of nanomaterials [14–16].

However, due to nanocrystals’ self-cleaning effect, the solubility of dopant ions in
nanocrystals is much lower than that of bulk materials. Even if dopant ions are successfully
introduced into nanocrystals, it is difficult to determine the location of dopant ions in
nanocrystals using existing characterization methods, and only a few analytical techniques
can distinguish whether impurities are present on the surface of or inside the material.
For example, for the Mn2+ ion, the spin interaction shown by the electron paramagnetic
resonance technique can distinguish the local environment of the impurity ion [17,18]. For
Co2+ ions, the absorption spectrum is very sensitive to the local environment of the impurity
ions and can be used to detect the position of the ions [19,20]; magnetic circular dichroism
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spectroscopy is also an effective detection method [21,22]. First-principles calculation
provides another way to acquire information on the material’s position.

In the present work, using a first-principles calculation method, we report a fundamental
study on the size effect of electrical and optical properties of Cr2+:ZnSe nanowires (NWs).
Our analysis is mainly focused on the size effect on the energy level splitting of the Cr(d)
orbitals. Through the calculation of the band structure, density of state (DOS) and absorption
spectra of Cr2+:ZnSe NWs in different sizes, the change in material property law that occurs
with size is obtained, and the intrinsic size regulation mechanism is revealed. By calculating
the formation energies of Cr2+:ZnSe NWs at different doping positions, the positions of Cr2+

ions in the nanowire is predicted. This investigation will provide some new insights into the
design and synthesis of Cr2+:ZnSe nanocrystals and lay the foundation for the realization of
new photoelectronic devices.

2. Materials and Methods

Bulk ZnSe presents a cubic zinc-blende structure at low temperatures. During the
doping and nanocrystallization process, this zinc-blende-structure can be retained. Many
similar experiments have been reported. Here, sphalerite ZnSe NWs, alone [001] and with
a square cross-section of a different diameter, were considered in this study: NW-1(8.5 Å),
NW-2(14.2 Å), NW-3(19.8 Å), as shown in Figure 1. The ZnSe NWs models were designed
by cutting out a fragment of 7 × 7 × 1 bulk ZnSe crystals. A 20 Å vacuum space was
constructed to minimize the artificial interaction between neighboring NWs due to the
periodic boundary conditions. The NWs’ surface Zn and Se bonds were saturated with
H1.5 and H0.5 [23]. The Cr2+:ZnSe NWs were structured by replacing a Zn atom with
a Cr atom in the unit cell of the pristine NWs models, resulting in Cr2+ concentrations of
12.5%, 5.6% and 3.1%, respectively. The chemical formulas for NW-1, NW-2 and NW-3
are H16Cr1Zn7Se8, H24Cr1Zn17Se18 and H32Cr1Zn31Se32, respectively. In each ZnSe NW
with different diameters, we chose nonequivalent Zn positions from the center to surface,
labeled as 1, 2, 3, 4 (as shown in Figure 1), to study the effect of different doping sites.
Thus, we obtained nine models: NW-1(site 1), NW-1(site 2), NW-2(site 1), NW-2(site 2),
NW-2(site 3), NW-3(site 1), NW-3(site 2), NW-3(site 3), NW-3(site 4).
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Figure 1. Top view of ZnSe NWs along the [001] direction with different diameters: (a) NW-1(8.5 Å),
(b) NW-2(14.2 Å), (c) NW-3(19.8 Å). Green and grey atoms are Se and Zn atoms, red and blue atoms
are H1.5 and H0.5 atoms, respectively.

The optimization of Cr2+:ZnSe NWs, and the calculation of total energies, electrical
and optical properties, were carried out with the Vienna Ab-initio simulation package
(VASP, version 5.2) [24,25] based on density functional theory (DFT). Generalized Gradient
Approximation (GGA) in Perdew–Burke–Ernzerhof (PBE) [26] was used to describe the
exchange and correlation functional, and Projector Augmented Wave (PAW) [27] potential
was used to describe the ion–electron interaction. PBE functional calculations generally
underestimate the band gap value of semiconductor materials, while the meta-GGA and
HSE functions can effectively improve this defect. The underestimation of the electric
bandgap from DFT calculations also derives from the difference in the temperature in the
DFT calculations (0 K) and the experimental conditions. The excitonic effect is another
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important aspect, which should be considered to improve the drawback [28]. In this
work, we focused on the tendency of the electrical and optical properties in different-size
Cr2+:ZnSe NWs, so the cost-effective PBE functional was applied in the calculations. The
valence electron configurations considered in the calculations were Se (3s23p4), Zn (3d104s2)
and Cr (3d54s1), respectively. The electron wave functions were expanded as a plane wave
with a cutoff energy of 500 eV. The Brillouin zone was sampled with 1 × 1 × 4 Monkhorst–
Pack k-points. A higher cutoff energy and a denser k points mesh were adopted to examine
the accuracy of the calculations, the results showing almost no change in the energy and
geometry structure. To optimize the geometry, the ion position, cell volume and shape
were allowed to change, the force on each atom was converged to less than 1 × 10−3 eV/Å,
the maximum displacement for each ion was set as 0.001 Å, and the total energy of the
system was converged to lower than 1 × 10−4 eV/atom. Based on the optimized structures,
the total energy, band structure, density of state and optical properties of Cr2+:ZnSe NWs
were calculated.

3. Results
3.1. System Stability

Defect formation energy is an important parameter that reflects the ease of formation
of specific defects and the stability of the defect systems. By calculating and analyzing
the formation energy of Cr2+:ZnSe NWs with Cr2+ at different doping sites, the positions
of Cr2+ ions in the nanowires can be determined. The defect formation energy is usually
calculated as:

E f orm = Ede f ect − Epure −
Nspecies

∑
s=1

nsµs (1)

where Ede f ect and Epure represent the total energy of a supercell with and without the defect;
ns is the number of atoms of type s that were added (ns>0) or removed (ns<0) to create
the defect; the chemical potential of atomic species is given as s; and the sum of elemental
species is Nspecies. Here, one Zn atom was replaced by a Cr atom; the defect formation
energy can be expressed as:

E(NW) f orm = E(NW)Cr2+ :ZnSe − E(NW)ZnSe − (µCr − µZn) (2)

where E(NW)Cr2+ :ZnSe and E(NW)ZnSe are the total energy of Cr2+:ZnSe NWs and ZnSe
NWs, and µCr and µZn are the chemical potential of Cr and Zn atoms, respectively. By
calculating the energy difference in CrSe NWs and ZnSe NWs, the chemical potential
µCr − µZn of replacing one Zn atom with a Cr atom in NWs can be obtained, and its value
is −7.11 eV.

The defect formation energy of Cr2+:ZnSe NWs is listed in Table 1. Note that the defect
formation energies are all positive, suggesting that the doped models have a lower stability
owing to their higher energy. Extra energy is needed when substituting the Cr atom with
Zn atom in ZnSe NWs, which coincides with the preparation process of nanocrystals. It
can be concluded that the formation energy increases as the diameter of NWs decreases,
indicating that NWs with a larger diameter are easier to dope. In addition, for NWs with
the same diameter, the defect formation energy at the surface of the NWs is smaller than
that inside, indicating that Cr2+ prefers to reside at the surface of ZnSe NWs. This result
is consistent with the conclusion of B-doped Si NWs [29], the solubility of Cr2+ on the
ZnSe NWs surface is higher than that inside. And this may relate to the self-cleaning
effect of nanocrystals. To study the size effect in Cr2+:ZnSe NWs, the most stable models,
NW-1(Site 2), NW-2(Site 3) and NW-3(Site 3), were chosen as the research objects. The
changes in the electronic structure and optical properties of Cr2+:ZnSe NWs with NW size
were analyzed.
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Table 1. The total energy and defect formation energy of Cr2+:ZnSe NWs in different sizes.

Models Total Energy (eV) Defect Formation Energy (eV)

NW-1(Zn8Se8) −87.412 /
NW-1(site 1) −92.257 2.265
NW-1(site 2) −93.066 1.456

NW-2(Zn18Se18) −168.793 /
NW-2(site 1) −174.461 1.442
NW-2(site 2) −174.230 1.673
NW-2(site 3) −174.905 0.998

NW-3(Zn32Se32) −272.860 /
NW-3(site 1) −278.982 0.988
NW-3(site 2) −279.691 0.279
NW-3(site 3) −279.938 0.030
NW-3(site 4) −279.572 0.398

3.2. Electrical Properties

To analyze the modifications of the doping effect on the electrical properties, both the
band structure and DOS are calculated based on the optimized structure.

Figure 2 shows the band structure of Cr2+:ZnSe NWs. The valence band maximum
(VBM) and the conduction band minimum (CBM) are located at the same k point Γ,
indicating that the Cr2+:ZnSe NWs remain as direct bandgap semiconductors. It should be
mentioned that, compared with pure ZnSe NWs, impurity bands (red lines) that lie around
the Fermi Level are introduced into the bandgap after Cr atom doping, suggesting that
more possibilities for electron transitions can be created. Table 2 shows the bandgap of
Cr2+:ZnSe NWs and bulk. Compared to bulk Cr2+:ZnSe [30], the bandgaps of Cr2+:ZnSe
NWs become larger and present a distinct size effect. In the bulk Cr2+:ZnSe, Van der
Waals interactions exist between neighboring Cr2+:ZnSe bundles. When the vacuum space
is intercalated into NWs, the electron motion is confined to the NW growth direction,
meaning that the spatial confinement of electron and hole within the Cr2+:ZnSe NWs plays
an essential role in the electronic structures.
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Table 2. The bandgap, effective mass values and de Broglie wavelength for Cr2+:ZnSe NWs and bulk.

Models Size (Å) Bandgap (eV)
Effective Mass (m0) de Broglie Wavelength (nm)

m*
e m*

h λe λh

NW-1 (site 2) 8.5 3.42 0.34 −0.14 13 20
NW-2 (site 3) 14.2 2.67 1.17 −0.16 7 19
NW-3 (site 3) 19.8 2.39 1.19 0.13 7 21

bulk [30] / 2.14 0.03 −0.69 44 9

The effective mass of an electron (m∗e ) or hole (m∗h) determines its dynamics near the
band minimum or band maximum of high symmetry in the k space. In general, the effective
mass tensor M with components is defined as [31]:

1
M(k)ij

=

(
± 1
}2

)
∂2E

∂ki
∂kj

(k), i, j ∈ {1, 2, 3} (3)

where + or − depend on whether k is near the band minimum (electrons) or the band
maximum (holes), respectively. The effective masses of electron and hole at CBM and
VBM for Cr2+:ZnSe bulk and NWs can be obtained by the numerical calculation of the
second derivatives at the CBM and VBM in the band structure, with me representing the
electron rest mass, as given in Table 2. The electrons effective masses are significantly larger
than the holes for Cr2+:ZnSe NWs, indicating that Cr2+:ZnSe NWs belongs to the class of
semiconductors with light excited holes and heavy excited electrons. In general, the carries
transfer rate is inversely proportional to the effective masses of the carries. The calculated
results demonstrate that the holes move much faster than their corresponding electrons
in Cr2+:ZnSe NWs. While, the situation is opposite for Cr2+:ZnSe bulk, electrons effective
masses are significantly lighter than the holes.

DOS is considered having a better understanding about the electronic behavior of
the doping system. As can be observed from Figure 3, the impurity bands emerge in the
bandgap are mainly composed of Cr(d) orbital electrons. The impurity bands span the
Fermi level and are divided into electronically occupied bands and empty bands. The
energy difference between the electron-occupied bands and empty bands increases with
the decrease in NWs diameter, and is larger than the bulk Cr2+:ZnSe [32].
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To further analyze the splitting characteristics of the impurity orbitals, the partial density
of state (PDOS) of Cr(d) orbitals is calculated and shown in Figure 4. The Cr(d) orbitals are
classified into triply degenerated t2 orbitals (dxy, dyz, dzx) and doubly degenerated e orbitals
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(dx2−y2 , dz2), which lie above and below the Fermi level, the same as in the bulk case. With the
decrease in Cr2+:ZnSe NWs diameter, the positions of the electron-occupied orbitals did not
significantly change, but the electron-unoccupied orbitals moved in the high-energy direction,
resulting in an increase in the splitting energy between e and t2 orbitals.
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3.3. Optical Properties

Investigating the optical material properties is crucial to understanding its opto-
electronic properties. The frequency-dependent dielectric function ε(ω), which can be
expressed as ε(ω) = ε1(ω) + ε2(ω), is a complex quantity that deals with the most impor-
tant aspects of the optical properties. The imaginary part ε2(ω) could be calculated from
the momentum matrix elements between the occupied and unoccupied wave functions,
and the real part ε1(ω) can be further derived from ε2(ω) using the Kramer–Kronig rela-
tionship [33]. With the knowledge of the dielectric function ε(ω), all the optical parameters
could be obtained. The optical absorption coefficient α(ω) could be obtained as:

α(ω) =
√

2ω

[√
ε1(ω)2 + ε2(ω)2 − ε1(ω)

]1/2
(4)

Figure 5 shows the dielectric function of Cr2+:ZnSe NWs of different sizes. The black,
pink, and blue curves represent Cr2+:ZnSe NWs with diameters of 8.5 Å, 14.2 Å, and 19.8 Å,
respectively. From the real part of the dielectric function, we can see that the permittivity
is 1.16, 1.39, and 1.74 for NW-1, NW-2, and NW-3, respectively. The permittivity for all
Cr2+:ZnSe NW are much smaller than the bulk Cr2+:ZnSe (9.41) [34], and monotonically
decreases as the diameter of the NWs decreases. And, more importantly, the peaks of
ε1(ω) are all positive and dielectric in the whole energy range, while it is negative in
the range above 5.5 eV [34]. It means that the Cr2+:ZnSe bulk material may transform
from metallic to dielectric property above 5.5 eV in the process of becoming NW. For the
imaginary part, the curve shows a steep rise at 3.58 eV, 2.92 eV and 2.61 eV for NW-1, NW-2
and NW-3, respectively, which is due to the electron inter-band transition from CBM to
VBM. As the band gap increases, the dielectric peak shifts toward higher energy; thus, the
absorption edge is blue-shifted. Moreover, compared to pure ZnSe NWs, new peaks appear
in the range of 0.7~1 eV are observed, which would lead to additional absorptions in the
infrared range.
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Figure 6 shows the absorption spectrum of Cr2+:ZnSe NWs of different sizes, especially
for the infrared range. Absorption peaks at 1.048 eV (1184 nm), 0.862 eV (1440 nm) and
0.719 eV (1726 nm) for NW-1, NW-2, NW-3 are observed, exhibiting a significant blue shift
as the NWs diameter decreases. In addition, the absorption of the NWs with the same Cr2+

concentration also moved to a shorter wavelength compared to the bulk Cr2+:ZnSe [33]. We
believe that these absorptions are related to the electron intra-band transitions between the
splitting energy level of Cr(d) e and t2 orbital. Related mid-infrared luminescence would be
generated under corresponding excitation and blue-shifted, which can be verified by our
experimental results [35]. The results demonstrate that nano-crystallization is an efficient
way to realize the wavelength turnability of laser crystals.
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4. Discussion

From the band structure and DOS results of Cr2+:ZnSe NWs, it is clear that Cr(d)
impurity bands mainly composed of Cr(d) electron orbitals are introduced into the bandgap.
The Cr(d) orbitals are divided into two groups, located above and below the Fermi energy
level. For d electron orbitals, the nature of the metal ion itself, the oxidation state of the
metal, the distribution of ligand ions around the central metal ion, and the nature of the
ligand ion around the central metal ion are the main factors that affect the orbital-splitting.
The host sphalerite ZnSe is a tetrahedral compound. When Cr2+ replaces the Zn2+ ion in
ZnSe, it occupies the center of the tetrahedron. Due to the action of the ligand electrostatic
field, the d orbital splits into higher-energy t2 orbitals and lower-energy e orbitals, and
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the d–d electron transitions are weakly allowed. We inferred that the newly appeared
absorption peaks in the infrared range in Cr2+:ZnSe bulk and NWs are attributed to the
electron intra-band transitions between the splitting energy level of Cr(d) e and t2 orbital.
To verify this inference, we designed a transition energy statistical algorithm [30,36]. The
five Cr-d electron bands are recovered from the band-structure, as displayed in Figure 7a.
Cr2+ ion has 4 d electrons, occupies the lower e orbital. For the absorption process, electrons
at the e orbital absorb just the right amount of energy and jump up to a higher t2 orbital,
as shown in red arrows. For the luminescence process, electrons at the excited state first
spontaneously relax to the metastable level, and then jump back from metastable level
to the ground state through radiative transition, as shown in blue arrows. Figure 7b
shows the numerical statistics of Cr(d) electron transition energy, shown in the form of
a transition energy density distribution. The absorption range is from 0.63 eV to 1.24 eV,
0.57 eV to 1.00 eV and 0.51 eV to 0.90 eV for NW-1, NW-2 and NW-3, respectively, showing
a significant blue shift. The results basically match the absorption spectra calculated from
VASP. Using the same statistical algorithm, the luminescence would be generated in the
range of 0.77 eV~0.63 eV, 0.63 eV~0.57 eV, and 0.73 eV~0.51 eV for NW-1, NW-2 and NW-3,
respectively, exhibiting a blue shift as the size of NWs decreases. As it’s a transition energy
statistic, the absorption range is wider than the luminescence, which is also reasonable
compared to the experimental observation. The disadvantage is that the position of the
absorption peak is not accurately predicted because the electron transition probability is
treated as equally, and the algorithm model needs a further optimization.
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As we have presented, the Cr2+:ZnSe NWs show distinct electronic and optical proper-
ties and demonstrate a significant size effect. To explore the origin of the property changes,
quantum confinement effects and quantum size effects are usually considered [37]. Gen-
erally, when one dimension of the nanocrystal is close to the de Broglie wavelength of
the electrons (λe = h/(2m∗e kT)1/2) and holes (λh = h/

(
2m∗hkT

)1/2) in the semiconductor,
quantum confinement effects cannot be omitted. Here, h is the Planck constant, k is the
Boltzmann constant, T is the Degree Kelvin, m∗e and m∗h are the effective mass of the electron
and hole. In this work, the λe and λh are 7~21 nm (see Table 2), while the Cr2+:ZnSe NWs
sizes are 1~2 nm, which is much smaller than the λe and λh. Obviously, the quantum
confinement effects are instrumental in the present work.

Quantum size effects start to make a valuable contribution when the size of semicon-
ductor nanostructures shrinks to less than the Bohr radius of the exciton. The radius of
the exciton is given by aex = }2

m∗(e2/ε)
= εmea0

m∗ in terms of Bohr radius (a0 = }2

mee2 ), where

the reduced effective mass m∗ is given by 1
m∗ =

1
m∗e

+ 1
m∗h

, and the static crystal dielectric
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constant ε can be estimated from the arithmetic mean value of the diagonal components of
the real part ε1 of the dielectric tensor atω = 0 Hz, ε = 1

3 ×
(
εxx

1 (0) + ε
yy
1 (0) + εzz

1 (0)
)
. Here,

the calculated exciton’s Bohr radius are 173 Å, 6.19 Å, 5.23 Å and 7.86 Å for Cr2+:ZnSe bulk,
NW-1, NW-2 and NW-3, respectively. The radius of the exciton’s Bohr are of the same order
as the size of the Cr2+:ZnSe NWs. So, it is believed that quantum confinement effects also
play an important role in these NWs.

During the optical transitions, the electrons excited into the conduction band and
the holes in the valence band will form a bound state, called an exciton, due to Coulomb
interactions. Excitonic effects have an important impact on the physical processes and
optical properties in semiconductors, such as optical absorption, luminescence, lasing, and
optical nonlinearity. Based on the effective masses of electrons and holes at the CBM and
VBM, the exciton binding energy can be obtained as [31]:

Eex =
e2

2εaex
=

(
m∗

me

)
·
(

1
ε2

)
·13.6 eV (5)

The calculate exciton binding energy are 0.004 eV, 1.00 eV, 0.99 eV and 0.53 eV
for Cr2+:ZnSe bulk, NW-1, NW-2 and NW-3, respectively. A larger exciton binding en-
ergy presents a stronger electron–hole interaction. Here, the excitons binding energy of
Cr2+:ZnSe NWs is considerably higher than that of the bulk, indicating a presence of
strongly bound excitons in Cr2+:ZnSe NWs. This enhanced exciton binding energy in
NWs suggests that the excitons may bind to possible defects in the nanocrystals and act as
recombination centers, thus promoting the luminescence efficiency. They are very beneficial
to the fabrication of optoelectronic devices with improved performance.

5. Conclusions

In summary, the electrical and optical properties of Cr2+:ZnSe NWs of different sizes
with Cr2+ at different sites were calculated. Based on the defect formation energy results,
we reveal that the Cr2+ prefers residing at the surface of ZnSe NWs. As the size of the NWs
decreases, a considerable short-wave-length shift in the fundamental absorption is observed.
The absorption in the visible range is related to the electron internal band transitions from
VBM to CBM, and the absorption peak that appeared in the infrared range is ascribed to the
electron intra-band transitions between the splitting energy level of Cr(d) e and t2 orbital,
and related mid-infrared luminescence would be generated under corresponding excitation
and also blue-shifted. The blue-shift trend is confirmed by the numerical statistics of Cr(d)
electron transition energy. Quantum confinement effects and quantum size effects play
important roles in the new electrical and optical properties of Cr2+:ZnSe NWs. Overall, the
electrical and optical properties of Cr2+:ZnSe NWs are dependent on the nanostructure size,
which suggests that Cr2+:ZnSe NWs may be used in promising optoelectronic applications.

However, in the physical fabrication of the nanomaterials, the introduction of defects
is inevitable and the morphology of the nanostructures is strongly dependent on the
fabrication technology. A more accurate model should consider nanocrystal morphology,
nanocrystal composition, and dopant surface coverage, etc. Our nearest future intension is
to develop the model of these nanocrystals and study the interaction between defects and
impurity ions furtherly.
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