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Abstract: Aerogels are a class of lightweight, nanoporous, and nanostructured materials with diverse
chemical compositions and a huge potential for applications in a broad spectrum of fields. This has
led the IUPAC to include them in the top ten emerging technologies in chemistry for 2022. This
review provides an overview of aerogel-based adsorbents that have been used for the removal and
recovery of uranium from aqueous environments, as well as an insight into the physicochemical
parameters affecting the adsorption efficiency and mechanism. Uranium removal is of particular
interest regarding uranium analysis and recovery, to cover the present and future uranium needs for
nuclear power energy production. Among the methods used, such as ion exchange, precipitation, and
solvent extraction, adsorption-based technologies are very attractive due to their easy and low-cost
implementation, as well as the wide spectrum of adsorbents available. Aerogel-based adsorbents
present an extraordinary sorption capacity for hexavalent uranium that can be as high as 8.8 mol kg–1

(2088 g kg–1). The adsorption data generally follow the Langmuir isotherm model, and the kinetic
data are in most cases better described by the pseudo-second-order kinetic model. An evaluation
of the thermodynamic data reveals that the adsorption is generally an endothermic, entropy-driven
process (∆H0, ∆S0 > 0). Spectroscopic studies (e.g., FTIR and XPS) indicate that the adsorption is
based on the formation of inner-sphere complexes between surface active moieties and the uranyl
cation. Regeneration and uranium recovery by acidification and complexation using carbonate or
chelating ligands (e.g., EDTA) have been found to be successful. The application of aerogel-based
adsorbents to uranium removal from industrial processes and uranium-contaminated waste waters
was also successful, assuming that these materials could be very attractive as adsorbents in water
treatment and uranium recovery technologies. However, the selectivity of the studied materials
towards hexavalent uranium is limited, suggesting further developments of aerogel materials that
could be modified by surface derivatization with chelating agents (e.g., salophen and iminodiacetate)
presenting high selectivity for uranyl moieties.

Keywords: aerogels; environmental remediation; uranium adsorption; environmental water decon-
tamination; adsorption thermodynamics and kinetics; extraordinary adsorption capacity; qmax values;
competitive ions; material recycling; uranium recovery

1. Introduction

Rapid industrial development and enormous technological progress in the last few
decades resulted in the accumulation of organic chemicals (e.g., dyes, pesticides, and
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pharmaceuticals etc.), heavy/toxic metals, metalloids, and radionuclides, mainly in waste
form, polluting the environment and threatening living organisms [1–5]. Pollution related
to (radio)toxic metals and metalloids is of particular interest because of their persistence
and complex environmental chemistry. Metal/metalloid ions can enter water bodies after
their dissolution and extraction from solid matrices or the deposition of airborne particles.
Then, they can go into the biosphere, including into larger organisms, mainly through the
food chain [6,7].

Increased amounts of (radio)toxic metals and particularly uranium have accumulated
in the environment, mainly through anthropogenic activities related to mining and ore
beneficiation, energy production (e.g., nuclear power), fertilizer production, and the use of
depleted uranium in armor-piercing ammunition and tank armor. Uranium, an actinide
element, is of particular interest not only because of its chemical toxicity, but also because
it is a radioactive element with its most abundant isotope having a very long half-life
(t1/2 = 4.5 × 109 years) and emitting high energy alpha-particles (~4.5 MeV) [8,9]. The
aqueous chemistry of uranium can be very complex, since it can undergo various chemical
transformations, such as reduction/oxidation, hydrolysis, complexation, colloid formation,
sorption, and precipitation, forming a wide spectrum of chemical species that each behave
differently in the aquatic systems [9–11].

Regarding the removal of uranium from industrial process solutions and contami-
nated waters, a large spectrum of treatment technologies (e.g., ion exchange, precipitation,
solvent extraction, and adsorption) have been investigated. However, among them, ad-
sorption is the most attractive route. Adsorption is a chemical process that includes a solid
phase (adsorbent) and a liquid phase, which contains the soluble species to be adsorbed
(adsorbate). The adsorption of uranium, which basically exists in aqueous solutions in
its hexavalent form (U(VI)), occurs via pure electrostatic attraction between the oppo-
sitely charged surface of the adsorbate and/or via direct binding between surface active
groups (e.g., –OH and –COOH) and U(VI) [12–15]. The latter results in the formation
of inner-sphere complexes [13,14], whereas the former results mainly in the formation
of outer-sphere complexes [16]. Studies on uranium sorption are both fundamental and
necessary regarding the chemical behavior and mobility of this (radio)toxic element in the
geosphere, the decontamination of waters, and the recovery of this precious metal from
industrial processes and wastewater [1,17].

In recent years, investigations have been focused on the development and production
of very effective and selective adsorbents. Such adsorbent materials include, but are not lim-
ited to, inorganic solids (metal oxides and minerals) [18], biomass by-products [12–15,19],
composite materials [20–23], polymers [24,25], dendrimers [26], MOFs [27–29], carbon-
based materials [30], hybrid materials [31–33], and biopolymer-based materials [34–36].
Recently, and more intensively in the last decade, aerogels of various chemical compo-
sitions and nanostructures have been tested for uranium adsorption and recovery from
wastewater and seawater, sometimes with impressive performances [37–71]. Aerogels have
also been used for the photocatalytic conversion of soluble uranium species to insoluble
nanoparticles that can float on water [72] and as hosts for reagents that leach out and cause
the precipitation of uranium from water [73].

This review presents the recent progress in the development and use of aerogel ma-
terials for uranium uptake and recovery from aquatic environments. Knowledge of the
chemical behavior and speciation of hexavalent uranium at certain experimental condi-
tions is of fundamental importance to better understand and describe the adsorption
process. In addition, an insight into the physicochemical parameters affecting the adsorp-
tion efficiency and mechanism will enable the design and development of efficient and
selective adsorbents.
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1.1. Aerogels

Aerogels have been defined as solid colloidal or polymeric networks expanded
throughout their entire volume by a gas [74,75]. In practice, aerogels are nanostructured,
ultra-lightweight materials [76], consisting mostly of empty space (>80% v/v). They are
prepared via sol–gel processes that yield gels, which are subsequently dried by turning
the pore-filling solvent into a supercritical fluid and releasing it as a gas (Figure 1). The
specific drying process is the key to avoiding significant volume reduction or network com-
paction during the transition from gels to aerogels, and therefore, is still the most widely
used, although in some cases, materials with aerogel properties have been obtained after
sub-critical drying, freeze-drying (cryogels), or even drying under ambient conditions [76].
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S. S. Kistler was the first to prepare silica aerogels, the most well-known type of aero-
gel, in the 1930s, along with other metal oxide aerogels as well as organic aerogels [77–80].
Kistler’s first silica aerogels were commercialized through the Monsanto Chemical Com-
pany [81]. Later, in 1966 a new method, using alkoxides as aerogels precursors, was
reported by J. B. Peri [82]. From the very first publication by Kistler [77], it was clear that
this class of lightweight, nanoporous, and nanostructured materials is not limited to a
certain chemical composition, not even to a certain class of chemical compounds, rather
it can include several materials, ranging from inorganic to organic and from synthetic to
natural polymers. Indeed, nowadays aerogels are a huge family of materials, including
inorganic oxides, chalcogenides, metals, ceramics, natural and synthetic organic polymers,
and carbons [76,83,84]. In fact, there are no chemical compounds that could not be made
in an aerogel form [85]. Aerogels can be prepared in any desirable form factor, including
mostly monoliths, but also blankets [86], fibers [87], films [88,89], and millimeter-sized
beads or fine powders [90–93].

In addition to the chemical composition, the size and shape of the pores affect the prop-
erties of an aerogel, as is the case for all porous materials. Most aerogels are mesoporous
materials with pore sizes in the 2–50 nm range. The solid network consists of primary par-
ticles that aggregate to form fractal porous secondary particles, eventually agglomerating
to a “pearl-necklace” structure. The finely structured porous skeletal framework together
with the small-sized pores provides aerogels with unique properties, among which are
high surface areas, low thermal conductivities, low dielectric constants, and high acoustic
attenuation [76]. Interestingly, the nanostructure of the aerogels can be designed and tuned
by choosing specific monomers [94–98] or by modifying the synthetic procedure [99–106].

Based on the above, it is obvious that aerogels are extremely versatile and promis-
ing materials for a wide range of technological areas. Indeed, IUPAC has recently an-
nounced aerogels in the 2022 top ten emerging technologies in chemistry [107]. The areas
of application include, but are not limited to, thermal (their flagship application) [86,108–115]
and acoustic insulation [109,110,115], space applications [109,116], transparent
materials [117–119] energy storage [100,108,120,121], dielectrics [109], gas and
humidity adsorption [109,113,122–125], sensors [115,122], actuators [126–128],
catalysis [100,113,122,124,129–133], biomedicine [134,135], the food industry [113,136], and
environmental remediation [101,134,137,138].
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Indeed, the potential of aerogels in the field of environmental remediation is shown
by the dramatic increase in the number of publications (Figure 2a), especially in the last
decade, and by the launching in 2019 of a COST Action entitled “Advanced Engineering and
Research of aeroGels for Environment and Life Sciences” [139]. Relevant to this review, the
number of publications on utilizing aerogels for uranium uptake has also been increasing
rapidly over the last decade (Figure 2b).
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1.2. Uranium

Uranium is a natural element and a member of the actinide series (5f elements). It
has an atomic number of 92 and an atomic weight of 238.02891 g mol–1. Uranium is a
relatively abundant element at a mean concentration of 2.4 ppm in the earth’s crust and
about 3.3 ppb in the oceans. Natural uranium is a mixture of three isotopes U-238, U-235,
and U-234, which is a daughter nuclide of U-238, with a relatively short half-life and is
hence, more or less in radioactive equilibrium with its parent nuclide U-238. All uranium
isotopes are alpha-particle-emitting radionuclides, but generally, uranium is a relatively
weak radioactive element. However, uranium is a heavy element and is hence, chemotoxic
above certain levels, which are far below the levels of its radiotoxicity [8].

Uranium in nature can exist in five different oxidation states from +2 to +6. However,
+4 and +6 are the most abundant oxidation states, and +6 is the predominant oxidation state
in aqueous solutions under ambient conditions. In hexavalent oxidation, state uranium
exists in the form of the uranyl cation (UO2

2+) and is easily hydrolyzed (pH > 4) in aqueous
solutions. The formation of the polynuclear species is favored at an increased U(VI) con-
centration (>10–5 M). Moreover, under ambient conditions and in the presence of carbonate
cations, the U(VI)-carbonato species govern the U(VI) chemistry in aqueous solutions and
in the near neutral and alkaline pH region [10,11,140]. Figure 3 shows the solubility curve
of UO2(OH)2, which is the solubility limiting solid phase of U(VI) under ambient conditions
in aqueous solutions and the corresponding species distribution diagram, which includes
only mononuclear U(VI) species. In order to denote the impact of carbonate complexation,
Figure 3 also includes the solubility curve of UO2(OH)2 assuming only hydrolysis. The
calculation of both the solubility curves and the species distribution has been performed
using the solubility product of UO2(OH)2 and the formation constants of the hydrolysis
species and the carbonate complexes that are available in the literature [10,11].
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2. Uranium Sorption by Aerogels

As stated before and shown in Figure 2b, in recent years a relatively large number of
studies have been published regarding the sorption of U(VI) by aerogels and particularly,
the effect of several parameters (e.g., pH, initial U(VI) concentration, ionic strength, contact
time, temperature, adsorbent dosage, and presence of competing species) that affect U(VI)
sorption. In addition, some of these studies include the possible recovery of uranium
and reusability of the aerogel adsorbent, as well as the employment of spectroscopic
techniques in order to identify the surface species formed after the adsorption and get
insight into the sorption mechanism. Table 1 summarizes the experimental parameters
and thermodynamic data evaluated from the published studies on uranium adsorption by
several aerogel materials [37–70].

Before we proceed to the analysis of the parameters that affect U(VI) sorption, we
need to answer one basic question. How important is the nanostructure of aerogels for
the specific application sorption? To answer this question, we will use two examples.
First, we will compare the maximum sorption (qmax) reported for calcium alginate xerogels
(appr. 9 g kg–1) [36] and calcium alginate aerogels (388 g kg–1; Table 1) [39] at pH 3. Since the
chemical composition of the adsorbent and the reaction conditions are the same, the huge
difference in qmax must be credited to the nanostructured porous calcium alginate aerogel.
Second, we will compare polyurea-crosslinked calcium alginate (X-alginate) aerogels with
an aliphatic [141–143] or an aromatic [144] polyurea. In both cases, the alginate network is
covered by polyurea and the materials have similar material properties and morphologies;
however, there is a critical difference in the nanostructure: the aliphatic polyurea forms a
compact layer that covers the alginate primary nanoparticles, while the aromatic polyurea



Nanomaterials 2023, 13, 363 6 of 20

has a more rigid and randomly oriented polymer structure that partially fills the pores
within the secondary particles [95]. Because of this difference, these two materials behave
differently versus the sorption of heavy metal ions. X-alginate aerogels with the aromatic
polyurea can efficiently uptake Pb(II) [145], U(VI) [39], Eu(III) and Th(IV) [146], while
X-alginate aerogels with the aliphatic polyurea are not so efficient. For example, for Pb(II),
the qmax values are equal to 20.8 g kg–1 and 6.8 g kg–1, respectively [147].

Table 1. Selected experimental data for the best-fitted kinetics/isotherm models for the sorption of
uranium by aerogel materials.

Aerogel Material pH Temp. (K) [U(VI)]o/max
(mol L–1)

Best-Fitted
Isotherm/Kinetic

Model
qmax (g kg–1) Competition/

Recycling/Recovery
Data Related to

U(VI) Adsorption Ref.

Hydroxyapatite
(templated with

konjac gum)
4 298 4.2 × 10–4 Langmuir, PSO 2088

anion/cation
competition reuse for

five cycles

FTIR, XPS, and
mechanistic studies [37,38]

Polyurea-crosslinked
alginate (X-alginate) 3 298 4.2 × 10–5 Langmuir 2023

natural waters,
seawater, modelling,

wastewater,
and recycling

FTIR and EDS [39]

Reduced graphene
oxide/ZIF-67 a 4 298 1.05 × 10–3 Langmuir, PSO 1888 cation competition,

reuse for five cycles FTIR and XPS [40]

Al2O3/MgO 6 298 4.2 × 10–5 Langmuir, PSO 1047 cation competition,
reuse for five cycles

XPS and
mechanistic studies [41]

MOF/black phosphorus
quantum dots
on cellulose b

7 303 Langmuir, PSO 858 seawater and
recycling

XPS and
mechanistic studies [42]

Pr2O3 7 298 4.2 × 10–5 Langmuir, PSO 841
cation competition

and reuse for
five cycles

FTIR and XPS [43]

Al2O3 (templated
with chitosan) 7 298 4.2 × 10–5 Langmuir, PSO 814

anion/cation
competition and

reuse for five cycles

FTIR, XPS, and
mechanistic studies [44,45]

Al2O3 (templated with
polyethylene glycol) 7 298 4.2 × 10–5 Langmuir, PSO 737

anion/cation
competition and

reuse for five cycles

FTIR, XPS, and
mechanistic studies [44]

Amidoxime-
functionalized

β-cyclodextrin/graphene
6 298 8.4 × 10–4 Langmuir 654

cation competition
and reuse for

ten cycles
FTIR and XPS [46]

TiO2 5 298 4.2 × 10–5 Langmuir, PSO 638
cation competition

and reuse for
five cycles

FTIR and XPS [47]

Al2O3 (prepared
with thiourea) 7 298 4.2 × 10–5 Langmuir, PSO 634 seawater FTIR and XPS [48]

Al2O3 (templated
with dopamine) 7 298 4.2 × 10–5 Langmuir, PSO 592

anion/cation
competition and

reuse for five cycles

FTIR, XPS, and
mechanistic studies [44]

Poly(amidoxime)/graphene
oxide nanoribbons 4.5 298 5.0 × 10–4 Langmuir 589

cation competition
and reuse for

five cycles

XPS, mechanistic
studies, and

DFT modelling
[49]

Nd2O3 7 - 4.2 × 10–5 Langmuir, PSO 587
cation competition

and reuse for
five cycles

FTIR and XPS [43]

Bacterial cellulose@ZIF-8
carbon c 3 308 8.4 × 10–5 Langmuir, PSO 535

cation competition
and reuse for

five cycles
FTIR and XPS [50]

Calcium alginate/
MgAlFe layered

double hydroxides
5 298 8.4 × 10–5 Langmuir, PSO 532 - FTIR and XPS [51]

CeO2 7 298 4.2 × 10–5 Langmuir, PSO 482
cation competition

and reuse for
five cycles

FTIR and XPS [43]

Nanocellulose 5 298 4.2 × 10–5 Langmuir, PSO 441
cation competition

and reuse for
five cycles

FTIR and XPS [52]

Chitosan/aluminum
sludge composite 4 308 3 × 10–3 Langmuir, PSO 435

cation competition
and reuse for

five cycles

XPS and
mechanistic studies [53]
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Table 1. Cont.

Aerogel Material pH Temp. (K) [U(VI)]o/max
(mol L–1)

Best-Fitted
Isotherm/Kinetic

Model
qmax (g kg–1) Competition/

Recycling/Recovery
Data Related to

U(VI) Adsorption Ref.

Graphene oxide
nanoribbon 4.5 298 2.52 × 10–4 Langmuir, PSO 431 - [54]

Calcium alginate 3 298 4.2 × 10–5 Langmuir 388 - [39]

Iron-polyaniline-graphene
composite 5.5 318 4.2 × 10–5 Langmuir, PSO 350 reuse for five cycles FTIR, XPS, EDS, and

mechanistic studies [55]

Chitosan/
carboxylated carbon
nanotube composite

5 318 5.04 × 10–4 Langmuir, PSO 341 cation competition FTIR and XPS [56]

Bayberry tannin/
graphene composite 5 298 - - 330 - [57]

Reduced graphene
oxide/g-C3N4 quantum

dots/ZIF-67
composite carbon a

3 328 8.4 × 10–5 Langmuir, PSO 316
cation competition

and reuse for
five cycles

FTIR and XPS [58]

Aromatic polyurea
derived from TIPM d 3 298 4.2 × 10–5 Langmuir 305 - [39]

Fungus hypha/
graphene oxide 5 293 5.04 × 10–4 Langmuir 288

cation competition
and reuse for

six cycles
XPS [59]

Aramid/polyamidoxime 6 298 4.2 × 10–4 Langmuir, PSO 262
cation competition

and reuse for
five cycles

[60]

Pr2O3 8 298 4.2 × 10–5 - 252 - [61]

Graphene 4 298 1.02 × 10–4 Langmuir, PSO 239 reuse for four cycles XPS [62]

Carbon/Fe3O4 6 303 2.1 × 10–4 Langmuir, PSO 230
anion/cation

competition and
reuse for five cycles

FTIR and XPS [63]

Melamine-
formaldehyde/alginate 4 298 4.2 × 10–4 Langmuir 211 cation competition [64]

Polydopamine-
functionalized

attapulgite/chitosan
6 - 2.1 × 10–4 Langmuir, PSO 175 reuse for six cycles FTIR and XPS [65]

p-Phthalaldehyde/
3,5-diaminobenzoic

acid-crosslinked chitosan
6 308 4.2 × 10–5 Langmuir, PSO 160 - XPS [66]

Phosphorylated carbon 5.5 298 4.2 × 10–5 Langmuir, PSO 150
cation competition

and reuse for
five cycles

FTIR and XPS [67]

Sulfonated graphene 5 298 4.2 × 10–5 Langmuir, PSO 148
cation competition

and reuse for
five cycles

FTIR and XPS [68]

Graphene oxide/
carbon nanotubes 5 298 2.1 × 10–4 Langmuir, PSO 100 - [69]

Graphene/Ag
nanoparticles 5–6 298 8.4 × 10–5 Langmuir 13 - [70]

a ZIF-67: Co-based zeolitic imidazole framework. b Under simulated sunlight irradiation. MOF: UiO-66-NH2
(Zr-based metal-organic framework). c ZIF-8: Zn-based zeolitic imidazole framework. d Aromatic polyurea
derived from Desmodur RE (27% w/w triphenylmethane-4,4′,4′′-triisocyanate (TIPM) solution in ethyl acetate)
from Covestro AG.

2.1. pH Effect

pH is one of the most important parameters regarding sorption, since it affects both
the speciation of the element in the solution and the degree of dissociation of the functional
surface groups. Under ambient conditions, U(VI) speciation in aqueous solutions in-
cludes hydrolysis species (e.g., UO2

2+, UO2OH+, UO2(OH)2, (UO2)2(OH)2
2+, (UO2)2OH3

+,
(UO2)3(OH)5

+, and (UO2)4(OH)7
+) which predominate at pH < 6 and U(VI) carbonate

complexes (UO2CO3, UO2(CO3)2
2−, UO2(CO3)3

4−), which govern the U(VI) chemistry at
pH > 6. At pH < 4, the uranyl ion (UO2

2+) dominates and determines the U(VI) chemistry
in the solution [10].
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U(VI) sorption by aerogels has been investigated in a wide pH range (3–11) and the
sorption capacity (qe) has been determined for pH values ranging between 3 and 8, and the
total U(VI) concentration is close to or even above the solubility limit of the predominant
U(VI) solid phase under ambient conditions (e.g., UO2(OH)2; Figure 3). This is crucial,
particularly in the near neutral pH range (5 < pH < 7) because UO2(OH)2 is very likely to be
present, interfering with sorption and resulting in erroneous conclusions. In acidic (pH < 5)
and alkaline (pH > 7) solutions, the solubility increases significantly due to acidic solid
phase dissolution and carbonate complexation of U(VI). It is obvious that studies related
to pH-effect should be performed at total U(VI) concentrations below the solubility limits
to avoid artifacts associated with solid-phase precipitation. In addition, the formation of
hydrolysis and polynuclear species for pH > 4, as well as carbonate complexes for pH > 6,
is expected to result in various sorption interactions which may also differ from one aerogel
type to another. Therefore, a large variation is observed regarding the pH values at which
the maximum sorption capacity (qmax) occurs, even for similar types of aerogel materials.
In some cases, there is a range of several pH units in which the materials present their qmax,
while in other cases, the qmax is observed at a certain pH value.

In order to obtain more reliable and comparable results, we suggest performing
the sorption experiments associated with the evaluation of qmax at a certain value in the
acidic pH range, such as pH 3 or pH 4; the former is preferable for aerogel materials, in
order to carry out experiments with the total U(VI) concentration above the mmol range,
which is needed to reach the plateau of the isothermal curves and accurately evaluate qe
values [39]. Indeed, the first three aerogels in terms of sorption capacity (Table 1) show
maximum capacity in acidic solutions (pH 3–4), in which range UO2

2+ is the only species
present [37–40].

At the molecular level, the optimum pH is associated, in the case of inorganic oxides
(e.g., Al2O3 and TiO2), with the point of zero charge (pzc) of the materials and the interaction
of the negatively charged surface with cationic U(VI) species at pH < 8 [10,11]. Below the
pzc of the respective oxide, the adsorbent surface is positively charged due to surface
protonation (=S–OH + H+

(aq) 
 =S–OH2
+; S: surface) and the sorption efficiency is low due

to the electrostatic repulsion between the adsorbent surface and the cationic U(VI) species
(e.g., UO2

2+, UO2OH+, and (UO2)2(OH)2
2+). At pH values above the pzc, the surface

hydroxyl groups are deprotonated (=S–OH + H2O 
 =S–O– + H3O+) and the surface
attracts the positively charged U(VI) resulting in enhanced sorption. However, above
pH 6 and under ambient conditions, the carbonate concentration in a solution increases
progressively, resulting in the formation of very stable U(VI)-carbonato complexes, which
stabilize U(VI) in solution and compete for U(VI) surface complexation [10,140,148].

Similarly, in the case of carbon-based aerogels, the optimum pH lies in the weak acidic
pH range (pH~5) and is determined by the competing reactions: (a) the protonation of
surface active groups and (b) the formation of U(VI) hydroxo- and carbonate complexes,
which stabilize U(VI) in solution [10,140]. Under ambient conditions, the latter complexes
are expected to govern the U(VI) in the solution, and have to be considered in associated
species distribution diagrams. Adsorption on modified carbons has been observed via the
interaction of the metal species with sulfur (e.g., –SO3

–) [68] or phosphorous (e.g., –O–PO3)
functionalities [67] at pH values 5–5.5.

2.2. Sorption Kinetics and Kinetic Modelling

In large-scale and industrial applications, fast and efficient sorption can reduce pro-
duction costs and at the same time, accelerate production efficiency. The adsorption
kinetics describe the rate of adsorbate uptake on the adsorbent, which determines the
adsorption equilibrium time. Therefore, investigations on sorption kinetics and kinetic
data modelling are of fundamental importance. Most studies use the pseudo-first-order
Equation (1) and pseudo-second-order Equation (2) adsorption kinetic models to analyze
the experimental data.

qt = qe(1− e−k1t) (1)
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qt =
k2qe

2t
1 + k2qet

(2)

Generally, due to the large number of active sites and functional groups on the sur-
face of the aerogel materials, the U(VI) adsorption capacity increases rapidly with time.
Generally, in an initial relatively fast step, most of the U(VI) is adsorbed, and sorption
continues until the systems reach equilibrium. The second step is characterized by a lower
adsorption rate, which is attributed to the gradual occupation of surface active sites and the
decrease of the U(VI) concentration in a solution [63]. With the exception of alumina-based
aerogels [44], which need about 300 min to reach a steady-state, the sorption on purely
inorganic aerogels reaches its maximum values within a few minutes [37,43,47]. Graphene-
based aerogels reach equilibrium conditions mainly after ~50 min [62] and biomass-derived
carbon aerogels need from 100 up to 1500 min to reach equilibrium [63], with the exception
of polyurea-crosslinked calcium alginate (X-alginate) and calcium alginate aerogels, which
reach equilibrium within a few minutes [39]. Equally, fast adsorption was also observed for
the corresponding polyurea aerogels [39].

Based on the linear correlation coefficients (R2) and the calculated maximum adsorp-
tion capacity (qmax,cal), which in the case of the pseudo-second-order kinetic model, are
close to unity and the experimental maximum adsorption capacity (qmax,exp), respectively,
sorption data are better described by the pseudo-second-order kinetic model, which could
be in agreement with chemisorption. However, this is an over-simplification of the parame-
ters that affect the adsorption; for example, the diffusion into the porous material should
always be taken into consideration [149]. Recent research supports the application of the
non-linear form of the pseudo models for analyzing the adsorption kinetics, otherwise
erroneous conclusions may be derived [150].

2.3. Sorption Isotherms

The effect of the initial concentration on the sorption efficiency at a constant temper-
ature is of particular interest because it enables the fitting of the experimental data and
the evaluation of the maximum adsorption values by applying simple empirical models
(usually, Langmuir and Freundlich adsorption isotherm models). Adsorption isotherms are
essential for expressions of the theoretical maximum adsorption capacities and surface
characteristics of the adsorbents, adsorption mechanism pathway optimization, and the
productive design of the adsorption systems since they explain how model pollutants are
interrelated with the materials of the adsorption process (adsorbents) [151]. Although in
some cases, these models are used to evaluate the adsorption mechanism (e.g., chemisorp-
tion) [72], this approach is very vague and should be used only as an indication.

According to Table 1, the maximum adsorption values (qmax) extend in a wide range
between 13 g kg–1 and 2088 g kg–1, with the highest values being among the highest
ever reported for uranium adsorption. For example, the recently reported values above
1800 g kg–1 are by far the highest found in the literature [37–40]. This is associated with the
large surface area and hence the large number of active sites available for U(VI), binding
on the aerogel materials. It must be noted that extremely high qmax values have been
reported for inorganic (hydroxyapatite) [37,38], biopolymer-based (X-alginate) [39], and
carbon-based aerogels [40]. The only higher value than the above (qmax = 3550 g kg–1) has
been reported for graphene-based aerogels, which however, act not as adsorbents, but as
hosts for reagents that leach out of the aerogel matrix and cause precipitation of uranium
from water [73].

2.4. Effect of Solution Composition and Competing Ions

In order to simulate real-world conditions, several investigations have focused on the
effect of co-existing ions, such as K+, Na+, Ca2+, Mg2+, CO3

2–, PO4
3–, SO4

2–, Cl–, ClO4
–,

and NO3
–, on the U(VI) sorption by aerogels [35,37,44,45,59,63]. According to the related

studies and the corresponding data that are summarized in Figure 4, conservative cations
(e.g., K+ and Na+) do not remarkably affect sorption efficiency, whereas in the presence
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of polyvalent metal ions (e.g., Ca2+, Zn2+, and Al3+) there is a significant decrease of the
relative sorption efficiency [35,37,40,41,43–47,49,50,52,53,56,58–60,64,67,68]. This occurs
because polyvalent metal cations can interact with surface moieties to form complexes,
and therefore, compete with U(VI) by occupying surface binding sites (Figure 5 top). The
absence of any effect in the case of the conservative cations is a clear indication that U(VI)
binding by the aerogels surface is based on specific interactions, which result in inner-
sphere surface complexes, not only because of the pure electrostatic interactions associated
with the formation of outer-sphere complexes [12–15].

Nanomaterials 2023, 13, x FOR PEER REVIEW 10 of 21 
 

 

surface complexes, not only because of the pure electrostatic interactions associated with 
the formation of outer-sphere complexes [12–15]. 

 
Figure 4. The effect of co-existing ions on the sorption of U(VI) by inorganic aerogels [42,44]. 

 
Figure 5. Schematic illustration of the competition reaction between U(VI) and competing cations 
(Mz+) regarding the sorption on aerogel surfaces (top) and the stabilization of U(VI) in solution in 
the presence of carbonate ions by complex formation, which competes with surface complexation 
and sorption (bottom). Charges are omitted for simplicity. 

On the other hand, among the studied anions (Figure 4), only the presence of CO32– 
and PO42– in the solution seemed to significantly reduce the relative U(VI) removal, be-
cause both CO32– and PO42– form very stable complexes with UO22+ (e.g., UO2CO3, 
UO2(CO3)22-, UO2PO4−, UO2HPO4), which govern the U(VI) chemistry in the system 
[56,60,152]. The competitive interaction between the U(VI) and carbonate cations to form 
the U(VI)-tricarbonato complex, which stabilizes U(VI) in aqueous solutions, is schemati-
cally shown in Figure 5 (bottom). 

Data obtained from these studies clearly show that the selectivity of the aerogel ma-
terials for uranium is limited, and that the sorption capacity decreases remarkably in more 
complex aqueous laboratory solutions [37,42,44,65,68] and natural waters (e.g., seawater 
[39,42,48]). Hence, specific surface modifications (e.g., surface derivatization with salo-
phen [153]) are needed to substantially increase selectivity toward the U(VI), which will 
only be insignificantly affected by the presence of competing polyvalent metal ions, strong 
complexing anions (e.g., CO32–), and acidic conditions (pH < 3). 

  

Figure 4. The effect of co-existing ions on the sorption of U(VI) by inorganic aerogels [42,44].

Nanomaterials 2023, 13, x FOR PEER REVIEW 10 of 21 
 

 

surface complexes, not only because of the pure electrostatic interactions associated with 
the formation of outer-sphere complexes [12–15]. 

 
Figure 4. The effect of co-existing ions on the sorption of U(VI) by inorganic aerogels [42,44]. 

 
Figure 5. Schematic illustration of the competition reaction between U(VI) and competing cations 
(Mz+) regarding the sorption on aerogel surfaces (top) and the stabilization of U(VI) in solution in 
the presence of carbonate ions by complex formation, which competes with surface complexation 
and sorption (bottom). Charges are omitted for simplicity. 

On the other hand, among the studied anions (Figure 4), only the presence of CO32– 
and PO42– in the solution seemed to significantly reduce the relative U(VI) removal, be-
cause both CO32– and PO42– form very stable complexes with UO22+ (e.g., UO2CO3, 
UO2(CO3)22-, UO2PO4−, UO2HPO4), which govern the U(VI) chemistry in the system 
[56,60,152]. The competitive interaction between the U(VI) and carbonate cations to form 
the U(VI)-tricarbonato complex, which stabilizes U(VI) in aqueous solutions, is schemati-
cally shown in Figure 5 (bottom). 

Data obtained from these studies clearly show that the selectivity of the aerogel ma-
terials for uranium is limited, and that the sorption capacity decreases remarkably in more 
complex aqueous laboratory solutions [37,42,44,65,68] and natural waters (e.g., seawater 
[39,42,48]). Hence, specific surface modifications (e.g., surface derivatization with salo-
phen [153]) are needed to substantially increase selectivity toward the U(VI), which will 
only be insignificantly affected by the presence of competing polyvalent metal ions, strong 
complexing anions (e.g., CO32–), and acidic conditions (pH < 3). 

  

Figure 5. Schematic illustration of the competition reaction between U(VI) and competing cations
(Mz+) regarding the sorption on aerogel surfaces (top) and the stabilization of U(VI) in solution in the
presence of carbonate ions by complex formation, which competes with surface complexation and
sorption (bottom). Charges are omitted for simplicity.

On the other hand, among the studied anions (Figure 4), only the presence of CO3
2–

and PO4
2– in the solution seemed to significantly reduce the relative U(VI) removal, be-

cause both CO3
2– and PO4

2– form very stable complexes with UO2
2+ (e.g., UO2CO3,

UO2(CO3)2
2−, UO2PO4

−, UO2HPO4), which govern the U(VI) chemistry in the
system [56,60,152]. The competitive interaction between the U(VI) and carbonate cations
to form the U(VI)-tricarbonato complex, which stabilizes U(VI) in aqueous solutions, is
schematically shown in Figure 5 (bottom).
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Data obtained from these studies clearly show that the selectivity of the aerogel
materials for uranium is limited, and that the sorption capacity decreases remarkably
in more complex aqueous laboratory solutions [37,42,44,65,68] and natural waters (e.g.,
seawater [39,42,48]). Hence, specific surface modifications (e.g., surface derivatization with
salophen [153]) are needed to substantially increase selectivity toward the U(VI), which
will only be insignificantly affected by the presence of competing polyvalent metal ions,
strong complexing anions (e.g., CO3

2–), and acidic conditions (pH < 3).

2.5. Temperature Effect and Sorption Thermodynamics

Experiments related to the effect of temperature enable an evaluation of sorption
thermodynamics and the calculation of the associated parameters (e.g., ∆H0, ∆S0, and ∆G0).
The values of the thermodynamic parameters indicate whether sorption is an exothermic
(∆H0 < 0) or an endothermic (∆H0 > 0), entropy-driven (∆S0 > 0) process. The Gibbs free
energy change ∆G0 (kJ mol–1) can be calculated from Equation (3) (van’t Hoff equation),
and it is connected with the enthalpy change (∆H0) and the entropy change (∆S0) through
Equation (4), where R is the gas constant (8.314 J mol–1 K–1), T is the absolute temperature
(K) and K0

e is the thermodynamic equilibrium constant.

∆G0 = −RT ln K0
e (3)

∆G0 = ∆H0 − T∆S0 (4)

With the exception of only one study [62], all other studies up to now have indicated
that U(VI) sorption by aerogel materials is an endothermic, entropy-driven process that
is favored with increasing temperatures [39,40,50,52,53,55,56,59,62,63,65,66,68,69]. ∆H0

values can be as high as 141 kJ mol–1 and ∆S0 values can be as high as 500 J K–1 mol–1

(Table 2). The increase of entropy, which is the main driving force for U(VI) sorption by
aerogels, is ascribed to the release of water molecules from the hydrated U(VI) ionic species
and the charged surface moieties upon the U(VI) surface complexation, as schematically
indicated in Figure 6.

Table 2. Literature values of ∆H0 and ∆S0 related to the U(VI) sorption by different aerogel materials.

Aerogel Material ∆H0

(kJ mol–1)
∆S0

(J K–1 mol–1)
Ref.

Reduced graphene oxide/ZIF-67 a 11.7 120 [40]
Bacterial cellulose@ZIF-8 carbon b 113.73 382.4 [50]
Nanocellulose 10.80 71.33 [52]
Chitosan/aluminum sludge composite 6.5 77 [53]
Iron-polyaniline-graphene composite 60.74 - [55]
Chitosan/carboxylated carbon nanotube composite 21.96 157.3 [56]
Fungus hypha/graphene oxide 9.31 51.55 [59]
Graphene −47.94 −73.03 [62]
Carbon/Fe3O4 141.4 500.2 [63]
Polydopamine- functionalized attapulgite/chitosan 5.45 50.24 [65]
p-Phthalaldehyde/3,5-diaminobenzoic
acid-crosslinked chitosan 2.147 58.288 [66]

Sulfonated graphene 4.3 89.9 [68]
Graphene oxide/carbon nanotubes 8.146 91.43 [69]
Polyurea-crosslinked alginate (X-alginate) >0 >0 [39]
Reduced graphene oxide/g-C3N4 quantum dots/ZIF-67
composite carbon a >0 >0 [58]

a ZIF-67: Co-based zeolitic imidazole framework. b ZIF-8: Zn-based zeolitic imidazole framework.
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2.6. Uranium Recovery and Material Recycling

Material recycling and uranium recovery are of particular interest from an environ-
mental and economic point of view. The former is related to the treatment of uranium-
contaminated waters and uranium monitoring in the environment, and the latter is related
to the recovery of precious and industrial metals to cover increasing demands and com-
pensate for the decline of natural resources. Regeneration studies have been carried out
using EDTA solutions as extractants because the EDTA has a strong ability to complex
U(VI) without causing any damage to the adsorbent material [39]. Usually, five consecutive
adsorption-desorption cycles are performed, and the recovery and regeneration efficiency
are quantified to evaluate the process’ applicability. The related studies have shown that
the recovery and regeneration efficiency were satisfactory and that the aerogel material re-
mained almost intact [34,39,42,44,55,70]. The use of nitric acid solutions (0.5 M HNO3) can
result in the deterioration of the aerogel porous structure during the adsorption–desorption
process and subsequently, to the U(VI) recovery decline [65].

Despite the fact that carbonate solutions have been used as extractants for uranium
recovery in other sorption studies [22] or often for the extraction of uranium from miner-
als/rocks, there are only a few studies [39] on the removal of U(VI) from aerogel materials
making use of the high carbonate affinity for U(VI) to form very stable U(VI)-carbonato com-
plexes [148], which is obvious from the solution composition and competing ions studies.

2.7. Effect of the Adsorbent Mass and Ionic Strength

Among the factors that affect the U(VI) sorption by aerogels and have been investigated
is the adsorbent dose. Generally, increasing the adsorbent dose results in an increase in
the removal capacity but a gradual decrease of the relative removal [43,63]. Increasing the
adsorbent dose is associated with an increase in the available surface area and the number
of active sites, and positively affects the sorption capacity, which reaches a maximum value
and a plateau after a certain adsorbent amount. On the other hand, the relative sorption
efficiency decreases because, usually, an association of the adsorbent particles can lead to a
reduced relative adsorption efficiency.

Investigations on the effect of ionic strength on the adsorption could provide indica-
tions about the predominance of inner- or outer-sphere complex formations. Generally,
when inner-sphere complexes are formed, which are characterized by a direct chemical
bond between the surface functional groups of the adsorbent and the adsorbate, the sorp-
tion efficiency does not significantly depend on the ionic strength of the solution. On the
other hand, if the adsorption is controlled mainly by outer-sphere complexes, which are
based on pure electrostatic attraction and the ionic adsorbate retains its hydration sphere,
the sorption efficiency is strongly affected by the ionic strength/salinity [152,154].

2.8. Spectroscopic Studies and Sorption Mechanism

Generally, the adsorption mechanism of U(VI) by aerogels is investigated by FTIR and
XPS spectroscopy. Regarding FTIR, peak shifts and relative changes in peak intensities of
surface-active groups (e.g., –COOH and –OH,) as well as the appearance of the charac-
teristic uranyl (O=U=O) vibration in the spectrum after uranium sorption are employed
to evaluate the adsorption mechanism. Interestingly, the peak shift of the uranyl moiety



Nanomaterials 2023, 13, 363 13 of 20

differs significantly from one type of aerogel to another, and the values of the peak max-
imum vary between 895 cm–1 and 918 cm–1 [38,39,44,53,59,62,64,66]. On the other hand,
changes in the relative area and binding energy of carbon and oxygen peaks associated
with surface active moieties after U(VI) adsorption are used as a clear indication for surface
complex formation [41,44,49,59,66]. In addition, the peaks at 383 eV in the high-resolution
XPS spectra associated with U4f are used to indicate complexation with surface groups [62].
EDS spectroscopy has also been applied after the adsorption tests to confirm the presence
of uranium in the adsorbent material [39,55].

The information obtained from FTIR, XPS, and EDS spectroscopic studies is very
useful, and the associated data clearly indicates the surface-active groups that interact and
form covalent bonds with the adsorbed uranium. However, a comprehensive description
of the U(VI) binding on the aerogel surface at the molecular level is missing. In this context,
EXAFS measurements along with theoretical calculations (e.g., DFT calculations [49]) would
provide further insight into the adsorption mechanism. In addition to the spectroscopic
methods, surface zeta potentials were used to point out the role of the surface charge with
respect to U(VI) adsorption by aerogels materials [41].

Regarding the evaluation of the sorption mechanism, the spectroscopic measurements
are of particular interest because the thermodynamic and kinetic data obtained from the
sorption experiments are not specific for a single/defined reaction but correspond to an
overall sorption reaction, which is the sum of the separate sorption reactions occurring
at the aerogel surface. The number of different sorption reactions depends on the surface
homogeneity, the different active groups available on the surface, and the U(VI) species
that dominate in solution. The latter becomes significant for pH > 4 when hydrolysis and
carbonate complexation are governing the solution chemistry of U(VI) [10,11,140].

2.9. Bulk Density of the Aerogel Material

Another property that must be taken into consideration when the practical appli-
cations and real-world conditions are targeted, is the bulk density (ρb) of the aerogel
material. Aerogels are famous for their extremely low bulk densities; however, in this
particular case, this may not be an advantage. Indeed, our previous works [39,155]
have shown that the calculation of the adsorption efficiency in g per liter (qmax(V)) of
the aerogel material (instead of g per kg (qmax); Table 1) is very important and pro-
vides an estimation of the volume of the material needed for the uptake of a certain
amount of uranium. For example, if we compare four aerogels from Table 1, i.e., polyurea-
crosslinked alginate (X-alginate; qmax = 2023 g kg–1, ρb = 150 g L–1, qmax(V) = 303 g L–1) [39],
Al2O3/MgO (qmax = 1046.9 g kg–1, ρb = 18.89 g L–1, qmax(V) = 19.8 g L–1) [41], calcium al-
ginate (qmax = 388 g kg–1, ρb = 68 g L–1, qmax(V) = 26.4 g L–1) [39], and aromatic polyurea
derived from TIPM (qmax = 305 g kg–1, ρb = 150 g L–1, qmax(V) = 45.8 g L–1) [39], it is obvious
that X-alginate aerogels, with the highest density among the four aerogels, outperform
the other three aerogels by far. That means that for the removal of 300 g of uranium, one
would need 15.9 L of Al2O3/MgO, 11 L of calcium alginate, 6.6 L of polyurea, but only 1 L
of X-alginate aerogels. A detailed presentation of qmax(V) for all aerogel materials for which
bulk densities are reported has been published in reference [39].

3. Conclusions and Future Studies

Over the last decade, the number of studies concerning uranium sorption using
aerogels has dramatically increased. This is because of the steadily increasing interest in
the production of efficient adsorbent materials for radionuclide removal and recovery from
contaminated waters. Thus, captured uranium is planned to cover the future demands of
the nuclear power industry.

Generally, studies are focused on the effect of different physicochemical parameters
(e.g., pH, initial U(VI) concentration, ionic strength, temperature, and contact time) on
the adsorption efficiency. According to those studies, the pH plays a key role because it
governs both the U(VI) speciation and surface species dissociation and charge.
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The isothermal data obtained from experiments related to the effect of metal ion
concentration are best fitted by the Langmuir adsorption isotherm model, resulting in
supreme sorption capacity values (in some cases even above 2000 g of uranium per kg
of aerogel) that are the highest ever reported for uranium. The experimental kinetic
data indicate fast sorption kinetics (equilibrium is reached in a few minutes to a few
hours), and in most cases they are best fitted by the pseudo-second-order kinetic model.
Both the Langmuir isotherm and the pseudo-second-order kinetic models are indicative of
chemisorption. Other parameters/phenomena, however, such as the diffusion within the
porous matrix of aerogels, the adsorbent dose, or the effect of the ionic strength, cannot be
ignored. In addition, the associated thermodynamic data generally reveal an endothermic,
entropy-driven sorption mechanism, indicating the formation of inner-sphere surface
complexes. The formation of inner-sphere complexes between U(VI) and the active groups
on the aerogel surfaces is supported mainly by FTIR and XPS data.

Several aerogel materials show an excellent performance regarding their reuse, even
after several adsorption-desorption cycles, with a relatively high uranium recovery. How-
ever, the presence of multivalent metal cations (e.g., Ca2+ or Al3+) and complexing species
(e.g., CO3

2− or PO4
3−) strongly affects the sorption efficiency of the adsorbents toward

uranium, because of competitive sorption and the formation of stable solution complexes,
respectively, indicating a limited selectivity of the studied aerogels toward uranium (U(VI).

Based on this review, future studies should focus on the preparation of aerogel materi-
als with specific surface groups possessing a high affinity and selectivity toward uranium
and other precious and industrial metals/metalloids. This is of particular interest because,
besides sorption affinity and capacity, selectivity is a key factor affecting the recovery of the
desired metal from multicomponent and complex industrial processes and waste waters.
In addition, in radiopharmaceutical applications, it is of cardinal importance to selectively
separate and recover the radionuclide of interest from reaction solutions containing other
radionuclides and undesirable by-products.

The most efficient and selective aerogel materials should be tested not only in labora-
tory settings, but also at pilot and industrial scales in order to attract broader interest and
find applications in large-scale/industrial processes. Moreover, data obtained from EXAFS
(Extended X-ray absorption fine structure spectroscopy) and TRLFS (Time-resolved laser
fluorescence spectroscopy) studies would allow a better understanding of the interaction
between U(VI) species and the aerogel surface and describe the mechanism at the molecular
level. This is of fundamental importance for the design and development of more effective
and selective adsorbents.
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