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Abstract: Due to the emerging requirements of miniaturization and multifunctionality, monolithic
devices with both functions of lighting and detection are essential for next-generation optoelectronic
devices. In this work, based on freestanding (In,Ga)N films, we demonstrate a monolithic device with
two functions of lighting and self-powered detection successfully. The freestanding (In,Ga)N film is
detached from the epitaxial silicon (Si) substrate by a cost-effective and fast method of electrochemical
etching. Due to the stress release and the lightening of the quantum-confined Stark effect (QCSE),
the wavelength blueshift of electroluminescent (EL) peak is very small (<1 nm) when increasing the
injection current, leading to quite stable EL spectra. On the other hand, the proposed monolithic
bifunctional device can have a high ultraviolet/visible reject ratio (Q = 821) for self-powered detection,
leading to the excellent detection selectivity. The main reason can be attributed to the removal of Si
by the lift-off process, which can limit the response to visible light. This work paves an effective way
to develop new monolithic multifunctional devices for both detection and display.

Keywords: self-powered photodetector; lift-off (In,Ga)N film; monolithic bifunctional device;
ultraviolet/visible reject ratio

1. Introduction

Due to their advantages of low energy consumption, long lifetime, small volume, etc.,
light-emitting diodes (LEDs) based on (In,Ga)N materials have been extensively utilized in
the solid-state lighting, display and communication fields [1–3]. By adjusting the Indium
(In) component, the energy bandgap of (In,Ga)N can be modulated from 0.67 eV (InN) to
3.4 eV (GaN), which covers the whole visible range [4]. (In,Ga)N can also be an excellent
candidate for fabricating photodetectors (PDs) because of its high stability and direct and
tunable bandgap, which can be applied in the systems of medical, communication and
environmental monitoring [5–8]. In the conventional way, the dual functionalities of light
emission and detection can be realized by combining a LED and a PD, which makes the
system more cumbersome and expensive [9–11]. Thus, with the increasing demand for the
miniaturization, portability and multifunctionality of optoelectronic products, the ability to
integrate LEDs and PDs within a single chip is essential for next-generation optoelectronic
devices [10,12–14].

PDs operating at a zero-voltage bias can have self-powered characteristics [15], which
are promising to be utilized as wireless and implantable devices in harsh working environ-
ments by alleviating the energy consumption [16,17]. Due to the outstanding advantages of
low-cost, low-power consumption and simple fabrication processes, photoelectrochemical
(PEC) PDs have attracted extensive attention for fabricating self-powered PDs [15,17,18].
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Therefore, it has the potential to open up a new branch of industry by merging a LED and
a self-powered PEC PD into a monolithic device.

According to the epitaxial substrates, silicon (Si) has received much attention due to its
easy processing properties, low price and good electrical and thermal conductivity [19–21].
Indeed, the possibility of crack-free epitaxial GaN film growth on Si has been demonstrated
by using various routes such as AlN, SiC and (Al,Ga)N buffer layers [22–24]. However,
the Si substrate can produce an unnecessary light response to visible light, resulting in
a low ultraviolet (UV)/visible reject ratio [16,20]. Although it is a key parameter for
PDs, the UV/visible reject ratio is very difficult to be enhanced significantly due to a
key reason of visible interference [16,25]. In our previous work, we demonstrated a novel
electrochemical (EC) procedure for transferring the GaN-based nanowires from Si to foreign
substrates [16,26–28]. However, such previous works have not realized the bifunctional
(In,Ga)N device of both lighting and self-powered detection. Hence, it is still quite attractive
but highly challenging to realize the monolithic device with both functions of lighting and
self-powered detection.

In this work, we utilize the EC method to detach (In,Ga)N films from the original
Si substrates to prepare the monolithic bifunctional device of lighting and self-powered
detection. The photoresponse performance is studied at different incident light powers.
Meanwhile, the luminescence performance of the same device is also characterized by the
injecting current. The proposed bifunctional device has the potential significance for novel
multifunctional integrated chips.

2. Experimental Methods
2.1. Preparation and Lift-Off Procedure of (In,Ga)N Film

As shown in Figure 1a, GaN-based samples were epitaxially grown on Si(111) by metal
organic chemical vapor deposition (MOCVD). Along the growth direction, the epitaxial
structure consisted of a ~300-nm-thick AlN nucleation layer (TG (Growth temperature) ≈
1080 ◦C), a ~450-nm-thick (Al,Ga)N multilayer buffer (TG ≈ 1050 ◦C), an ~800-nm-thick
unintentionally doped (UID) GaN layer (TG ≈ 1020 ◦C), a ~2800-nm-thick Si-doped n-GaN
([Si] ≈ 8 × 1018 cm−3; TG ≈ 1020 ◦C), 9-period ~3-/10-nm-thick (In,Ga)N/GaN multiple
quantum wells (MQWs, TG ≈ 750 ◦C), a ~30-nm-thick Mg-doped p-(Al,Ga)N electron-
blocking layer (EBL, [Mg] ≈ 1 × 1020 cm−3; TG ≈ 940 ◦C), a ~60-nm-thick Mg-doped
p-GaN layer ([Mg] ≈ 3 × 1019 cm−3; TG ≈ 940 ◦C) and a ~20-nm-thick heavily Mg-doped
p-GaN contact layer ([Mg] ≈ 2 × 1020 cm−3; TG ≈ 940 ◦C). After the MOCVD growth, the
as-grown samples were divided into small pieces. These pieces were then ultrasonically
cleaned in acetone and isopropanol for 10 min, respectively. Next, the Sn/Pb alloys were
melted as electrical contacts to connect the Si and a conductive wire by an electric soldering
iron (Figure 1b). To avoid corrosion during the EC process, the surfaces of these electrical
contacts were coated with epoxy resin. In the EC process, the sample and the Pt sheet
immersed in a 1 mol/L nitric acid (HNO3) solution were functioned as the anode and
cathode, respectively. More details can be found in Refs. [26,29].
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Figure 1. (a) Schematic diagram of the (In,Ga)N/GaN epitaxial structure on Si. (b) Detach the film 
by the EC method. (c) Transfer the flexible film onto the indium–tin–oxide (ITO) surface, connecting 
by silver paste. (d) Deposit the thick silica (SiO2) passivation layer. (e) Selectively etch the SiO2 layer. 
(f) Fabricate the metal electrodes on the GaN and ITO surfaces, then operate the device as a PEC PD 
under water. (g) Side-view STEM image of the GaN-based film after EC etching. (h) Enlarged scan-
ning transmission electron microscope (STEM) image of the (In,Ga)N/GaN MQWs. High-resolution 
EDX mapping of the (i) In element and (j) Ga element within the (In,Ga)N/GaN MQWs. Aberration-
corrected STEM (AC-STEM) images of (k) GaN and (l) (In,Ga)N crystals. 

2.2. Fabrication of Monolithic Device 
When the (In,Ga)N film was detached from the Si substrate, it was retrieved and 
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at 130 °C for 30 min to solidify the silver paste. As shown in Figure 1d, a SiO2 passivation 
layer was deposited on the top and side surfaces of the film to prevent the current leakage 
and EC etching. After that, the SiO2 layer was selectively etched to expose the top surface 
of the GaN layer (Figure 1e). Finally, the metal electrodes were fabricated on the top sur-
faces of the GaN and ITO layers, respectively (Figure 1f). More details of calibrating Pinc 
can be found in Ref. [16]. 
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Lighting measurements do not need electrolytes, while the measurements of PEC de-
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Figure 1. (a) Schematic diagram of the (In,Ga)N/GaN epitaxial structure on Si. (b) Detach the film by
the EC method. (c) Transfer the flexible film onto the indium–tin–oxide (ITO) surface, connecting by
silver paste. (d) Deposit the thick silica (SiO2) passivation layer. (e) Selectively etch the SiO2 layer.
(f) Fabricate the metal electrodes on the GaN and ITO surfaces, then operate the device as a PEC
PD under water. (g) Side-view STEM image of the GaN-based film after EC etching. (h) Enlarged
scanning transmission electron microscope (STEM) image of the (In,Ga)N/GaN MQWs. High-
resolution EDX mapping of the (i) In element and (j) Ga element within the (In,Ga)N/GaN MQWs.
Aberration-corrected STEM (AC-STEM) images of (k) GaN and (l) (In,Ga)N crystals.

2.2. Fabrication of Monolithic Device

When the (In,Ga)N film was detached from the Si substrate, it was retrieved and rinsed
off with deionized water. Before the transfer process, the silver paste was smoothed on the
top surface of the ITO layer by a squeegee (Figure 1c). Subsequently, the (In,Ga)N film was
transferred to the surface of silver paste (Figure 1c,d). Then, the sample was kept at 130 ◦C
for 30 min to solidify the silver paste. As shown in Figure 1d, a SiO2 passivation layer was
deposited on the top and side surfaces of the film to prevent the current leakage and EC
etching. After that, the SiO2 layer was selectively etched to expose the top surface of the
GaN layer (Figure 1e). Finally, the metal electrodes were fabricated on the top surfaces of
the GaN and ITO layers, respectively (Figure 1f). More details of calibrating Pinc can be
found in Ref. [16].

2.3. Characterization and Measurement Methods

Lighting measurements do not need electrolytes, while the measurements of PEC
detection need them (e.g., pure water) for oxidation-reduction reactions (Figure 1f) [17,27].
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The effective area of the device (Sdevice) is ~0.06 cm2. The responsivity (R) is another key
parameter of the PD, which is calculated by the following equation [30]:

R =
Iph

Sdevice· Pinc
, (1)

where Pinc is the incident light–power density. As a key optical property, the electrolumines-
cence (EL) spectra can be achieved by injecting the current. Raman scattering experiments
were carried out with a 532 nm laser, which were collected by a spectrometer (LABRAM
HR). To characterize the morphology and element distribution, a STEM (Talos F200X, FEI)
with a high-resolution energy dispersive X-ray (EDX) mapping and spherical AC-STEM
was utilized. A focused ion beam (FIB, Scios, FEI) was utilized to prepare the STEM sam-
ples. An EC workstation with a PEC system (DH 7000) was used to evaluate the electrical
properties of PDs in a reaction vessel with pure water at 0 V bias. The PD characteristics
were all measured under the lighting sources of LEDs.

3. Results and Discussion

As shown in Figure 1g, clear (In,Ga)N/GaN and (Al,Ga)N/GaN interfaces can be
achieved in the regions of (In,Ga)N/GaN MQWs, (Al,Ga)N EBL and p-GaN. It demon-
strates that the epitaxial structure agrees well with the design. Figure 1h–j illustrate the
regularly spaced (In,Ga)N/GaN interfaces without obvious dislocations in the MQW re-
gion in compositions that are uniformly distributed within the (In,Ga)N quantum well.
Furthermore, the clear lattice fringes of both GaN and (In,Ga)N crystals can be observed in
Figure 1k,l, indicating the good crystallinity of the active region for the device.

To characterize the stress changes before and after detaching the films from the Si
substrate, Raman scattering spectra were measured and shown in Figure 2a. For the as-
grown sample before EC etching, two strong peaks exist around 569.1 cm−1 and 521.0 cm−1,
corresponding to the wurtzite-structured GaN (E2 (high)) and Si–Si bond, respectively.
After EC etching, the peak corresponding to the Si–Si bond disappears, resulting from the
removal of Si. Furthermore, the E2 (high) peak for GaN is shifted to be 567.7 cm−1, which
mainly results from the stress release within the films. Such a blue-shifted GaN peak of
1.4 cm−1 corresponds to a stress release of 2.61 GPa [29], which could reduce the internal
polarization effects. As clearly illustrated in Figure 2b, the EL spectra demonstrate the
lighting function of a monolithic device. When increasing the injection current from 16.7 to
500 mA/cm2, the cyan peak only shifts from 479.7 nm to 478.8 nm (<1 nm). In comparison,
such a peak blueshift is normally larger than 2 nm for conventional LEDs without the
lift-off process [31,32]. As a result, the peak wavelength of the monolithic device is quite
stable at different current densities.
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Figure 3a illustrates the regular time-dependent photocurrent characteristics. As the
detection measurements can be accomplished at 0 V bias [15,17], the monolithic device
is demonstrated to have another function of self-powered detection. With the increase
in the incident light–power intensity, the photocurrent (Iph) increases simultaneously
(Figure 3a,b), exhibiting a characteristic of light–power dependence. At a low Pinc, the R
can reach 83 µA W−1 (Figure 3b). As the key parameters, rise time (tr) is defined as the
time the photocurrent rises from 10% to 90% of the peak photocurrent, and decay time (td)
is defined as the time the photocurrent falls from 90% to 10% of the peak photocurrent [33].
As shown in Figure 3c, the rise time and decay time are 0.89 s and 1.26 s, respectively.

Nanomaterials 2023, 13, x FOR PEER REVIEW 5 of 10 
 

 

incident light–power intensity, the photocurrent (Iph) increases simultaneously (Figure 
3a,b), exhibiting a characteristic of light–power dependence. At a low Pinc, the R can reach 
83 μA W−1 (Figure 3b). As the key parameters, rise time (tr) is defined as the time the pho-
tocurrent rises from 10% to 90% of the peak photocurrent, and decay time (td) is defined 
as the time the photocurrent falls from 90% to 10% of the peak photocurrent [33]. As 
shown in Figure 3c, the rise time and decay time are 0.89 s and 1.26 s, respectively. 

To evaluate the detection selectivity of a device before and after the lift-off process, 
the UV/visible reject ratio (Q) is generally used, which is calculated by the following equa-
tion: 𝑄 = 𝑅𝑅 . (2)𝑅  and 𝑅  represent the R data at λ1 (365 nm) and λ2 (620 nm) wavelengths, re-
spectively. As clearly shown in Table 1, the Q data of the monolithic device based on the 
detached film can reach 821, which is high compared to those of the other PEC PDs. 

 
Figure 3. (a) Photo-switching behaviors of the self-powered PEC PD under 365 nm illumination 
with different incident light–power densities (Unit: mW cm-2). Different colors indicate different 
incident light–power densities. (b) Photocurrent density and responsivity as a function of the inci-
dent light–power density. (c) Response of PEC PD under 365 nm illumination at a zero-voltage bias. 

Table 1. Comparison between this work and other recently reported PDs. 

Material 

Light 
Source 

(UV/Visi-
ble, nm) 

PEC-Type  
PD 

Applied 
Bias 

UV/Visi-
ble Reject 
Ratio (Q) 

Refer-
ence 

As-grown 
(In,Ga)N film 365/620 Yes 

Self-pow-
ered 587 

This 
work 

Figure 3. (a) Photo-switching behaviors of the self-powered PEC PD under 365 nm illumination
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incident light–power densities. (b) Photocurrent density and responsivity as a function of the incident
light–power density. (c) Response of PEC PD under 365 nm illumination at a zero-voltage bias.

To evaluate the detection selectivity of a device before and after the lift-off process, the
UV/visible reject ratio (Q) is generally used, which is calculated by the following equation:

Q =
Rλ1

Rλ2
. (2)

Rλ1 and Rλ2 represent the R data at λ1 (365 nm) and λ2 (620 nm) wavelengths, re-
spectively. As clearly shown in Table 1, the Q data of the monolithic device based on the
detached film can reach 821, which is high compared to those of the other PEC PDs.
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Table 1. Comparison between this work and other recently reported PDs.

Material
Light Source
(UV/Visible,

nm)

PEC-Type
PD Applied Bias UV/Visible Reject

Ratio (Q) Reference

As-grown
(In,Ga)N film 365/620 Yes Self-powered 587 This work

Detached
(In,Ga)N film 365/620 Yes Self-powered 821 This work

(Al,Ga)N
nanowires 310/490 Yes Self-powered 485 [16]

Pt/GaN 350/500 Yes Self-powered 185 [25]
GaN/MoO3-x 355/400 No Self-powered 20000 [34]
ZnO/CdS/p-

GaN 300/500 Yes Self-powered 48 [35]

(Al,Ga)N
nanowires 310/490 Yes Self-powered 977 [28]

α-Ga2O3 260/400 Yes Self-powered 34 [36]
Pt/(Al,Ga)N 254/365 Yes Self-powered 144 [17]

Ga2O3/Al2O3 264/400 Yes Self-powered 35 [37]
In2O3 MR 365/455 Yes 0.6 V 21 [38]

ZnGa2O4 layers 240/470 No 5.0 V 84 [39]

In addition, with the PD continuously working from 0 to ~10,000 s, the photocurrent
stays stable (Figure 4a). In general, GaN-based materials have excellent stability. Due
to the negligible fluctuation (<5%), the essentially unchanged photocurrent indicates the
outstanding stability of the monolithic device.

To better study the underlying mechanism of the monolithic bifunctional device, the
schematic illustrations are plotted in Figure 4b–d, which show the energy band diagrams
when operating in the lighting and detection states. As shown in Figure 4b, when forward
bias is applied on both electrodes of the device (Figure 1f), electrons and holes are injected
into the active region of MQWs in opposite directions under the action of the electric
field. The piezoelectricity-induced quantum-confined Stark effect (QCSE) is the key factor
contributing to the effect of the blueshift [31]. The detached film can release the strong
strain, which partially weakens the QCSE and restores the energy band, mainly leading to
a small blueshift (<1 nm, Figure 2b).

Under illumination, carriers are excited to the valence band (EV) and conduction
band (EC) to produce electron–hole pairs (Figure 4c). Photogenerated holes transport
to pure water, while the electrons transport to the n-GaN layer. Hence, the directions
of carrier transport within the energy bands are opposite at both states of lighting and
detection. When the GaN layer contacts the electrolyte of the water, an EC equilibrium is
established by conveying excess carriers through the top and side film/water interfaces.
An internal electric field (i.e., built-in field) formed in the (In,Ga)N/GaN heterojunction
and appropriate energy level alignment can enhance the efficiency of carrier separation
and transport [40,41]. Under 365 nm illumination, the photocurrent can be generated by
the following reactions:

4H+ + 4e− = 2H2, (3)

4h+ + 2H2O = O2 + 4H+. (4)

when the 365 nm light on (Process I in Figure 3c), the photocarriers can be immediately
generated within the GaN and (In,Ga)N layers. Then, the photogenerated holes can easily
move towards the film/water interfaces [42]. After that, the current density recovers to a
new steady state under continuous illumination (Process II in Figure 3c). With the light off,
the transport of existing carriers in the bands continues, which mainly results in the rapid
decrease of the current (Process III in Figure 3c). Then, the current density recovers to a
new steady state again.

In addition, all the GaN, (In,Ga)N and (Al,Ga)N layers cannot absorb 620 nm photons
(2.0 eV) because of the large energy bandgaps (Eg > 2.0 eV), while the Si substrate can due
to the low energy bandgaps (Eg < 2.0 eV). That means Si substrates are able to generate



Nanomaterials 2023, 13, 359 7 of 10

a certain photocurrent under 620 nm illumination. Thus, the removal of Si by the lift-off
process can limit the response to visible light (Figure 4d), mainly leading to enhancing the
UV/visible reject ratio (821, Table 1) to achieve excellent detection selectivity.
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Figure 4. (a) Long-time photocurrent behavior of PD. (b) The energy band diagram of the monolithic
device under the current injection (function of lighting). The energy band diagram of the device under
(c) 365 nm illumination and (d) 620 nm illumination (function of detection). For a better illustration,
the 9-period (In,Ga)N/GaN MQWs are simplified as 3-period MQWs.

4. Conclusions

In this work, a monolithic bifunctional device was demonstrated successfully to
have both functions of lighting and self-powered detection. This monolithic device is
realized by a lift-off (In,Ga)N film, which is detached from the original Si substrate by EC
etching. When increasing the injection current significantly, the blueshift of the peak EL
wavelength is smaller than 1 nm, leading to very stable luminescent spectra. The main
reason can be attributed to the release of stress and the weakening of piezoelectricity-
induced QCSE. Moreover, for self-powered detection, the monolithic bifunctional device
has a high UV/visible reject ratio. Thanks to the removal of the original Si substrate by
the lift-off process, such an excellent characteristic of detection selectivity mainly results
from the response limitations of the visible light. Therefore, the monolithic bifunctional
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device has broad application prospects in the fields of solid-state lighting, communication
and environmental monitoring where low cost, portability and low-power consumption
are required.
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