
Citation: Mohajer, F.; Ziarani, G.M.;

Badiei, A.; Iravani, S.; Varma, R.S.

MXene-Carbon Nanotube

Composites: Properties and

Applications. Nanomaterials 2023, 13,

345. https://doi.org/10.3390/

nano13020345

Academic Editors: Félix Zamora and

Edward H. Lester

Received: 30 December 2022

Revised: 10 January 2023

Accepted: 13 January 2023

Published: 14 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Review

MXene-Carbon Nanotube Composites: Properties
and Applications
Fatemeh Mohajer 1 , Ghodsi Mohammadi Ziarani 1,* , Alireza Badiei 2, Siavash Iravani 3

and Rajender S. Varma 4,*

1 Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
2 School of Chemistry, College of Science, University of Tehran, Tehran 14179-35840, Iran
3 Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences,

Isfahan 81746-73461, Iran
4 Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of

Liberec (TUL), 1402/2, 461 17 Liberec, Czech Republic
* Correspondence: gmohammadi@alzahra.ac.ir (G.M.Z.); varma.rajender@epa.gov (R.S.V.)

Abstract: Today, MXenes and their composites have shown attractive capabilities in numerous fields
of electronics, co-catalysis/photocatalysis, sensing/imaging, batteries/supercapacitors, electromag-
netic interference (EMI) shielding, tissue engineering/regenerative medicine, drug delivery, cancer
theranostics, and soft robotics. In this aspect, MXene-carbon nanotube (CNT) composites have
been widely constructed with improved environmental stability, excellent electrical conductivity,
and robust mechanical properties, providing great opportunities for designing modern and intel-
ligent systems with diagnostic/therapeutic, electronic, and environmental applications. MXenes
with unique architectures, large specific surface areas, ease of functionalization, and high electri-
cal conductivity have been employed for hybridization with CNTs with superb heat conductivity,
electrical conductivity, and fascinating mechanical features. However, most of the studies have
centered around their electronic, EMI shielding, catalytic, and sensing applications; thus, the need
for research on biomedical and diagnostic/therapeutic applications of these materials ought to be
given more attention. The photothermal conversion efficiency, selectivity/sensitivity, environmental
stability/recyclability, biocompatibility/toxicity, long-term biosafety, stimuli-responsiveness features,
and clinical translation studies are among the most crucial research aspects that still need to be
comprehensively investigated. Although limited explorations have focused on MXene-CNT compos-
ites, future studies should be planned on the optimization of reaction/synthesis conditions, surface
functionalization, and toxicological evaluations. Herein, most recent advancements pertaining to
the applications of MXene-CNT composites in sensing, catalysis, supercapacitors/batteries, EMI
shielding, water treatment/pollutants removal are highlighted, focusing on current trends, challenges,
and future outlooks.

Keywords: MXenes; carbon nanotubes; electromagnetic interference shielding; sensing; catalysis

1. Introduction

MXenes as new celebrated materials with unique electronic, optical, thermal, me-
chanical, magnetic, and electrochemical characteristics have garnered considerable re-
search interest, opening great opportunities for (photo)catalysis, lithium (Li)-sulfur (S), and
sodium-ion batteries, electromagnetic interference (EMI) shielding, and supercapacitors,
as well as tissue engineering, drug delivery, cancer (nano)theranostics, and regenerative
medicine [1–7]; these materials have shown excellent optoelectronic properties as well as
high metallic conductivity and optical transmittance, which make them promising candi-
dates for photovoltaic systems [8,9]. MXenes with general formula of Mn+1XnTx (n = 1–3)
have been synthesized using a wide variety of techniques, including etching processes [10],
electrochemical synthesis [11], electrochemical fabrication [12], the urea glass route [13],
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microwave-assisted synthesis [14], chemical vapor deposition [15], hydrothermal produc-
tion [16], ultrasonic-assisted synthesis [17], atomic layer deposition [18], among others.
On the other hand, CNTs with suitable interfacial area, multifunctionality, and needle-like
shapes have been fabricated using carbon arc discharge, spray pyrolysis, chemical vapor
deposition, flame synthesis, laser-ablation, etc. [19,20]. The unique properties of CNTs
such as good heat conduction, tensile strength, flexibility, hollow monolithic structures,
suitable penetrability, and optico-electrical features make them promising candidates in en-
vironmental sciences and bio- and nanomedicine domains [21,22]. However, there are still
important challenges regarding the flexibility, functionality, and stability of MXenes; thus,
improvements are still required, particularly by applying hybridization techniques, suitable
functionalization/modification, and optimization of synthesis/reaction conditions [23–28].
In this context, different types of MXene-based composites have been fabricated, such as
MXene-polymer and MXene-oxide composites [29–32]. One of the recently introduced
hybridized composites is the MXene-carbon nanotube (CNT) structure [33], with excel-
lent electrochemical performances and unique mechanical properties (Figure 1). These
hybrid composites pave the way toward the synthesis of composites with different sensing,
catalysis, water treatment, pollutant removal, EMI shielding, and supercapacitor/battery
applications [1,34–38].
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Figure 1. MXene-CNT composites with alluring potentials.

The hybridization of MXenes with CNTs can improve their mechanical properties
and alkaline resistance [39]. For instance, three-dimensional (3D) nano-fillers of MXene
(Ti3C2Tx)/CNTs were constructed with high stability and enhanced interfacial adhesion
between adjacent fiber yarns along with the increased tensile and flexural strength, show-
ing excellent surface roughness and flexural strength even after 120 days of immersion in
alkali solutions [39]. Moreover, interfacial adhesion could be enhanced in MXene-based
membranes via the hybridization with CNTs, wherein the robust π–π interaction and
van der Waals forces of CNTs impel the close-fitting of MXene nanosheets to improve
anti-swelling features and interfacial bonding forces [40]. It has been revealed that CNTs
with the effects of confined-space mass transfer and excellent mechanical strength could
improve the performance of MXene-based membranes (~5 times) after hybridization, show-
ing great potential in resource recovery and energy-saving [40]. In addition, MXene-CNT
(nano)composites exhibit enhanced electrochemical features and can be applied directly
in designing electrodes in supercapacitors [41]. Li et al. [41] reported the preparation of
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MXene-CNT nanocomposite paper, which could be employed in Li ion batteries with
improved cycling stability and high capacitance [41]. Herein, the most recent advance-
ments regarding the properties and applications of MXene-CNT composites are cogitated,
focusing on recent trends, crucial challenges, and future directions. The versatile applica-
tions of MXene-CNT hybrid composites in the field of catalysis/electrocatalysis, energy
storage, sensors, EMI shielding, and pollutant removal/water treatment are discussed.
Hopefully, this review will encourage researchers for further comprehensive studies on
such composites with fascinating properties and multifunctionality. Other dimensions of
the applications of such materials, especially in biomedicine, energy storage, soft robotics,
electronic skins, and smart/wearable sensors still require multidisciplinary research for
industrialization/commercialization.

2. MXene-CNT Composites

A variety of MXene-CNT composites has been designed with versatile applications
in catalysis, electrocatalysis, EMI shielding, energy storage, water treatment, sensors, etc.
(Table 1) [29–32,42]. These composites have been synthesized using mechanical mixing,
self-assembly, co-dispersion, electrophoretic deposition, in-situ growth of CNTs on MXenes
by chemical vapor deposition, thermal treatment, and microwave-assisted and hydrother-
mal processes. Among several MXene-CNT architectures introduced, aerogels and foams
with 3D structures can be considered as attractive candidates with unique mechanical
properties and excellent permeability for gas/liquid, offering great opportunities for var-
ious applications [33,43]. However, future studies ought to focus on systematic analysis
of thermal, mechanical, porosity, and electrical/electronic features of MXene-CNT com-
posites. It appears that the synergistic effects of MXenes and CNTs in hybrid structures
can reduce/prevent the severe stacking issues of two-dimensional (2D) structures, thus
improving the properties for different applications [33,44].

Table 1. Some selected examples of MXene/CNT composites with versatile applications.

Applications MXene/CNT Composites Advantages and Properties Refs.

Flexible energy
storage; electroanalytical chemistry;
brain electrodes;
electrocatalysis

MXene (Ti3C2Tx)
nanoflakes/multi-walled CNT
on electrospun
polycaprolactone fiber networks

Areal capacitance (30–50 mF cm−2).
Highly enhanced rate function
(14–16% capacitance retention at a scan
rate of 100 V s−1).
Suitable flexibility and tolerance against
repeated mechanical
deformation

[45]

Composite electrodes for high-rate
electrochemical
energy storage

MXene (Ti3C2)/CNTs composite

Significant capacitance (up to 130 F g−1) in
organic electrolytes. Significant capacitance
retention over a wide scan rate range of
10 mV s−1 to 10 V s−1.
Supercapacitors at low
temperatures

[46]

Li-ion capacitors Nb2CTx (MXene)-CNT electrodes

High volumetric energy density
(50–70 Wh L−1).
The lithiated graphite/Nb2CTx-CNT
exhibited the highest
gravimetric activity

[47]

Sodium-based energy storage devices Porous MXene (Ti3C2)/CNT
composite films

Excellent volumetric capacity of
421 mA h cm−3 at 20 mA g−1.
Good rate performance.
High cycling stability

[48]

Li-based batteries and
hybrid capacitors MXene (Ti3C2Tx)-CNT composite High energy and power density [49]



Nanomaterials 2023, 13, 345 4 of 22

Table 1. Cont.

Applications MXene/CNT Composites Advantages and Properties Refs.

Li-S batteries with a high
sulfur loading MXene (Ti3C2Tx)/CNT sandwiches

Significant capacity of 712 mAh g−1; a sulfur
loading of 7 mg cm−2. Superb cycling
stability; 0.025% capacity decay per cycle
over 800 cycles at 0.5 C

[2]

Li-S batteries 3D conductive CNT/MXene
framework modified separator

The separator provided initial capacity of
1415 mA h g−1 at 0.1 C, with the capacity
retention of 614 mA h g−1 even after
600 cycles at 1 C

[50]

Li-S batteries CNT/MXene (Ti2C)
nanocomposites

High density electrochemical energy
storage systems [51]

Dendrite-free
sodium-metal
electrodes

Fibrous hydroxylated
MXene (Ti3C2)/CNT
composite

Significant average Coulombic
efficiency of 99.2%.
No dendrite after 1000 cycles.
Long lifespan over 4000 h at 1.0 mA cm−2

with a capacity of 1.0 mAh cm−2

[52]

High performance
alkali ion batteries

Sandwich-like N-doped CNT@MXene
(Nb2C) composite

Excellent electrochemical
performance [53]

High-performance Li-ion capacitors MXene (Ti3C2Tx)/CNT
composite films

Remarkable energy density of 67 Wh kg−1

with good capacity
retention of 81.3% even after 5000 cycles

[54]

High-rate sodium- and
potassium-ion storage MXene (Ti3C2Tx)-CNT composite

High electrochemical features for sodium-
and potassium-ion
storage.
The electrode with superb rate
capability

[55]

Flexible
microelectronic
devices; supercapacitors

MXene (Ti3C2TX)-CNT composite Good areal capacitance of 61.38 mF cm−2 at
a current density of 0.5 mA cm−2 [56]

Hybrid
supercapacitors MXene (Ti3C2Tx)/CNTs

Hydrogen ion aqueous-based
hybrid supercapacitors.
Significant energy density of 62 Wh kg−1.
Excellent cycling stability

[57]

Supercapacitors MXene/CNT@MnO2
composite film electrode

Significant specific capacity of 221 F g−1.
High flexibility and good cycling stability

[58]

Supercapacitors Porous MXene/CNT films
Superb cycling stability with a
capacitance retention of 99.0% (20,000 cycles)
at 100 A g−1

[59]

Supercapacitors MnO2@MXene (Ti3C2Tx)/CNT
fiber electrodes

Outstanding cycling stability of 86.3% after
10,000 cycles and
excellent capacitance of 371.1 F cm−3

[60]

Supercapacitors MXene (Ti3C2Tx)/multi-walled
CNT electrodes

Areal capacitance of 1.93 F cm−2 was
obtained, which was higher than pure
Ti3C2Tx and its
composites

[34]

Supercapacitors Fe3O4-MXene
(Ti3C2Tx)-CNT electrodes Good capacitive performance [61]

Mechanically resilient and electrically
conductive elastomer nanocomposites MXene (Ti3C2Tx)-CNT composite Enhanced electrical conductivity. Improved

mechanical properties [62]

Electrochemical hydrogen evolution
from seawater

Polyoxometalate-derived hexagonal
molybdenum nitrides (MXenes)
supported by boron, N
co-doped CNTs

Remarkable electrochemical
stability in environments with
different pH values.
Small over-potential of 78 mV at
10 mA cm−2 and Tafel slope of 46 mV
per decade

[63]
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Table 1. Cont.

Applications MXene/CNT Composites Advantages and Properties Refs.

Oxygen evolution and
reduction reactions

Fe/Co-CNT@MXene
composite

Excellent electro-activities.
Significant specific capacity of
759 mA h g −1 at a current density
of 10 mA cm−2.

High durability cycling

[64]

Electrochemical
performance; organic electrolytes

MXene (Ti3C2)/CNT
composite

At 2 mV s−1, the capacitance values of
85 F g−1 and 245 F cm−3 could be achieved.
Excellent rate capability and
suitable cyclability.
Enhanced capacitance

[65]

Sensing Polydimethylsiloxane/MXene/CNT
foam strain sensor

Enough conductive reliability and stability
with great compressibility (~75%) and
outstanding durability (>1000 cycles)

[66]

Multifunctional
sensors

Cobalt (Co)@nitrogen
(N)-CNT/MXene
composite

High stability and tensile range. Flexible
supercapacitors (great
cycling stability of ~85,000 cycles with
coulombic efficiency of ~99.7%)

[67]

Electrochemical
sensor for the
determination of capsaicinoid content

MXene/poly(diallyldimethylam-
monium chloride)-CNTs/β-
cyclodextrin composite

The wide linear range was 0.1–50 µmol L−1,
the low limit of detection (LOD) was
~0.06 µmol L−1, the
recovery rate was ~84.00–125.60%

[68]

Electrochemical
sensor for detection of ochratoxin A

MXene (Ti3C2)-multi-walled
CNT composite

The concentration range was
0.09–10 µmol L−1 with LOD of
0.028 µmol L−1

[69]

Microwave
absorption

MXene (Ti3C2Tx)-CoNi@N-doped
CNT composite

High surface areas (55.6–103.7 m2 g−1),
moderate magnetism (19.8–24.6 emu g−1).
Improved thermal oxidation
stability (≥307 ◦C)

[70]

EMI shielding CNT/MXene (Ti3C2)/
cellulose composite

The improved electrical
conductivity was 2506.6 S m−1.
EMI shielding effectiveness was 38.4 dB

[71]

Ultra-broadband
electromagnetic wave absorption

MXene (Ti3C2Tx)/
magnetic CNT composite

Enhanced electromagnetic wave absorption
The minimum reflection loss of −51.98 dB
(at thicknesses of 1.9 mm) and the maximum
effective absorption bandwidth of 7.76 GHz
(at thicknesses of 2.1 mm) could be achieved.

[72]

Improved
electromagnetic wave
absorption features

MXene (Ti3C2Tx)-CNT composite

A minimal reflection loss of −52.56 dB
(99.9994% electromagnetic wave absorption)
in the X-band.
High performance.

[73]

Broadband
microwave absorption

MXene (Ti3C2Tx)/CNT hollow
microspheres

Remarkable microwave
absorption properties.
The maximum reflection loss was −40.1 dB
The effective bandwidth was 5.8 GHz

[74]

Electromagnetic wave absorption MXene (Ti3C2Tx)-CNT nanocomposite
The minimum reflection
coefficient reached −52.9 dB,
~99.999% absorption

[75]

EMI shielding films

Cellulose
nanofibrils/multi-walled CNT
microspheres
intercalating MXene (Ti3C2Tx)

Excellent mechanical robustness
and durability [38]

2.1. Sensing

MXenes have shown fascinating electronic, optical, mechanical, and thermal features,
which make them suitable candidates for hybridization with other materials to provide suit-
able (nano)composites with versatile diagnostic applications [3,29,76–79]. Because of their
excellent potential in electrochemical sensing, nanohybrids of MXene (Ti3C2Tx) nanorib-
bons/CNTs were constructed for the modification of glassy carbon electrode as sensing
platforms, offering a new strategy without electrodeposition for specific detecting Hg2+ [80].
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MXenes have displayed excellent spontaneous adsorption and reduction potential towards
Hg2+, causing the self-reduction of Hg2+ to be pre-concentrated on the electrode surfaces.
Notably, the electronic features of CNTs could help to provide an electrodeposition-free and
sensitive sensor with robust sensing activities for analyzing Hg2+ (the LOD was ~5.2 nM,
and the linearity range was ~0.01–7.0 µM) [80].

An electrochemical sensor based on hierarchical porous MXene/amino CNT compos-
ites and the benefits of the molecularly imprinted method were synthesized with suitable
stability for the specific detection of fisetin (the LOD was ~1.0 nmol L−1, and the linearity
range was ~0.003–20.0 µmol L−1) (Figure 2). The extraction time, pH of the supporting
electrolyte, incubation time, the ratio of functional monomer to template molecule, and
the polymerization cycles are important factors to increase the sensitivity/selectivity of
this type of sensor [81]. Similarly, an electrochemical biosensor was designed from MX-
ene (Ti3C2TX) and multi-walled CNTs to provide composite encompassing molecularly
imprinted polymers for the sensitive detection of amyloid-β protein. The sensor with
advantages of stability, repeatability, reproducibility, and reusability could successfully
detect this protein with a linear range of 1.0–100.0 fg mL−1 and an LOD of 0.3 fg mL−1 [82].
Ni et al. [83] designed a dopamine electrochemical sensor with high sensitivity from MXene
(Ti3C2), graphitized multi-walled CNTs, and ZnO nanospheres. Accordingly, the sensor
displayed significant sensitivity (16 A/M) with an LOD of ~3.2 nM and a wide linear range
(0.01–30 µM) under the optimal experimental conditions. The sensor exhibited improved
stability and anti-interference potential as well as suitable accuracy in human serum sam-
ples, opening new opportunities for designing smart electrochemical sensors. Despite the
importance of synthesis conditions and functionalization processes, the optimization of
reaction and experimental conditions is also vital to obtain high yields and improved re-
sults [83]. Xia et al. [84] reported the design of molecularly imprinted polymer film through
the electropolymerization of 1 H-pyrrole-3-carboxylicacid in the presence of diethylstilbe-
strol on CNTs/Cu2O nanoparticles/MXene (Ti3C2Tx)-modified electrodes. The application
of MXenes with accordion-like structures provided suitable electrical conductivity and en-
abled the immobilization of Cu2O nanoparticles. On the other hand, CNTs were deployed
for improving the sensitivity of these electrochemical sensors with a wide linear response
range (0.01–70 µM) and an LOD of 6 nM, providing suitable sensors with good stability for
the reliable detection of diethylstilbestrol (a nonsteroidal estrogen medication) [84].

Designing intelligent sensors for skin and healthcare monitoring with enough flex-
ibility is one the important fields of science in wearable electronics, helping to evaluate
the physical signals from the human body. In this respect, challenges regarding their
sensitivity, stability, and working range still persist [85]. For instance, to design sensors for
wearable healthcare monitoring, CNT/Ti3C2Tx/polydimethylsiloxane composites were
constructed [86]. The sensor exhibited reliable responses at various frequencies and long-
term cycling durability (>1000 cycles), as well as the benefits of excellent anti-interference
to temperature alteration and water washing. This sensor with suitable applicability for
monitoring human joint motions could be also deployed for real-time monitoring of the elec-
trocardiogram (ECG) signals and joint movements [86]. In another study, a foam-shaped
strain sensor was designed using MXene (Ti3C2Tx), multi-walled CNTs, and thermoplas-
tic polyurethane [85]. Accordingly, this sensor displayed a wide working strain range
of ~100% with high sensitivity, showing excellent gas permeability with an appropriate
elastic modulus close to that of skin, making it suitable to be applied as a wearable sensor.
Subtle and large human movements could be detected, along with gesture recognition,
offering a flexible and wearable sensor [85]. Cai et al. [87] introduced a flexible strain sensor
constructed from MXene (Ti3C2Tx) and CNTs with excellent electric features consisting of
2D MXene nano-stacks and conductive/stretchable one-dimensional (1D) CNT crossing;
the sensor exhibited significant stretchability (up to 130%) and sensitivity along with a
tunable sensing range (30–130% strain), showing great reliability and stability (more than
5000 cycles). Such sensors can be employed for real-time monitoring and in situ analyzing
of physiological signals with health and sporting purposes [87].
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Figure 2. The preparative process of molecularly imprinted polymer (MIP)/MXene/amino (NH2)-
CNTs/glass carbon electrode (GCE) for specific sensing of fisetin, along with the related adsorption
mechanisms. Adapted from Ref [81] with permission. Copyright 2020 Elsevier.

With developments in wearable electronics, designing sensors with multifunctionality
and high performance to monitor abilities is one the important challenges at the industrial
scale. In one study, hybrid composites of multi-walled CNTs and MXenes were designed
for lifetime health monitoring applications via a simple mixing and spray vacuum filtration
technique (Figure 3) [88]. The composite films exhibited good stability to respond to changes
in the resin state; after 1000 cycles of fatigue evaluations, the hybrid film sensors maintained
a good response and consistency in response to the external force for a long time. These film
sensors with a long service time, significant response sensitivity, excellent synchronization
to stretching, and solid real-time function could successfully monitor gel spots with various
positions and thicknesses in real time. However, more explorations are still required using
modern and cutting-edge technologies to adjust the bonding between MXene/CNT film
sensors and composite laminates. Notably, the stretchability and flexibility of these film
sensors can still be improved by optimization processes [88]. In addition, a wearable 3D
porous polyurethane sponge sensor was designed deploying MXene/CNT composites
constructed through a simple ultrasonic dip-coating technique [89]. The application of
these composites could improve the measurement capability of the sensor from a wide-
compressive strain range (−80%) to a wide-stretching strain range (60%), providing a
sensor with great electrical response and stability (>5000 cycles) to detect vocal vibrations,
human movements, subtle expressions, etc. [89].
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microscopy (SEM) images (cross-section) of pure MXene (Ti3C2Tx). (C) SEM of CNTs. (D) SEM of
MXene/CNT film (cross-section). Adapted from Ref [88] with permission. Copyright 2021 Elsevier.

MXene-coated carboxylated CNTs/carboxymethyl chitosan aerogels were designed
with superb electrical stability and repeatability for sensing piezo-resistive pressure
(Figure 4) [90]. The designed sensor exhibited a fast response time (62 ms) and a wide
detection range (up to 80 kPa) owing to the synergism of the dual-conductive MXene-
CNT network. It could be employed for the sensitive monitoring of human motions such
as joint movements, walking, finger tapping, running, and pronunciation detection [90].
Chen et al. [91] reported the design of conductive films using dendritic–lamellar MX-
ene/carbon nanotube/polyvinylpyrrolidone electrodes, providing flexible composites for
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wearable tactile sensors and artificial skin. As a result, the LOD was ~0.69 Pa with a
response time of ~48 ms after the evaluation of the sensor for pulse measurement and voice
recognition [91].
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Figure 4. (a,b) The preparative process of MXene (Ti3C2Tx) nanosheets and an MXene-coated car-
boxylated (C)-CNTs/carboxymethyl chitosan (CCS) composite aerogel. (c) The chemical modification
of MXene layers by 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS). (d) The generation of imine
bonds between the amino groups of CCS and the aldehyde groups of glutaraldehyde (GA) as cross-
linkers with related interactions between carboxylated CNTs and CCS. Adapted from Ref [90] with
permission. Copyright 2021 Elsevier.

2.2. Wastewater Treatment/Remediation and Pollutants Removal

MXenes (Ti3C2Tx) intercalated with CNTs were designed to provide thin-film nanocom-
posite membranes with a superb degree of cross-linking and roughness [92]. Compared
to the composite membranes without interlayered structures, the prepared membranes
exhibited a water flux four times higher and a lower specific salt flux. These membranes
could be efficiently deployed for wastewater treatment with improved rejection of ammo-
nia nitrogen [92]. An MXene (Ti3C2Tx)-CNT hybrid membrane was designed with robust
potential for capturing precious metal ions from solutions (Figure 5) [93]. As a result, gold
(Au) ions (~99.8%) could be obtained from a solution with an extremely low concentration
of 20 ppm. The considerable redox activity of C–Ti–OH could be the reason for this excellent
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precious metal trapping potential, paving a suitable way for recovery/isolation of precious
metal ions from wastewaters [93].
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dimensional (3D) X-ray tomography (XRT) image of the membrane. (c) The proposed redox reaction
mechanism of Au (III) rejection by the MXene-CNT hybrid membrane. Adapted from Ref [93] with
permission. Copyright 2020 American Chemical Society.

MXene/CNT/cotton fabric composites with water transport features, strong optical
absorption, and light-to-thermal conversion have been prepared through a layer-by-layer as-
sembly to be applied as solar steam formation for textile wastewater purification [94]. Under
sun illumination, the evaporation rate reached 1.35 kg m−2 for water and >1.16 kg m−2h−1

for textile wastewater, providing promising candidates for wastewater purification by
solar-evaporation [94]. A variety of lamellar membranes has been designed using 2D nano-
materials with excellent potential for molecular separation with high efficiency [95]. In one
study, high-performance hetero-structured membranes with fusiform transport channels
were constructed using MXene layers and CNTs, showing significant water permeation
(1270 L m−2 h−1 bar−1) [95]. Sun et al. [96] designed multidimensional MXene-CNT ultra-
thin membranes with high efficiency and stability owing to the van der Waals interactions
(hydrogen bond) and repulsion forces between MXene and CNTs, showing improved
permeability with a distinct suppressed swelling feature through a thermal cross-linking
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route. These high-performance membranes can be considered as promising candidates for
water purification [96].

Thirumal et al. [97] reported the synthesis of MXene-CNTs by applying a catalytic
chemical vapor deposition technique. These composites with significant photocatalytic
performance were deployed for the efficient elimination of rhodamine B dye pollutant.
Compared to the pure MXenes for photocatalytic dye degradation (the efficiency was 60%),
MXene-CNT hybrids exhibited improved efficiency of ~75%. It appears that the introduced
chemical vapor deposition technique can be applied for designing novel MXene-CNT
hybrid structures with a high yield of production after the optimization process, provid-
ing suitable composites with good stability (recyclability) for the removal of hazardous
pollutants [97]. For the removal of pharmaceutical wastes, MXene-CNT composites were
fabricated through the pyrolysis of homologous metal-organic framework precursors,
showing catalytic performance for the degradation of antibiotic tetracycline hydrochloride.
Notably, these composites exhibited a high specific surface area with improved adsorption
capacity (~35.9%) and degradation rate (0.26 min−1) [98].

2.3. EMI Shielding Performance

MXenes have shown attractive hydrophilicity and electrically conductive transition,
making them suitable for electrically conductive and EMI shielding purposes [99]. However,
it is difficult to construct compressible three-dimensional (3D) architectures with significant
conductivity from MXenes due to the weak interaction among MXene nanosheets. In
one study, MXene (Ti3C2Tx)/acidified CNT anisotropic aerogels with high stability were
designed, inspired by the plant (Parthenocissus tricuspidata), showing super-elasticity and
considerable thermal insulation (Figure 6A) [99]. The robust conductivity (447.2 S m−1)
and ultralow density (9.1 mg cm−3) demonstrated a robust EMI shielding efficiency of
~51 dB at an ultralow filler content of 0.3 vol %; by enhancing the density of composites
to 18.2 mg cm−3, the EMI shielding effectiveness could reach 90 dB [99]. Weng et al. [100]
constructed MXene (Ti3C2Tx)-CNT composite films with high stability, flexibility, and
conductivity using a spin spray layer-by-layer technique for EMI shielding purposes. These
films exhibited significant conductivity (up to 130 S cm−1) with high specific shielding
effectiveness (up to 58 187 dB cm2 g−1), paving a way for next-generation EMI shielding
with improved absorption and electrical conductivity [100]. In addition, MXene (Ti3C2Tx)-
CNT hybrid composites were combined with a waterborne polyurethane matrix for EMI
shielding and sheet heater purposes [35]. The composite films exhibited significant elec-
trical conductivity with suitable mechanical flexibility, providing EMI shielding activity
(~20–70 dB), along with heat dissipation and excellent Joule heating functions. Such com-
posites with superb EMI shielding and thermal control capabilities can be considered as
promising materials in designing wearable electronic devices [35]. In addition, bark-shaped
CNT/MXene (Ti3C2Tx) composite films were constructed using a roll-to-roll layer-by-layer
assembly tactic (Figure 6B) [101]. After that, these films were decorated on the surfaces
of fibers to obtain composites with suitable air permeability, electrical conductivity, and
flexibility. These composites with improved electro-thermal activity and multi-interface
scattering influences exhibited EMI shielding performance, along with significant sensi-
tivity as the flexible piezoresistive sensors to monitor the human movements/motions,
paving the way for designing EMI shielding materials and smart wearable electronics [101].
Moreover, the functionalization could increase the shielding by 15.4%, wherein MXene-
CNT composites were designed for EMI shielding purposes; the composites could block
99.99% of the electromagnetic radiation. They had improved thermal stability along with a
maximum electric conductivity of ~12.5 Scm−1 [102].
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Figure 6. (A-a) The preparative process of MXene/CNT aerogels. (b) Bionic assembly between
MXene nanosheets and CNTs. (c) SEM image of MXene/acidified CNT anisotropic aerogels with
biomimetic microstructures. Adapted from Ref [99] with permission. Copyright 2021 American
Chemical Society. (B) Roll-to-roll layer-by-layer assembly technique for fabricating bark-shaped
CNT/MXene textiles with good EMI shielding performance. LiF: lithium fluoride. Adapted from
Ref [101] with permission. Copyright 2021 Elsevier.

In an impressive study, 3D porous hybrid aerogels were constructed from MXene
(Ti3C2Tx) and CNTs by applying a freezing technique, showing suitable applicability for
lightweight EMI shielding [103]. As was indicated, the synergistic effects from the lamellar
and porous structures of the aerogels could extensively contribute to their fascinating
electrical conductivity (9.43 S cm−1) along with the excellent value of EMI effectiveness
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(~103.9 dB at 3 mm thickness) at the X-band frequency. The incorporation of CNTs in these
hybrid aerogels could significantly enhance the mechanical robustness and improve the
compressional modulus compared to the pristine MXene aerogels [103]. For both EMI
shielding and solar-thermal conversion applications, polymer-based nacre-like conductive
films were constructed from hybrid MXene-CNT structures, wherein single-walled CNTs
with unique electrical conductivity along with the fire/heat resistance and MXenes with
lamellar and highly oriented structures were deployed to provide a significant electrical
conductivity of ~1851.9 S cm−1 [104]. These flexible composite films with long-term envi-
ronmental stability and structural integrity provided superb EMI shielding effectiveness
(~78.9 dB) and considerable specific shielding effectiveness (~15,263.1 dB cm2 g−1); they
could be applied for solar-thermal energy conversion with high performance [104].

2.4. Catalysis

MXenes have been employed to develop a variety of (nano)catalysts with environ-
mental and biomedical applications [6,36,105–108]. For instance, MXene@Pt/single-walled
CNTs were constructed as nanocatalyst hydrogen evolution reactions. As a result, these cata-
lysts exhibited ultrahigh stability with a high-volume current density of up to 230 mA cm−3

at −50 mV versus a reversible hydrogen electrode and a low over-potential of −62 mV
versus a reversible hydrogen electrode at the current density of −10 mA cm−2 [109]. On
the other hand, to obtain a continuous power supply and to generate appropriate chemicals
(e.g., carbonates), the electrochemical carbon dioxide conversion at ambient temperature
can be considered as a promising strategy [110]. With this purpose, parallel-aligned tubular
MXene (Ti3C2Tx)/CNT composites were designed via a self-sacrificial templating tech-
nique with significant catalytic activity and high stability, promoting the adsorption of
CO2 and accelerating the decomposition of lithium carbonate (Figure 7) [110]. In addition,
MXene (Ti3C2Tx)-CNT composites were designed with remarkable electrical conductivity
and corrosion resistance as supporting materials for Pt [36]. Compared to the commercial
Pt on carbon catalysts, the introduced catalyst could enhance the durability and improve
the oxygen reduction reaction performance. The composite could be applied as a cathode
catalyst for a single cell and stack, and the maximum power density of the stack reached
138 W [36].

Cobalt (Co)-tipped CNT/MXene (Ti3C2) composites were constructed using a metal-
organic-framework-engaged tactic for oxygen reduction reaction applications [111]. These
composites exhibited suitable oxygen reduction reaction due to the abundant Co–N/C
active sites and rationally significant graphitization of carbon, along with high surface areas.
In addition, superb stability could be obtained compared to the commercial platinum (Pt)-
based electrocatalysts, showing excellent potential for renewable conversion and storage
applications [111]. In another study, MXenes (Ti3C2Tx) were hybridized with Co/N-
CNTs to provide bifunctional electrocatalysts for oxygen reduction and oxygen evolution
reactions. The robust interfacial coupling and electron transfer could be detected, facilitating
the electrocatalytic performances of these composites towards these reactions in alkaline
solution [112]. Yang et al. [113] introduced multiwall CNT-based composites loaded with
MoS2 and MXene (Ti3C2Tx) quantum dots with suitable electrocatalytic activities for oxygen
reduction and methanol oxidation reactions in alkaline solution. The catalysts demonstrated
superb oxygen reduction reaction performance along with electro-oxidation activity for
methanol in alkaline solution, providing a maximum methanol oxidation current density at
2.2 V of 160 A g−1 [113]. Moreover, NiCoFe-layered double hydroxide/MXene (Ti3C2)/N-
doped CNT structures were designed with optimum nitrogen content, strong electronic
interactions, high surface area, plentiful active sites, and improved electrical conductivity,
showing significant electrocatalytic performance towards oxygen evolution and oxygen
reduction reactions. These composites can be considered as high-performance bifunctional
catalysts for oxygen electrocatalytic reactions in metal–air batteries [114].
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2.5. Supercapacitors and Batteries

MXenes with robust electrical conductivity have attracted special attention as elec-
trode materials in designing supercapacitors [115]. In one study, MXene (Ti3C2Tx)/CNT
composite films were designed with outstanding functions as supercapacitor electrodes,
showing significant capacitance of 300 F g−1 at 1 A g−1 with a superior rate of performance
of 199 F g−1, even at 500 A g−1, along with high stability (~92% capacitance retention
after 10,000 cycles at 20 A g−1). These MXene/CNT composites can be employed for
designing flexible, portable, and highly integrated supercapacitors [115]. In addition,
CNTs were employed for constructing highly conductive net structures, tightly anchor-
ing porous carbon on MXene flakes, and causing fast electron delivery by enhancing the
contact area between MXene and porous carbon (Figure 8) [116]. Accordingly, MXene
(Ti3C2Tx)/CNT/porous carbon films with suitable flexibility were designed to provide
high areal specific capacitance of 364.8 mF cm−2 at 0.5 mA cm−2 (>80% even at a high
current density of 50 mA cm−2). In addition, the designed supercapacitor exhibited a large
areal energy density of 10.5 µ Wh cm−2 at 29.8 µ W cm−2, showing excellent potential of
MXene-CNT hybrid composites for designing supercapacitors with significant rate capa-
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bilities and large charge storage capacities [116]. Cai et al. [117] designed nanocomposites
of CNTs/polyaniline and hybridized them with MXenes (Ti3C2Tx) to obtain a compos-
ite electrode with superior gravimetric capacity and cyclic stability (>93% retention after
10,000 cycles). Studies on the mechanisms revealed that the surface capacitance storage was
the major reason for its great rate potential, providing great opportunities for designing
high-performance electrodes [117].
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Li et al. [118] introduced N-doped CNT/MXene (Ti3C2Tx)/polyacrylonitrile nanocom-
posite films as electrodes of supercapacitors, which were fabricated through vacuum
filtration and electrospinning processes. These film electrodes with a high area-specific
capacitance of 669.27 mF cm−2 and a high mass-specific capacitance of 446.18 F g−1 at
5 mV s−1 displayed suitable cycling stability with the retention of 90.9% after 4000 cycles,
showing small capacity loss and good flexibility [118]. Despite the fascinating advantages of
MXenes, such as significant volumetric capacitance, electrical conductivity, and hydrophilic
properties, MXene-based electrodes may suffer from poor rate potential due to sheet restack-
ing, particularly when the loading level is excessive and solid-state gels are employed as
electrolytes [119]. Thus, MXenes were hybridized with CNTs to obtain fibers with helical
structures, offering open spaces for rapid ion diffusion and obtaining fast electron transport.
Accordingly, the designed fibers were applied in designing solid-state supercapacitors
with gel electrolyte coating to show a volumetric capacitance of 22.7 F cm−3 at 0.1 A cm−3

with capacitance retention of 84% at a current density of 1.0 A cm−3 (19.1 F cm−3); these
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supercapacitors with mechanical robustness exhibited an enhanced volumetric energy
density of 2.55 mWh cm−3 at a power density of 45.9 mW cm−3 [119]. Yang et al. [120]
constructed MXene (Ti3C2)-CNT films and deposited them onto graphite paper through an
electrophoretic deposition technique for supercapacitor electrodes. These electrodes with
improved specific capacitance exhibited cycling stability (~10,000 cycles), thus displaying
enhanced electrochemical performance [120].

For improving the energy density of batteries, researchers have focused on the con-
struction of cathodes with electroactive materials. However, irreversible Li+ consumption in
full-cell configurations and poor structural integrity, along with low electronic/ionic trans-
port are crucial challenges in this way. In one study, 3D MXene (Ti3C2Tx)-CNT-cellulose-
LiFePO4 cathodes were designed with improved LiFePO4 loading (120 mg cm−2) and
enhanced electronic/ionic transport, providing better electrochemical performance, a sig-
nificant capacity of 0.86 mAh cm−2 at 5 C, and a high retaining capacity of 1.45 mAh cm−2

after 500 cycles at 1 C (Figure 9) [37]. These cathodes exhibited an ultrahigh areal capacity of
19.2 mAh cm−2, and the introduced 3D-MXene-CNTs-cellulose-LiFePO4/SnO2 full-cell had
a high areal capacity of 6.3 mAh cm−2 at 1.6 mA cm−2, offering MXene/CNT hybrid com-
posites as promising materials in designing Li-ion batteries with high performance [37]. In
addition, hydroxyl-functionalized Mo2C-based MXene nanosheets were fabricated through
the simple removal of the Sn layer of Mo2SnC [121]. The prepared MXene with its hydroxyl-
functionalized surface could suppress the shuttle effect of lithium polysulfides via robust
interactions between Mo atoms on the surface of MXene and lithium polysulfides. For
enlarging the specific surface area of final composites, CNTs were utilized into the Mo2C
phase, improving the electronic conductivity and alleviating the volume change during
charging/discharging processes. The robust surface-bound S in the hierarchical Mo2C-CNT
host could lead to excellent electrochemical activity in Li-S batteries, providing a large
reversible capacity (≈925 mAh g−1), even after 250 cycles at a current density of 0.1 C [121].
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3. Conclusions and Perspectives

A wide variety of hybrid composites has been designed using MXenes and their deriva-
tives because of their reducibility and hydrophilicity along with their large surface area,
ease of functionalization, and unique mechanical/electrical properties. MXenes with their
layered structures and chemical compositions have been hybridized with CNTs to obtain
composites for catalysis, Li-ion batteries/supercapacitors, electrochemical capacitors, sens-
ing, water treatment/pollutants removal, and EMI shielding applications. However, their
electrocatalytic and biomedical potentials have been relatively less explored by researchers.
MXene-CNT composites with significant electrical conductivity and strong mechanical
features can be considered as attractive candidates for EMI shielding in electronic devices.
The need for additional explorations on wearable sensors, high-rate electrochemical energy
storage, soft robotics, EMI shielding films, and catalytic reactions is felt more than ever.
Future explorations ought to focus on developing wearable and stretchable strain sensors
with ultrahigh sensitivity and an adjustable sensing range using MXene-CNT composites.
MXenes with good conductivity and electrochemical properties as well as abundant sur-
face terminations and a large surface area are attractive candidates for designing novel
composites with applicability in electronics, energy storage, catalysts/electrocatalysts, and
pharmaceutics/biomedicine.

The density, specific surface area, and pore volume as well as the mechanical, elec-
trical/electronic (e.g., electrical conductivity), and thermal (e.g., thermal conductivity,
photothermal, and electrothermal) properties of MXene-CNT hybrids need more specific
evaluations. The development of novel approaches of functionalization and hybridization
along with comprehensive investigations for the industrial/commercial production of
MXene-CNT composites should be considered. Transferring from the laboratory phase
to industrial production as well as production adhering to green chemistry tenets and
environmentally benign principles are very important in this field. Although promising
results have been reported, their reproducibility along with the ability to be industrial-
ized is equally crucial. Moreover, challenges regarding the oxidation of MXenes during
production and their stability still need comprehensive evaluation. Furthermore, both ex-
perimental and theoretical studies can help to overcome these challenges, thus improving
the properties of these composites.
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