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Abstract: Pressure sensors urgently need high-performance sensing materials in order to be de-
veloped further. Sensitivity and creep are regarded as two key indices for assessing a sensor’s
performance. For the design and optimization of sensing materials, an accurate estimation of the
impact of several parameters on sensitivity and creep is essential. In this study, sensitivity and creep
were predicted using the response surface methodology (RSM) and support vector regression (SVR),
respectively. The input parameters were the concentrations of nickel (Ni) particles, multiwalled
carbon nanotubes (MWCNTs), and multilayer graphene (MLG), as well as the magnetic field intensity
(B). According to statistical measures, the SVR model exhibited a greater level of predictability and
accuracy. The non-dominated sorting genetic-II algorithm (NSGA-II) was used to generate the Pareto-
optimal fronts, and decision-making was used to determine the final optimal solution. With these
conditions, the optimized results revealed an improved performance compared to the earlier study,
with an average sensitivity of 0.059 kPa−1 in the pressure range of 0–16 kPa and a creep of 0.0325,
which showed better sensitivity in a wider range compared to previous work. The theoretical sensi-
tivity and creep were relatively similar to the actual values, with relative deviations of 0.317% and
0.307% after simulation and experimental verification. Future research for transducer performance
optimization can make use of the provided methodology because it is representative.

Keywords: RSM; SVR; NSGA-II; MWCNTs; MLG; Ni; magnetic field; sensitivity; creep

1. Introduction

Due to their potential applications in a variety of industries, including the aviation,
space, chemical, automotive, and biomedicine industries [1–4], polymer nanocomposites
have become a hot topic of study. Conducting polymer nanocomposites are used in nu-
merous sensor applications to achieve intelligence, informationalization, and the future
networks [5]. Performance characteristics of sensors include sensitivity, creep, repeatability,
hysteresis [6], etc. Sensitivity and creep have become the two key metrics affecting the per-
formance of sensors, since they influence measurement accuracy and stability, respectively.
However, the fabrication of materials for outstanding sensitivity and creep resistance is
heavily constrained by the complexity of the sensing system.

A promising method for enhancing the sensitivity and creep resistance has been identified
as properly adjusting the choice of materials and the reasonable ratio. For a piezo-resistive tactile
sensor, conductive filler particles are typically chosen from materials with the same dimensions,
such as Ni (zero dimensions), CNT (one dimension), MLG (two dimensions), and others. High
sensitivity and creep resistance for sensors have been the focus of an intense research effort.
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Xu et al. [7] produced CNT/PDMS composites to obtain great sensitivity in terms of single
particle filling. The interface connection and progressive deterioration of CNT-based polymer
composites were shown by Xia X et al. [8] to be major influences on the creep, and CNT could
also be employed to increase the creep resistance of composites. Sun R. et al. [9] investigated
the impact of MWCNTs and Ni on nanocomposites with regard to two-particle filling. To
attain high sensitivity, a synergistic effect between two particles occurred during the experiment
studying the rearrangement reaction between Ni and MWCNTs under a magnetic field. The
impact of MLGs, CNTs and their combination on sensitivity was investigated by Ali A. et al. [10].
Their findings demonstrated that composites with mixed fillings have better sensitivity than
composites with single-particle filling. The impact of CNTs, MLGs, and their combination on
creep resistance was investigated by Charito et al. [11]. The outcome showed that the creep
resistance can be improved by mixing CNTs and MLGs. The impact of a magnetic field on
MWCNT/Ni composites blended in various ratios was investigated by Lu C. et al. [12]. The
outcome of their study demonstrated that a stronger magnetic field can improve homogeneity,
which further raises a composites’ conductivity. Chen Y. et al. [13] developed a sensor based on
CNT/Ni/PMXene composites for three-particle filling. They demonstrated how three materials
interacting create a one- and two-dimensional integrated conductive network, greatly enhancing
the sensitivity of composites. Table 1 displays past efforts to enhance a sensor’s performance.
It can be shown that the majority of the extant literature, particularly for single-particle filling
and two-particle filling, has extensively evaluated the influence of filling particles on sensitivity
or creep alone. There is not much research that has examined how particle selection affects
creep and sensitivity. According to the available research, the combination of filler particles
with various shapes and characteristics does improve sensitivity and creep resistance. The
combination of Ni and CNT can increase the sensitivity of sensors [9,12,13], the mixture of
CNT and MLG can increase sensitivity and creep resistance [10,11], and the magnetic field
can somewhat improve the performance of composites by increasing uniformity [9,12]. The
combination of the aforementioned materials is, in theory, favorable to both sensitivity and
creep. To our knowledge, no performance analysis of a combination of Ni, CNT, and MLG has
been published. Therefore, it is worthwhile to conduct research on both sensitivities and creep
using the above materials in combination.

Table 1. Previous work to improve sensor performance.

Reference Filler Selection Analyzed Parameter Filler Type

[7] CNT Sensitivity Single-particle
[8] CNT Creep
[9] MWCNT/Ni Sensitivity

Two-particle[10] CNT/MLG Sensitivity
[11] CNT/MLG Creep
[12] MWCNT/Ni Sensitivity
[13] CNT/Ni/PMXene Sensitivity Three-particle

The additive proportion of these materials is still difficult to determine because of
the complexity of the synergistic effect and reaction mechanism among filling particles.
Due to several factors, it is a time-consuming and expensive operation to estimate the
manufacturing conditions without a mathematical model. In the area of material synthesis
and process optimization, analysis and optimization of traditional experimental synthesis
methods have been significant subjects of research. One of the most used statistical analysis
models, RSM, was developed by Box and Wilson in 1951 [14], and is used to evaluate
and forecast many experimental conditions. RSM, which is widely used in the food and
chemical fields [15], creates prediction models to assess the single factor or interaction of
each factor based on a small number of trials. However, due to the complex nonlinear
situation, the RSM quadratic polynomial occasionally fails to provide the required forecast
accuracy. In comparison to RSM, the SVR model has a good prediction of non-linear and
unconnected data as a nonlinear regression model, which improves the speed of operation
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by transforming the objective function, improving the conditions of the equations, and low-
ering the complexity of the computation [16]. It has been widely used in many engineering
fields. Considering the high accuracy of SVR, it may overcome the disadvantages of RSM.
Although RSM and SVR models have been utilized for process prediction in the food and
chemical fields, few studies have used RSM or SVR models in the sensor field to estimate
and analyze performance. Thus, such a technique deserves study.

This study represents the first attempt to model and optimize the sensitivity and creep
resistance of multi-component conductive nanocomposites with a magnetic field, i.e., Ni,
MWCNT, and MLG, under experimental conditions. RSM and SVR algorithms were used
to forecast the experimental input conditions and the output performances, respectively.
The NSGA-II method was used to determine the Pareto-optimal fronts for the experimental
settings, and decision-making was used to choose the best option. This work illustrated the
applicability of the suggested approach for performance prediction and optimization in the
realm of intelligent sensing.

2. Theory and Methods
2.1. Samples Preparation, Fabrication, Data Acquisition, and Interior Structure
2.1.1. Preparation of Materials

The matrix was synthesized from dimethyl silicone oil, room-temperature vulcanized
silicone rubber (RTV), and a curing agent purchased from Hong Ye-Jie Technology, China.
Ni particles, with an average diameter of 500 nm and purity of 99.9 wt%, were supplied by
Hang-Ba Metal Materials Co., Ltd., China, and used as the soft magnetic materials along
with the conductive phase. MWCNTs were obtained from Suzhou Tan-Feng Graphene Tech-
nology Co., Ltd., China. The purity of the MWCNTs was larger than 95 wt%, their length
was larger than 3 um, and their outer diameter was 8–15 nm. MLGs with 5–10 layers and
an average diameter of 50 um were provided by Suzhou Tan-Feng Graphene Technology
Co., Ltd., Suzhou, China.

2.1.2. Fabrication of Materials

Figure 1 illustrates the fabrication processes of the composites. Before the fabrication
process began, three materials were successively weighed on an electronic balance. After
that, Ni nanoparticle surfaces were pretreated by a coupling agent. Then, Ni was heated
at a constant temperature of 80 ◦C for 12 h and subsequently ground into a powder.
At the same time, MWCNTs and MLGs were ground in a ball-grinding mill to achieve
uniform separation. Then, RTV and dimethyl silicone oil were proportionally mixed with
ground MWCNTs and MLGs and added into a beaker to be evenly stirred for 10 min with
a mechanical mixer at 2300 rpm for filler dispersion. After that, the ground Ni was added
into a beaker and evenly stirred for 10 min for uniform distribution. After 10 min of mixing,
the interior of the mixture was full of air bubbles that were eliminated by vacuum pumping.
Afterwards, the curing agent was added to the mixture in a specific proportion and stirred
for uniform mixing. To form the desired shape, the mixture was poured into a mold, and
meanwhile the remaining air bubbles has been released. The pumping time should be short
enough to avoid solidification before extrusion forming. Finally, the mold was fixed in
a magnetic field generator under a magnetic field. The desired samples were obtained after
they were fully cured.

2.1.3. Acquisition of Raw Data

The composites’ sensitivity and creep were assessed under various conditions. The test-
ing apparatus included a computer, an LCR meter, the created samples, and a press. Samples
were placed between two metal plates for testing. Under uniaxial pressing, piezoresistive
measurements were made. For simultaneous stress-resistance measurements, a constant com-
pression speed was maintained. To analyze the sensitivity performance, the actual pressures
that the samples encountered were recorded and the resistances under those pressures were
computed. The pressure was constant during the entire process and the resistances for the
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corresponding time were recorded to test creep performance. The methodologies for creep
measurements were comparable to those for the piezoresistive tests.
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Figure 1. The fabrication process of the materials.

2.1.4. Interior Structure of Composite

Figure 2a shows the TEM images of the fabricated composite with different magnifica-
tions. As shown in Figure 2a,b, the MLGs were stacked layer by layer and the MWCNTs were
distributed evenly between two layers. Figure 2c shows a more detailed view; illustrating that
the Ni particles were adsorbed on the surface of CNTs and MLGs at the same time.
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2.2. General Mechanisms of Sensitivity and Creep
2.2.1. Sensitivity Mechanism

The sensitivity is linked to many electronic conduction theories, such as the field
emission theory, tunneling effect theory, and conduction path theory [15]. In the conductive
path theory, the current channel is produced through contact between neighboring conduc-
tive particles. The tunneling effect theory states that an electronic transition carried out
by thermal agitation results in a current passing via brief gaps between nearby particles.
According to the field emission hypothesis, an external electric field creates an electric field
among conductive particles and the electrons then overcome the potential barrier to create
a current. A high voltage is necessary during the entire procedure. The tunneling effect
theory and the impact of electric conduction mechanisms are the main theories considered
in this study.

According to Figure 3, MWCNTs are disseminated in the matrix between neighboring
MLG nanoplates when combined with MLG to improve conductivity. In particular, tangled
MWCNTs fill the spaces between nearby MLG plates, which promotes the development of
current channels. Similar to the preceding process, the combination of MLG and Ni causes
Ni nanoparticles to scatter in the spaces between MLG plates, accelerating the development
of a conductive network. When MWCNTs and Ni particles are combined, the particles form
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a structure resembling a “bunch of grapes” on the surface of the CNTs. This connection
between the CNTs improves the conductivity of the composites. In this research, the above
three materials achieved a novel conductivity. The theoretical model is shown in Figure 3a.
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Figure 3. The microstructure of composites and conductive pathways. (a) The theoretical microstruc-
ture model of Ni/CNT/MLG composites and (b) the conductive paths during compression.

Such a theoretical model was developed based on earlier research. Before curing, the
magnetic field causes materials to be equally distributed in the same direction throughout
the matrix. In particular, MLGs disperse uniformly throughout the matrix, MWCNTs are
dispersed in the spaces between MLG nanoplates, and Ni nanoparticles are dispersed
throughout the matrix, some of which are dispersed in the spaces between MLG plates
and some of which are adsorbed on the surface of CNTs and MLGs. These distributions
interact to create the current paths depicted in Figure 3b. Due to the numerous conductive
paths created by such a complex distribution, the resistance produced is correlated with the
material’s characteristics, the distance and conductive area between particles, the number
of particles in a single conductive pathway, and the number of conductive pathways.
The analogous circuit of the piezoresistive effect for composites is depicted in Figure 4.
A decrease in the number of particles per conductive channel and an increase in the total
number of conductive pathways are caused by an increase in pressure, and this results in
a drop in resistance.
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According to the tunneling effect theory, the electrical resistance of the conductive
composites can be described as [17,18]:

R =
M
N

8πhd
3Sγe2 exp(γd) (1)
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γ =
4π

h
√

2mϕ (2)

where R is composite resistance, M is the number of particles on one single current pathway,
N is the number of effective conductive pathways, h is Plank’s constant, e is the electron
charge, d is the minimum distance between two particles, S is the effective cross-sectional
area between neighboring particles, m is the electron mass, and ϕ is the height of the
potential barrier.

During the compression process, suppose the minimum distance decreases from d0 to
d under uniaxial compression, where d is based on the deformation of the matrix and the
deformation of particles is ignored, so:

ε =
d0 − d

d0
(3)

where ε represents the composite strain.
Substituting Equations (2) and (3) into (1), Equation (4) shows the relationship between

the original and changed resistance:

R
R0

=
M(σ)N(0)
M(0)N(σ)

(1− ε) exp(−γd0ε) (4)

where R denotes the resistance under compression, R0 denotes the resistance without
compression, and M(σ)N(0)

M(0)N(σ)
represents the degree of particle rearrangement.

Thus, the expression for the relative change in resistance can be derived:

∆R
R0

= 1− M(σ)N(0)
M(0)N(σ)

(
1− σ

E

)
exp

(
−γd0

σ

E

)
(5)

where E denotes Young’s modulus, and ∆R denotes (R0 − R).
Since the strain and stress of composites are nonlinearly related, the elastic modulus

changes under compression. To increase model accuracy, changes in Young’s modulus are
considered, which is expressed through the following polynomial function:

E = E0 + B1σ + B2σ2 (6)

where E0 denotes the original Young’s modulus, and B1 and B2 are constants.
Substituting Equation (6) into (5), the expression related to sensitivity is shown, where

the sensitivity is the ratio between the relative change in resistance, ∆R
R0

, and pressure, σ:

∆R
R0

= 1− M(σ)N(0)
M(0)N(σ)

×
(

1− σ

E0 + B1σ + B2σ2

)
exp

(
− γd0σ

E0 + B1σ + B2σ2

)
(7)

From Equation (7), the sensitivity is associated with the degree of particle rearrange-
ment, Young’s modulus of materials, and the distance between each filler, which is affected
by the nature and contents of fillers and the fabrication process. Thus, in this study, the
contents of Ni, MWCNTs, and MLGs and the magnetic field intensity are assumed as the
four experimental conditions that influence the sensitivity of the composites. A discussion
of the influences of each factor on sensitivity is given in the following part.

2.2.2. Creep Mechanism

The process known as creep occurs when the strain on a solid material grows over
time while the stress remains constant. Instantaneous deformation, primary creep, and
secondary creep are three stages that can be used to categorize the processes causing this
occurrence. In this investigation, creep has a considerable impact on the resistance of the
composites. As a result, the idea of “resistance creep” was proposed, which suggests that
under sustained pressure, a material’s resistance changes with time. Even though the
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dependent variable is different, these two creep formulations are consistent with the same
law. Therefore, to conduct further investigations, a transformation between strain and
change in resistance is needed.

The Burger model, which is depicted in Figure 5a, is frequently used to describe the
creep of solid materials and consists of the Maxwell model with the spring-damping model
in series and the Kelvin model with the spring-damping model in parallel. In particular,
the instantaneous deformation is represented by a spring in the Maxwell model, the main
creep stage is expressed by the Kelvin model, and the secondary creep stage is shown by
damping in the Maxwell model.
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Equation (8) shows an expression for the Burger model [19]:

ε(t) =
σ

E1
+

σ

E2

[
1− exp

(
−E2

η2
t
)]

+
σ

η1
t (8)

where E1 is Young’s modulus of spring in the Maxwell model, E2 and η2 indicate Young’s
modulus and viscosity in the Kelvin model, respectively, and η1 represents the viscosity of
damping in the Maxwell model.

However, in an actual experiment, complete viscosity is impossible, which means the
elasticity still affects the creep of materials in the last stage. Since damping in the Maxwell
model is not suitable to predict the secondary creep process, the fractional viscoelastic (FV)
model is used for predicting the last stage. The improved model is shown in Figure 5b.

The stress–strain relationship of the elastic and viscous elements are defined as [20]:

σ(t) = Eτα dα

dtα
ε(t) or ε(t) =

1
Eτα

d−α

dt−α
σ(t) 0 ≤ α ≤ 1 (9)

where α is the order of derivative; when α = 0, the fractional viscous element degenerates
into an elastic element; when α = 1, it becomes a viscous element. ε(t) and σ(t) are the
strain and stress at a given time t, dα

dtα is the differentiation of the order α at time t, τ = η/E
is the relaxation time, η is the viscosity, and E is the stiffness of the material.

Following this equation shows a property of the Fractional order model [21]:

dktj

dtk =
Γ(j + 1)

Γ(j− k + 1)
tj−k (10)

where k is positive for differentiation and negative for integration and Γ represents the
gamma function.

In this study, strain was calculated through the integration of constant stress to order
α. Thus, in Equation (10), j = 0, k = −α, and Γ(1) = 1, and the strain response becomes:

ε =
σ0

E
1

Γ(1 + α)

(
t
τ

)α

(11)

where σ0 is the constant stress.
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Substituting Equation (11) into Equation (8), the expression for improved Burger
model is:

ε(t) =
σ

E1
+

σ

E2

[
1− exp

(
−E2

η2
t
)]

+
σ0

E
1

Γ(1 + α)

(
t
τ

)α

(12)

To analyze the relationship between strain and change in resistance, the change in the
number of effective conductive pathways under pressure is given as [22]:

N(σ) = N(0) exp
(

C1ε + C2ε2 + C3ε3
)

(13)

where N(σ) and N(0) are the number of effective conductive pathways after and before
compression, respectively.

Since d0 is extremely small, resulting in a value of γd0 ∼= 0, from Equations (1)–(3) and (13),
the relationship between ∆R

R0
and ε is:

∆R
R0

= 1− (1− ε)

exp(C1ε + C2ε2 + C3ε3)
(14)

where C1, C2, and C3 are adjustable parameters.
Substituting Equation (12) into Equation (14), the expression for resistance creep is

proposed as:
∆R
R0

= 1− (1− ε(t))
exp(C1ε(t) + C2ε(t)2 + C3ε(t)3)

(15)

where ε(t) is the creep based on the improved Burger model.
According to Equation (15), the Young’s modulus and viscosity of materials are related

to creep, which is also influenced by the types and composition of materials as well as the
manufacturing process. This is because different materials with different compositions can
be combined to produce different properties. As a result, the following procedure considers
the Ni content, MWCNTs, MLG, and magnetic field intensity as the four experimental
factors that can affect how quickly composites creep. In the section that follows, each
factor’s effects on creep are discussed and studied.

2.3. Prediction and Optimization Approaches
2.3.1. Response Surface Methodology (RSM)

To evaluate the relationship between one or more outputs and the input parameters,
the response surface method (RSM), a modeling-based relatively basic tool with low com-
putational burden [23], uses a randomized and unbiased design. Equation (16) presents the
general mathematical relationship between input parameters and output variables in RSM,
and Figure 6 shows a detailed schematic view:

y = β0 +
N

∑
i=1

βixi +
N

∑
i=1

βiix2
i + ∑

i<j
∑ βijxixj (16)

where y is the response variable, xi is the input parameters, β0 denotes the bias, βi is the
linear effect, βii represents the squared effect, and βij is the interaction effect.

RSM is divided into two categories: the central composite design (CCD) and the
Box–Behnken design (BBD), both of which are popular and useful in laboratory trials. The
BBD technique was selected for this research to effectively acquire optimal conditions. BBD
can be thought of as three interlocking factorial designs with three coded levels for each
input parameter, such as −1, 0, and +1, provided by the center points.

To forecast and optimize the sensitivity and creep in this work, four significant factors—Ni
content, MWCNT content, MLG content, and magnetic field intensity—were chosen as the input
parameters. Specifically, single-factor trials yielded the range (detailed data are illustrated in
Figures S1–S4). Table 2 displays the specific level of each input. Table 3 displays the experimental
findings under various fabrication settings. The resistance creep stabilizes for all situations
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within 120 s in Figures S1–S4. For all situations, the relative change in resistance rises from
0 to 16 kPa. As a result, for the sake of the analysis that follows, the measured range for creep
is taken to be 120 s, and the pressure range of sensitivity is taken to be 0–16 kPa. To be more
precise, as this change represents a nonlinear variation in the real experiment within the range
of 0 to 16 kPa, the relative change in resistance under 16 kPa is taken as the average sensitivity.
Resistance creep was defined as the relative variation in resistance under continuous pressure
from 0 to 120 s (hereafter referred to as creep). The ratio of the relative change in resistance and
pressure is used to calculate the actual sensitivity, which is the goal measurement. The relative
change in resistance is directly taken into account as the sensitivity evaluation index because the
pressure for each condition is 16 kPa (hereafter referred to as sensitivity).
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Table 2. Levels and code of the four factors.

Code
Levels

Ni (g) CNT (g) MLG (g) B (mT)

Low (−1) 1.6 0.6 0.8 210
Central (0) 2 0.8 1.2 280

High (1) 2.4 1 1.6 350

Table 3. Box–Behnken design (BBD) and experimental results.

Run
Factors

Sensitivity Creep
Ni CNT MLG Magnetic Field Intensity

1 −1 −1 0 0 0.6671 0.0211
2 −1 0 1 0 0.5765 0.0414
3 −1 0 0 −1 0.8516 0.0434
4 0 1 0 −1 0.9365 0.0555
5 0 0 1 1 0.6879 0.0572
6 −1 1 0 0 0.9310 0.0487
7 −1 0 −1 0 0.9290 0.0478
8 1 1 0 0 0.9380 0.0494
9 0 −1 1 0 0.5585 0.0258

10(C) 0 0 0 0 0.9147 0.0374
11 0 1 0 1 0.9159 0.0661

12(C) 0 0 0 0 0.8878 0.0452
13(C) 0 0 0 0 0.8940 0.0407

14 0 −1 0 −1 0.7802 0.0422
15 0 −1 −1 0 0.8764 0.0464
16 1 0 1 0 0.9326 0.0417
17 1 0 −1 0 0.8726 0.0649
18 1 −1 0 0 0.8732 0.0289
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Table 3. Cont.

Run
Factors

Sensitivity Creep
Ni CNT MLG Magnetic Field Intensity

19 1 0 0 1 0.9210 0.0497
20 0 1 1 0 0.8910 0.0572
21 −1 0 0 1 0.7652 0.0452
22 1 0 0 −1 0.9202 0.0449

23(C) 0 0 0 0 0.8701 0.0381
24 0 0 −1 −1 0.8359 0.0668
25 0 −1 0 1 0.7222 0.0447
26 0 0 −1 1 0.9223 0.0709
27 0 1 −1 0 0.8839 0.0700

28(C) 0 0 0 0 0.8313 0.0398
29 0 0 1 −1 0.8923 0.0393

C indicates the central repeated trials.

2.3.2. Support Vector Regression (SVR)

The SVR is a potent artificial intelligence technique that calculates the relationship
between inputs and outputs through a suitable hyperplane with fewer error bounds
and may be utilized as a powerful modeling tool for predicting process performance in
a variety of engineering fields. Equation (17) depicts the SVR model’s general equation,
and Figure 7a shows the model’s schematic perspective, the specific derivation process are
based on Equations (A4)–(A9) (Appendix A).

y =
n

∑
i=1

(αi − α∗i )K(x, xi) + b (17)

where (αi, α∗i ) represents the Lagrange multipliers utilized for dual space transformation
and K(x, xi) depicts the kernel function used to solve quadratic equations. The kernel
functions are used to solve a linearly inseparable problem which divides into three parts:
linear, polynomial, and gaussian, and b depicts the bias.
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Additionally, the hyperparameters also play a significant role in the performance of the SVR
model, such as gamma, C, and epsilon. Hence, the design of hyperparameters is an exceedingly
key part of SVR modeling. In this research, the gaussian kernel function was selected, the grid
search algorithm was carried out to tune the hyperparameters, and a five-fold cross-validation
approach was utilized for data partitioning, as shown in Figure 7b.

2.4. NSGA-II Optimization Approach

NSGA-II determines the Pareto optimal set of multi-objective and multi-constraint
problems by calculating the congestion distance of parameters [24], which introduces the
concept of the individual crowding degree and combines the tournament method along
with the elite retention strategy to act on the selection operator to choose the individuals
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entering the next generation population [25]. The specific algorithm is shown in Figure 8.
In this study, the sensitivity and creep were considered as two optimized objects. Through
such a method, the Pareto optimal set for two performances can be solved.

Nanomaterials 2023, 13, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 8. The algorithm flow for NSGA-II. 

3. Results and Discussion 
3.1. Models Establishment by RSM 
3.1.1. Experimental Results Analysis for Sensitivity 

The experimental data were analyzed using Design-Expert software. To evaluate the 
accuracy of the fitting and determine the strength of the influence of the input parameters 
on the output variables, the analysis of variance (ANOVA) was developed. Table S1 
displays the sensitivity ANOVA findings (Supplemental Materials). As can be seen, the 
regression model’s significant value (p-value) is less than 0.0001 and the lack of fit item’s 
p-value is more than 0.05, indicating that the regression model is highly significant and 
the lack of fit item is not significant. The RSM model’s R2 score of 0.9865 demonstrated the 
model’s high level of fit. This regression model’s coefficient of variance (C.V.%) was 
2.91%, lower than 10%, indicating the agreement of results. Additionally, each element’s 
p-value was less than 0.0001, demonstrating the high influence each factor has on 
sensitivity. The order of significance based on the F-value is MWCNT > MLG > Ni > B. 
Following the BBD’s ANOVA regression coefficients, the following can be used to derive 
the link between the sensitivity and the input parameters: 𝑦 = 0.662967 − 0.234823𝑥 + 1.45172𝑥 − 0.875818𝑥 + 0.217583𝑥 − 0.621684𝑥 𝑥+                                               0.644648𝑥 𝑥 + 0.108931𝑥 𝑥 + 1.01565𝑥 𝑥  + 0.093508𝑥 𝑥− 0.363485𝑥 𝑥 − 0.026424𝑥 0.743547𝑥 − 0.275761𝑥 − 0.030284𝑥  

where 𝑦  indicates the sensitivity, 𝑥  indicates the content of Ni, 𝑥  represents the 
content of MWCNT, 𝑥  represents the content of MLG, and 𝑥  is the magnetic field 
intensity, B. 

Figure 8. The algorithm flow for NSGA-II.

3. Results and Discussion
3.1. Models Establishment by RSM
3.1.1. Experimental Results Analysis for Sensitivity

The experimental data were analyzed using Design-Expert software. To evaluate the
accuracy of the fitting and determine the strength of the influence of the input parameters on
the output variables, the analysis of variance (ANOVA) was developed. Table S1 displays
the sensitivity ANOVA findings (Supplemental Materials). As can be seen, the regression
model’s significant value (p-value) is less than 0.0001 and the lack of fit item’s p-value is
more than 0.05, indicating that the regression model is highly significant and the lack of
fit item is not significant. The RSM model’s R2 score of 0.9865 demonstrated the model’s
high level of fit. This regression model’s coefficient of variance (C.V.%) was 2.91%, lower
than 10%, indicating the agreement of results. Additionally, each element’s p-value was
less than 0.0001, demonstrating the high influence each factor has on sensitivity. The order
of significance based on the F-value is MWCNT > MLG > Ni > B. Following the BBD’s
ANOVA regression coefficients, the following can be used to derive the link between the
sensitivity and the input parameters:

y1 = 0.662967 −0.234823x1 + 1.45172x2 − 0.875818x3 + 0.217583x4 − 0.621684x1x2
+0.644648x1x3 + 0.108931x1x4 + 1.01565x2x3 + 0.093508x2x4

−0.363485x3x4 − 0.026424x2
10.743547x2

2 − 0.275761x2
3 − 0.030284x2

4
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where y1 indicates the sensitivity, x1 indicates the content of Ni, x2 represents the content
of MWCNT, x3 represents the content of MLG, and x4 is the magnetic field intensity, B.

The interactions between the factors on the sensitivity are illustrated in Figure 9. When
the interaction between two factors was studied, the other two factors were at center levels.
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action between the MLG and Ni content; (c) interaction between magnetic field intensity (B) and
Ni content; (d) interaction between MLG and MWCNT content; (e) interaction between MWCNT
content and B; (f) interaction between MLG content and B.

In Figure 9a–f, the 3D response surface plots are displayed. Figure 9b,d,f show how
the interactions between MLGs and Ni, CNTs, and B have a clear effect on sensitivity. The
relationship between Ni and CNTs, MLG, and B are depicted in Figure 9a–c. Increased
sensitivity results from an increase in Ni content. The sensitivity of composites peaked
at 2.4 g of Ni, demonstrating that Ni, when mixed with CNTs and MLG under specific
magnetic fields, offers increased conductivity. Figure 9a,d,e show how CNTs interact with
Ni, MLG, and B, showing that the sensitivity rises as CNT content increases. When the
CNT content reaches 1 g, the sensitivity reaches a maximum. To increase the synergistic
effect when interacting with MLG and Ni, CNTs can be used. According to Figure 9b,d,f,
as the MLG content is increased, the sensitivity first rises before falling. The interplay of
these elements had a combined influence on the sensitivity based on the aforementioned
results and study; hence, a suitable percentage of these factors must be present to obtain
high sensitivity.

3.1.2. Experimental Results Analysis for Creep

Table S3 displays the ANOVA findings for creep (Supplemental Materials). The
regression model’s significant value (p-value) is less than 0.0001 and the lack of fit item’s
p-value is greater than 0.05, which shows that the model is reasonable and useful. The
RSM model’s R2 score was 0.9774, indicating that the model was well-fitted. The regression
model’s coefficient of variance (C.V.%) was 7.898%, less than 10%, indicating that the
outcomes were consistent. Additionally, the p-values for CNT, MLG, Ni, and B are all less
than 0.0001 and less than 0.05, demonstrating the high impact of each element on creep. The
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order of significance based on the F-value is MWCNT > MLG > B > Ni. The relationship
between the creep and the input parameters may be deduced from the BBD’s ANOVA
regression coefficients as:

y2 = 0.181745 + 0.122802x1 + 0.006281x2 − 0.171199x3 − 0.187587x4 − 0.022432x1
−0.026087x1x3 + 0.003694x1x4 + 0.02414x2x3 + 0.020221x2x4 + 0.017287x3x4

−0.018577x2
1 + 0.016595x2

2 + 0.061551 + 0.037561x2
4

where y2 indicates the creep, x1 indicates the content of Ni, x2 represents the content of
MWCNT, x3 represents the content of MLG, and x4 is the magnetic field intensity, B.

The interactions between the factors are illustrated in Figure 10. When the interaction
between two factors was studied, the other two factors were at center levels.

Nanomaterials 2023, 13, x FOR PEER REVIEW 14 of 22 
 

 

relationship between the creep and the input parameters may be deduced from the BBD’s 
ANOVA regression coefficients as:              𝑦 = 0.181745 + 0.122802𝑥 + 0.006281𝑥 − 0.171199𝑥 − 0.187587𝑥 − 0.022432𝑥−  0.026087𝑥 𝑥  + 0.003694𝑥 𝑥 + 0.02414𝑥 𝑥  + 0.020221𝑥 𝑥 + 0.017287𝑥 𝑥− 0.018577𝑥 + 0.016595𝑥 + 0.061551 + 0.037561𝑥  

where 𝑦  indicates the creep, 𝑥  indicates the content of Ni, 𝑥  represents the content 
of MWCNT, 𝑥  represents the content of MLG, and 𝑥  is the magnetic field intensity, B. 

The interactions between the factors are illustrated in Figure 10. When the interaction 
between two factors was studied, the other two factors were at center levels. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 10. 3D response surface plots. (a) Interaction between the MWCNT and Ni content; (b) 
interaction between the MLG and Ni content; (c) interaction between B and Ni content; (d) 
interaction between MLG and MWCNT content; (e) interaction between MWCNT content and B; (f) 
interaction between MLG content and B. 

Figure 10a,d,e display the findings of the interactions between CNTs and Ni, MLGs, 
and B, demonstrating that an increase in CNT content caused an increase in creep. Figure 
10b,d,f show that when MLG interacts with other parameters, the creep first lowers and 
then grows as the MLG content rose. According to the preceding graphs, when additional 
elements are present, B and Ni contents have a small impact on creep. The findings and 
analysis show that there is a contradiction between the effects of contents on sensitivity 
and creep, which indicates that a persistent pursuit of high sensitivity may result in 
subpar creep performance. Therefore, there must be a trade-off between sensitivity and 
creep. 

3.2. Model Establishment by the SVR Method 
Ni, MWCNT, and MLG contents and B were used as input parameters in data 

samples based on RSM; sensitivity and creep were taken into consideration as forecastable 
output variables. The value of the average MSE obtained from a five-fold cross-validation 

Figure 10. 3D response surface plots. (a) Interaction between the MWCNT and Ni content; (b) inter-
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between MLG content and B.

Figure 10a,d,e display the findings of the interactions between CNTs and Ni, MLGs, and B,
demonstrating that an increase in CNT content caused an increase in creep. Figure 10b,d,f show
that when MLG interacts with other parameters, the creep first lowers and then grows as the
MLG content rose. According to the preceding graphs, when additional elements are present,
B and Ni contents have a small impact on creep. The findings and analysis show that there is
a contradiction between the effects of contents on sensitivity and creep, which indicates that
a persistent pursuit of high sensitivity may result in subpar creep performance. Therefore, there
must be a trade-off between sensitivity and creep.

3.2. Model Establishment by the SVR Method

Ni, MWCNT, and MLG contents and B were used as input parameters in data samples
based on RSM; sensitivity and creep were taken into consideration as forecastable output
variables. The value of the average MSE obtained from a five-fold cross-validation of the
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sensitivity is the smallest when C was 59.7141 and gamma was 0.0508; for the creep, the
smallest average MSE was determined using the grid search algorithm and the five-fold
cross-validation method when C was 17.1487 and gamma was 0.0947. Figure 11 depicts the
procedure, while Tables 4 and 5 provide the R2, RMSE, and MAE values for the SVR model.
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Table 4. Value of the evaluation indices of the five-fold cross-validation for the SVR model on sensitivity.

Index 1 2 3 4 5 Average Value

R2 0.9882 0.9831 0.9805 0.9726 0.9857 0.9820
RMSE 0.02430 0.0301 0.0371 0.0403 0.0175 0.02985
MAE 0.01922 0.02807 0.02264 0.03205 0.01467 0.02339

Table 5. Value of the evaluation indices of the five-fold cross-validation for the SVR model on creep.

Index 1 2 3 4 5 Average Value

R2 0.9789 0.9757 0.9532 0.9504 0.9596 0.9656
RMSE 0.00711 0.00781 0.00356 0.00559 0.00662 0.006139
MAE 0.00544 0.00710 0.00258 0.00486 0.00526 0.005049

The average R2, RMSE, and MAE of 0.982, 0.031, and 0.02339, respectively, shown in
Table 4 for the sensitivity evaluation indicated a strong connection between theoretical and
experimental values, which are calculated based on Equations (A1)–(A3). Additionally,
the R2, RMSE, and MAE ranges are 0.9726–0.9882, 0.0175–0.0403, and 0.01467–0.03205,
respectively. These small ranges demonstrate the strong robustness of the SVR model.
The average R2, RMSE, and MAE for the creep evaluation were 0.9656, 0.006139, and
0.005049, respectively, demonstrating the SVR model’s strong fitness. High resilience is also
shown by the R2, RMSE, and MAE ranges, which are 0.9532–0.9789, 0.00356–0.00781, and
0.00258–0.0071, respectively. All the results show that the established SVR model effectively
predicts the sensitivity and creep performances with high robustness.

3.3. Comparison between Applied Models

To compare the five-fold cross-validation results of the SVR models, the evaluation
indices of RSM based on the same data of the five-fold cross-validation approach were
calculated and are shown in Tables 6 and 7.

A comparison of the results reveals that the SVR model has a higher average R2 than
the RSM model for both sensitivity and creep, indicating a better fit. The average RMSE
and MAE of the SVR model for sensitivity and creep are lower than those of the RSM
model, demonstrating that the SVR model has higher prediction accuracy.
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Table 6. Value of evaluation indices of the five-fold cross-validation for the RSM model on sensitivity.

Index 1 2 3 4 5 Average Value

R2 0.9929 0.9755 0.9721 0.9424 0.9640 0.9694
RMSE 0.03995 0.02694 0.03053 0.04671 0.03309 0.0354
MAE 0.03593 0.02363 0.02668 0.03106 0.02642 0.02874

Table 7. Value of evaluation indices of the five-fold cross-validation for the RSM model on creep.

Index 1 2 3 4 5 Average Value

R2 0.9401 0.9742 0.9301 0.9564 0.9870 0.9576
RMSE 0.00775 0.00888 0.00625 0.00555 0.00813 0.00731
MAE 0.00388 0.00840 0.00429 0.00478 0.00670 0.00561

Figure 12 shows the radar map of the five-fold cross-validation for the SVR and RSM
model concerning R2, RMSE, and MAE. According to the following figures, the SVR model
has higher R2 areas for both sensitivity and creep than the RSM model, and lower R2

areas for RMSE and MAE. This further suggests that the SVR model is more accurate in
predicting sensitivity and creep. In light of this, the comparative analysis shows that both
the RSM and SVR models exhibit a good fit and robustness toward performance prediction,
with the SVR model having higher precision in comparison to the RSM model.
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Figure 12. Radar diagrams of the five-fold cross-validation for the two estimation models in terms of
R2, RMSE, and MAE for sensitivity and creep. (a) R2 value for sensitivity; (b) RMSE for sensitivity;
(c) MAE for sensitivity; (d) R2 value for creep; (e) RMSE for creep; (f) MAE for creep.

Figure 13 depicts the linear dependency relationship between all experimental values
and the anticipated value of the two models. According to Figure 13, the sensitivity R2

values for the RSM model and the SVR model are 0.9865 and 0.9949, respectively, and the
creep R2 values are 0.9774 and 0.9899, respectively. As a result, both models’ predictions for
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the theoretical value and experimental value fit the data well; however, the SVR model’s
predictions were closer to the measured values.
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3.4. NSGA-II Results

The objective of the optimization method is to arrive at the material formula’s ideal
ratio for sensitivity and creep. The SVR model was employed as a predictive model since
its accuracy is superior to that of the RSM model, as was shown in Section 3.3. The NSGA
-II algorithm eventually produced the Pareto optimum set. The non-convex multi-objective
problem, which calls for appropriate parameters, can be solved with high accuracy and
quick convergence using the NSGA-II method. The popular size in this study was 80,
and the crossover ability and mutation probability were 0.05 and 0.8, respectively. The
Pareto-optimal solutions are shown in Figure 14.

The sensitivity rises as creep increases, according to the Pareto front curve, and the
final optimal solution was chosen using the entropy weight method (EWM), as illustrated
in Figure 14. More specifically, the input parameters for the sensitivity, creep, and the
magnetic field strength are as follows: Ni content = 2.392 g, MWCNT content = 0.767 g,
MLG content = 1.468 g, and magnetic field intensity = 241 mT.
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3.5. Validation Experiment and Comparison between RSM and SVR Model

All trials under the optimized conditions were carried out in quadruplicate, and the
results are displayed in Table 8 to confirm the plausibility of the aforementioned analysis.
Table 8 shows that both models can successfully fit the experimental data, with SVR
performing better than RSM. The relative deviation is 0.317% for sensitivity and 0.307%
for creep.

Table 8. Verification of experiment results.

Runs Output Mean ± SD SVR Predicted
Value

Relative
Deviation (%)

RSM Predicted
Value

Relative
Deviation (%)

Sensitivity

1 0.9440
0.9432 ±

0.0011
0.9462 0.317 0.9510 0.82

2 0.9432
3 0.9415
4 0.9444

Creep

1 0.0328
0.0324 ±
0.000342

0.0325 0.307 0.0335 3.39
2 0.0323
3 0.0327
4 0.0320

3.6. Model Fitting and Performance Testing

As was previously indicated, the relative change in resistance, which is regarded as
the sensitivity evaluation index, is the ‘sensitivity’ that was previously examined. The
actual average sensitivity was 0.059 kPa−1, which is derived by dividing 0.9432 by 16 kPa.
The actual sensitivity is the ratio of change in resistance and pressure. Figure 15 details the
sensitivity and creep to demonstrate how the developed sensor performs. For sensitivity,
at low pressure (<600 Pa), the sensitivity of the sensor was as high as 2.117 kPa−1. The
sensor can cause significant deformation within this range. The sensor’s sensitivity in
the medium pressure range (600–2000 Pa) was 0.09433 kPa−1. In the high pressure range
(2000–6000 Pa), the sensitivity of the sensor was 0.0234 kPa−1. After increasing the pressure,
the deformation increment will decrease because of its rigidity. Thus, in the high pressure
range (6000–16,000 Pa), the sensitivity of the sensor was 0.0036 kPa−1. When the pressure
continued to increase, since the sensor has reached its saturation pressure, it cannot respond
to external pressure efficiently. As a result, the sensor’s entire pressure range is 0–16 kPa,
which increases the validity of the earlier assumption. As previously noted, the entire
creep process can be observed to be divided into three parts: instantaneous deformation,
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primary creep, and secondary creep. As a result, the creep value is around 0.0324 when
it progressively stabilizes after 120 s. Additionally, experimental data are fitted to the
sensitivity and creep theoretical model examined in Section 2, and all of these fits exhibit
high fitting accuracies.
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Table 9 lists the sensitivity calculated in previous work. Compared with [26], the
sensitivity of our sensor is in the same range, at 0.415 kPa−1 in the pressure range of
0–2 kPa. On comparison to reference [27], the sensitivity of our sensor is much larger, and
reaches 0.141 kPa−1. In general, the comprehensive index of our sensor is greater than
others because of its higher sensitivity and larger pressure range.

Table 9. Comparison of sensitivity based on this work and previous reports.

Reference Sensitivity (kPa−1) Pressure Range (kPa) Comparison (kPa−1)

[26] 0.438 0–2 0.415
[27] 0.02 0–6.5 0.141
[28] 0.23 × 10−3 0–3000 -

This work 0.0589 0–16 -

4. Conclusions

This study investigated the sensitivity and creep predictability of RSM and SVR
methods and proposed the NSGA-II algorithm to improve fabrication conditions. The
primary factors involved were magnetic field, Ni, MWCNTs, and MLGs. The results
showed that all of the parameters had a significant impact on output performances. RSM
dynamically detected the influence of numerous factors on performance. SVR was able to
forecast sensitivity and creep using experimental data created by RSM as the input. When
the results from SVR were compared to those from RSM, it was found that both methods had
a high degree of output performance precision and that the predicted results from SVR were
relatively close to the actual ones. This demonstrated the proposed method’s high ability to
predict the complex relationships between multiple factors and output performances. All
tests were run in quadruplicate under optimized conditions, and the optimal fabrication
was determined using the NSGA-II algorithm. The suggested model’s excellent predictive
capability was also demonstrated. Last but not least, the performance of our work was
evaluated and compared with earlier work; the outcome reveals that our sensor performed
better than others overall. This discovery offered a fresh perspective on artificial intelligence
in transducer applications and has broad implications for calculating ideal conditions with
minimal experiments, which can be seen as an enduring goal of researchers.
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Appendix A. Mathematical Formula

1. Calculations for Evaluating Modeling Accuracy

R2 indicates the coefficient of determination of a regression, RMSE represents the root
mean squared error, and the MAE displays the mean absolute error, the specific equations
are shown below:

R2 = 1− ∑n
i=1(Mi − yi)

2

∑n
i=1
(

Mi −M
)2 (A1)

RMSE =

√√√√ 1
N

N

∑
i=1

(Mi − yi)
2 (A2)

MAE =
1
N

N

∑
i=1
|Mi − yi| (A3)

where Mi and yi are the output performance of the ith fabrication condition measured
via experiment and estimated via the proposed estimation models, respectively; M is
the average output performance measured via experiment; and N is the total number of
experimental conditions.

2. SVR model

The mathematical expression for SVR is shown below:

y =
n

∑
i=1

wiK(x, xi) + b (A4)

where wi depicts the weight vector; K(x, xi) depicts the kernel function that solves quadratic
equations linearly; and b represents the bias.

https://www.mdpi.com/article/10.3390/nano13020298/s1
https://www.mdpi.com/article/10.3390/nano13020298/s1
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By introducing slack variables (ξ and ξ∗) with a scalar constant C, the optimization
problem is obtained:

Minimize
‖w‖2

2
+ C

N

∑
i=1

(ξi + ξ∗i ) (A5)

Subjected to


yi − 〈w·K(x, xi)〉 − b ≤ ε + ξi
〈w·K(x, xi)〉+ b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0
(A6)

By applying Lagrange multipliers (αi and α∗i ), the dual space transformation is shown
in Equations (A7) and (A8):

Maximize
1
2

N

∑
i,j=1

(αi − α∗i )
(

αj − α∗j

)
K
(

xi, xj
)
− ε

N

∑
i=1

(αi − α∗i ) +
N

∑
i=1

Ei(αi − α∗i ) (A7)

Subjected to


N
∑

i=1

(
αi − α∗i

)
= 0

0 ≤ αi ≤ C
0 ≤ α∗i ≤ C

(A8)

Based on the above analysis, the final SVR model can be obtained:

y =
n

∑
i=1

(αi − α∗i )K(x, xi) + b (A9)
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