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As optical materials have shown outstanding physical and chemical characteristics
in the bio, medical, electronics, energy and related fields of studies, the potential benefits
of using these materials have been widely recognized [1,2]. Thus, research on many
applications has been conducted using many optical materials of various shapes and
compositions. This Special Issue aims to provide a range of original contributions detailing
the synthesis and application of optical materials.

Our Special Issue spans optical materials that exhibit a variety of unique characteristics,
including plasmonic nanomaterials, quantum dots, and carbon materials. It also includes
the applications that use optical properties. This Special Issue provides eleven outstanding
papers in the development of synthesis and application of optical materials.

Quantum dots (QDs) have attracted a great deal of attention in a wide range of fields
related to electronics, optics, biosystems, and materials synthesis thanks to various proper-
ties distinct from conventional fluorescent dyes [3–6]. Development of highly luminescent
QDs is very helpful in efficient biological use [7]. Chang et al. reported improved charac-
teristics of CdSe/CdS/ZnS core-shell quantum dots [8]. CdSe/CdS with ZnS/ZnO shell
QDs are synthesized by the one-pot method with various oleylamine (OLA) contents. QDs
with a high OLA concentration exhibit diffraction peaks of ZnS/ZnO and the thermal
stability of QDs with ZnS/ZnO shells exhibits better performance than those with ZnS
shells. Moreover, the photoluminescence intensity of QDs with ZnS/ZnO shells shows a
relatively slow decay of 7.1% compared with ZnS shells at a 85 ◦C/85% relative humidity
aging test for 500 h.

Since a sensitive biomolecule detection system has potential uses for early detection
and diagnosis of various diseases, QDs assembled on silica particles (QD2) have been
reported for such applications [9]. Exosomes are attracting attention as new biomarkers for
monitoring the diagnosis and prognosis of certain diseases. Kim et al. reported the QD2-
based lateral flow assay for highly sensitive exosome detection [10]. Anti-CD63 antibodies
were introduced on the surface of the highly bright QD2, and a lateral flow immunoassay
with QD2 was conducted to detect human foreskin fibroblast (HFF) exosomes. The exosome
samples embraced a wide range of concentrations from 100 to 1000 exosomes/µL, and
the detection limit of their newly designed system was 117.94 exosome/µL, which was
11 times lower than the previously reported limits. Bock et al. reported lateral flow
immunoassay with QD2 for prostate-specific antigen (PSA), which is one of the best-known
biomarkers for early diagnosis of prostate cancer [11]. In particular, only a simple detection
system including a smartphone and a computer software program was employed for signal
transduction, because the developed system had high sensitivity by using very bright
nanoprobes. The limit of PSA detection was 0.138 ng/mL and the area under the curve was
0.852. The system did not show any false-negative results while 47 human serum samples
were analyzed, which may have a great clinical utility in in vitro diagnostics [12].

Rapid containment of viral infectious diseases has become a major concern for global
health. The QD2 have been employed to detect an H1N1 virus [13]. Seder et al. reported
a movable layer device for rapid detection of influenza, an H1N1 virus, using QD2 and
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magnetic beads [14], a microfluidic platform that performs an immunoassay of viral anti-
gens in a simple, automated, yet highly sensitive manner. The automated device achieves a
highly sensitive magnetic bead-based sandwich immunoassay for the influenza A H1N1
virus within 32.5 min. The detection limit of the method is 5.1 × 10−4 hemagglutination
units, which is 2 × 103 times more sensitive than that of the conventional hemagglutination
method and is comparable to PCR.

Carbon materials have been a great candidate as optical materials [15–18]. Limosani
et al. reported successfully synthesized N-doped carbon quantum dots (N-CQDs) using
a hydroxyl radical opening of fullerene with hydrogen peroxide [19]. The N-CQDs were
probed for metal ion detection in aqueous solutions and during bioimaging and displayed
a Cr3+ and Cu2+ selectivity shift at a higher degree of -NH2 functionalization, as well as
HEK-293 cell nuclei marking. W.-H. Park reviewed the various characterization methods of
chemical vapor deposition of monolayer graphene electrodes (CVD-MG), which are devised
and developed for achieving a largescale, highly flexible, and transparent electrode [20].

The optical properties of metal nanoparticles have long been of interest in material
science and applications [21–24]. The development of high efficiency dye-sensitized solar
cells (DSSCs) has received tremendous attention [25–27]. Lee et al. studied an effect of
Au NPs and scattering layer in dye-sensitized solar cells (DSSCs). Based on freestanding
TiO2 nanotube arrays [28], they introduced Au nanoparticles (Au NPs) and a scattering
layer to change the power conversion efficiency (PCE) of DSSCs. The Au NPs layer could
act as a better source of electron generation because the plasmonic absorption band of Au
NPs is 530 nm, which matches the dye absorbance, and a scattering layer had better light
harvesting by scattering.

Surface-enhanced Raman spectroscopy (SERS) has become an essential analytical tool
for various target molecules detection [29–36]. However, the direct detection of H2O2
by SERS is not possible because of its low Raman cross-section. Pham et al. reported
nonenzymatic hydrogen peroxide detection using SiO2@Ag@Au alloy SERS NPs [37].
The peroxidase-mimicking activity of SiO2@Au@Ag alloy NPs in the presence of TMB
was investigated using SERS for detecting H2O2. Briefly, in the presence of H2O2, the
SiO2@Au@Ag alloy catalyzed the conversion of TMB to oxidized TMB, which was absorbed
onto the surface of the SiO2@Au@Ag alloy. The evaluation of the SERS band to determine
the H2O2 level utilized the SERS intensity of oxidized TMB bands.

The reproducible, reliable fabrication for large area SERS substrates in a low-cost
remains a challenge. Luo et al. reported large area patterning of highly reproducible and
sensitive SERS sensors based on 10 nm annular gap arrays using a patterning method based
on nanosphere lithography and adhesion lithography technics [38].

Various composites and shapes of optical materials are introduced [39,40]. The high
optical absorption and emission of bidimensional MoS2 are fundamental properties for
optoelectronic and biodetection applications. Cortijo-Campos et al. reported size effects in
single- and few-layer MoS2 nanoflakes on Raman phonons and photoluminescence [41].
Hossain et al. reported recent studies of NIR (near infrared)-light responsive materials for
photothermal cell treatments [42]. In their review, various nanomaterials such as metal and
carbon-based nanomaterials are compared systematically.
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