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Abstract: Simplifying device layout, particularly avoiding the complex fabrication steps and multiple
high-temperature treatment requirements for electron-selective layers (ESLs) have made ESL-free
perovskite solar cells (PSCs) attractive. However, the poor perovskite/substrate interface and in-
adequate quality of solution-processed perovskite thin films induce inefficient interfacial-charge
extraction, limiting the power conversion efficiency (PCEs) of ESL-free PSCs. A highly compact and
homogenous perovskite thin film with large grains was formed here by inserting an interfacial mono-
layer of diethanolamine (DEA) molecules between the perovskite and ITO substrate. In addition, the
DEA created a favorable dipole layer at the interface of perovskite and ITO substrate by molecular
adsorption, which suppressed charge recombination. Comparatively, PSCs based on DEA-treated
ITO substrates delivered PCEs of up to 20.77%, one of the highest among ESL-free PSCs. Additionally,
this technique successfully elongates the lifespan of ESL-free PSCs as 80% of the initial PCE was
maintained after 550 h under AM 1.5 G irradiation at ambient temperature.

Keywords: ESL-free perovskite solar cell; diethanolamine; interface modification; high performance

1. Introduction

Within the last few years, PSCs have progressed significantly in their PCEs, rising from
3.8 to 25.7% [1]. PSCs are conventionally fabricated using two architectures: planar and
mesoscopic [2–6]. Mesoscopic PSCs are generally made up of an electron-selective layer
(ESL), a mesoscopic TiO2 or Al2O3 scaffold, a perovskite layer, a hole-selective layer (HSL),
and back and front electrodes [7]. Further research found that PSCs can produce a PCE of
over 15% utilizing a straightforward planar architecture, achieving high efficiency without
the need for a mesoscopic scaffold [8–17]. Due to perovskite’s ambipolar characteristic,
additional device architectural simplification is possible in order to fabricate efficient PSCs
without using complicated fabrication methods [18,19]. In this scenario, HSL-free PSCs can
be produced without manufacturing or utilizing costly organic HSLs [20,21].

The subsequent focus in PSCs is on the simplified fabrication technique that offers
simple and inexpensive mass production in order to become economically relevant in
the context of high efficiency and reasonable stabilities [22]. In this context, numerous
researchers constructed ESL-free PSCs with reasonable PCEs [23]. ESL-free PSCs have
a high device stability potential in addition to decent PCEs and do not need the time-
consuming manufacturing of ESLs, particularly the numerous high-temperature processes
required to create TiO2 ESL. Since it is known that TiO2 causes the perovskite layer to
decompose by creating oxygen vacancies, the removal of the TiO2 ESL is mostly responsible

Nanomaterials 2023, 13, 250. https://doi.org/10.3390/nano13020250 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13020250
https://doi.org/10.3390/nano13020250
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-1165-1365
https://orcid.org/0000-0001-5950-4885
https://orcid.org/0000-0002-3035-0402
https://orcid.org/0000-0003-1415-6906
https://doi.org/10.3390/nano13020250
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13020250?type=check_update&version=1


Nanomaterials 2023, 13, 250 2 of 14

for the high device stability [24]. However, because of the inefficient electron transport and
the associated carrier recombination at the interface of transparent conductive oxides (TCO)
and perovskite, the performance of ESL-free PSCs is still inferior to that of conventional
devices [25–27]. An additional reason for the low device efficiency of the ESL-free PSCs is
the rough and uneven perovskite film when no ESL is fabricated, which will produce many
open grain boundaries and lead to severe recombination as a result of the shunt pathways
between the HSL and TCO. Surface modification methods were recently suggested to
reduce charge-carrier recombination at the TCO/perovskite interface and to initiate charge
collection at the relevant contact [28,29].

The efficacy of the resulting ESL-free PSCs is enhanced by carefully adjusting the
compositions, architecture, and morphology of the perovskite layer as well as pre-treating
the TCO (UV/O3 irradiation) to prevent carrier recombination in the perovskite or at the
TCO/perovskite interface [24]. These ESL-free PSCs, however, displayed relatively lower
PCEs (<18%) than those of their ESL-containing counterparts. Other methods for improving
device performance and surface modification of TCO substrates include bathocuproine [25],
polar non-conjugated small molecule modifier [30], and hydroxyethyl-functionalized imi-
dazolium iodide ionic liquid [31], and self-assembled fullerene monolayer [32]. Recently,
PCEs of ESL-free PSCs >19% have been reported employing sodium fluoride [33] and
tetramethylammonium hydroxide [34] as TCO modifiers. Nevertheless, most of the modi-
fications in the aforementioned approaches need additional or difficult processes, which
consumes time and energy. These modifiers are also regarded for their hygroscopicity,
insulating properties, and high material costs.

In the present study, we used a low-cost, very simple Indium-Tin Oxide (ITO)-surface
modification with DEA to enhance the ITO/perovskite interaction and perovskite crys-
tallization. Because amine groups typically interact with the ITO surface and Pb-based
substances are reported to link with –OH groups, we chose DEA, which contains both –OH
and amine groups, as the contact modifier between ITO and perovskite [35]. As anticipated,
the DEA molecular interlayer interacted with ITO and perovskite, which strengthened the
interface contact and elevated the crystallinity of the perovskite. A dipole layer that is
well-orientated for electron extraction was also produced by molecular adsorption. The
electron extraction rate was significantly improved as a result, and the ESL-free PSC with
the ITO/DEA/Perovskite/spiro/Au device structure demonstrated significantly better
performance (PCE: 20.77%) than an ITO/Perovskite/spiro/Au device (PCE: 18.65%).

2. Experimental Procedure
2.1. Solution Preparation

Perovskite solution was obtained by mixing anhydrous dimethylformamide/dimeth-
ylsulfoxide (600 mg/78 mg) with 0.15 M of formamidinium lead iodide (FAI), 0.85 M of
methylammonium lead iodide (MAI), and 1.025 M of PbI2. This solution was stirred for
4 h in a glove box. Spiro-OMeTAD was dissolved in chlorobenzene at a concentration of
80 mg/mL to make the precursor for the hole-selective layer. Tert-butylpyridine (28.5 µL in
1 mL of chlorobenzene) and lithium bis-(trifluoromethanesulfonyl) imide (8.75 mg/mL)
were then added as additives, and the mixture was stirred in a glove box for 6 h.

2.2. Device Fabrication

The ITO substrates were ultrasonically cleaned with detergent solution, deionized
water, acetone, ethyl alcohol, and deionized water for 20 min, respectively. The ITO
substrates were exposed to UV-ozone for 20 min after drying. The cleaned ITO substrates
were spin-coated with the DEA pure solvent for 30 s at 2000 rpm and then dried for 10 min
at 100 ◦C. The bare cleaned ITO and DEA-treated ITO substrates were spin-coated with
the perovskite precursor at 4000 rpm for 25 s to form the perovskite layers. Eighteen
seconds before the end of the spin-coating process, 0.8 mL of diethyl ether was dripped on
the perovskite surface. The resulting perovskite layers were heated for 15 min at 130 ◦C
before naturally cooling to ambient temperature. Subsequently, both perovskite layers
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were spin-coated with the Spiro-OMeTAD solution for 30 s at 4000 rpm. The devices were
finished by evaporating 60 nm Au electrodes onto the ITO/perovskite/spiro-OMeTAD
and ITO/DEA/perovskite/spiro-OMeTAD.

2.3. Characterizations

A Thermo Fisher Scientific (Shanghai, China) ESCALAB 250Xi under 10−9 Torr vac-
uum with a monochromatic Al-Kα X-ray source was used to collect the XPS spectra.
A scanning electron microscope (Hitachi, Chiyoda, Japan, S-4800) and an atomic force
microscope (Agilent Keysight (Beijing, China) AFM-5500) were utilized to study the mor-
phologies. The perovskite’s crystallinity was examined using an X-ray diffractometer
(Bruker D8 Advance (Bruker AXS Inc.), Cu-Kα radiation of 0.15406 nm). The UPS spectra
were obtained using the ESCALAB 250Xi Contact angle images were obtained with an
Ossila Contact Angle Goniometer. The FT-IR spectra were collected by using a Jasco (Tokyo,
Japan) FT-IR spectrometer. Using a UV-Vis spectrophotometer (UV-2600), the absorption
spectrum was measured. The steady-state PL spectra of the produced samples were looked
at utilizing an Edinburgh PLS 980. Utilizing a transient state spectrophotometer (Edin-
burgh Institute F900) and a 485 nm laser, the TRPL decay of the perovskite layers was
monitored. Under AM 1.5 G illumination with a power intensity of 100 mW cm−2, the
J-V characteristic curves were measured with a source meter (Keithley (Cleveland, OH,
USA) 2400) utilizing forward (−0.1 to 1.2 V) or reverse (1.2 to −0.1 V) scans from a solar
simulator (XES-301S+EL-100). The delay time was set to 10 ms, and the step voltage was set
to 12 mV. The EQE was calculated using QE-R systems (Enli Tech., Shanghai, China). The
EIS measurement was carried out using an electrochemical workstation (Zahner Zennium).
The EIS data were fitted with help of ZSim-software version 3.20 with equivalent circuit
parameters of R1 = 0.116, C = 0.00001 and R2 = 54.1 (for ITO-based device), and R1 = 0.116,
C = 0.000001 and R2 = 29.6 (for DEA-treated ITO-based device).

3. Results and Discussion

The cleaned ITO substrates were first spin-coated with DEA at 2000 rpm for 30 s, then
dried at 100 ◦C for 10 min. X-ray photoelectron spectroscopy (XPS) was carried out to
investigate the effect of DEA treatment on the surface chemistry of ITO. The XPS survey
spectra of bare ITO and DEA-treated ITO are presented in Figure 1. All spectra were
calibrated using the C 1s peak of 284.9 eV binding energy as a reference point. The bare
ITO and DEA-treated ITO share the same peaks except at 400.4 eV, which is assigned to
N 1s, showing that the DEA successfully adsorbed on the ITO substrate, as can be seen in
Figure 1a,b. Figure 1c displays the high-resolution N 1s spectra of ITO/DEA, which can
be divided into three peaks at 401.4, 400.4, and 399.7 eV. Sigma-state, including species
containing N, can be attributed to the peaks at 401.4 eV and 400.4 eV. Additionally, it has
been stated that an amine group correlates to the peak at 399.7 eV [36,37]. The shift in the
binding energy, as observed in the Sn 3d (Figure 1d) signals, is indicative of a chemical
interaction between DEA and the ITO substrate. This suggests a dipole interaction between
ITO and DEA that is mediated by an electric field, which lowers the attractive force of the
Sn nuclei and increases the Sn atom’s outer-shell electron density [38].

To investigate the impact of DEA coating on the surface morphology of ITO, scanning
electron microscopy (SEM) was conducted on bare ITO and DEA-treated ITO. Figure 2a,b
displays the surface SEM images of ITO and ITO/DEA, respectively. As can be seen, both
surfaces are compact without pinholes. However, because the DEA layer is so thin, it is
hard to see the DEA-coated ITO surface clearly. Figure S1 shows that this thin layer of
DEA had little influence on ITO transparency across a wide spectrum of light, indicating
a great potential for high photocurrent output. The morphologies of the bare ITO and
DEA-treated ITO were investigated with the help of atomic force microscopy (AFM), as
shown in Figure 2c,d. The alteration in the morphology following DEA coating is not
very noticeable, similar to the SEM images. However, in the DEA-treated ITO substrate,
a reasonable decrease in the root-mean-square (RMS) of surface roughness from 2.8 to
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0.9 nm is observed. The DEA coating may considerably minimize the surface defect states
and promote the deposition of high-quality perovskite thin film because of the reduced
roughness. We also used Kelvin probe force microscopy (KPFM) to examine bare and DEA-
treated ITO, as displayed in Figure S2. This revealed that the surface potential distribution
is consistent with the aforementioned surface morphologies, and the average potential of
the ITO/DEA substrate is −110 mV compared to the 0.18 mV of bare ITO, which indicates
desirable Fermi-level of the ITO/DEA and better band alignment with perovskite [24,39].
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In order to get highly efficient PSCs in ESL-free architectures, one of the main obstacles
is the energy-level mismatch between ITO and the perovskite, so it is essential to investigate
how DEA affects the energy levels of ITO. Figure 3a,b illustrates the outcomes of an
ultraviolet photoelectron spectroscopy (UPS) experiment. For the purpose of calculating
Ecutoff (secondary electron edges) and Eonset (Fermi edges), the intercepts of the tangents of
the peaks with the extrapolated baselines were used. By estimating the difference between
the incident photon energy (light source He I, 21.22 eV) and Ecutoff, the Fermi-level (EF)
values of the bare and DEA-treated ITO were quantitatively determined. The UPS show an
Ecutoff of 16.64 eV and 17.21 eV for bare ITO and ITO/DEA, respectively. The EF values of
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bare ITO and ITO/DEA were estimated to be −4.58 and −4.01 eV, respectively, using the
following equation.

EF = Ecuto f f − 21.22 eV (1)
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Figure 2. SEM images of the ITO substrate (a), ITO/DEA substrate (b), AFM images of ITO substrate
(c), and ITO/DEA substrate (d).

The EF of the ITO was significantly shifted by −0.57 eV after DEA treatment, which
would be advantageous for the cathode’s ability to collect electrons. This is because,
following DEA treatment, a favorable dipole moment formed on the surface of the ITO.
As stated in previous studies, Pb-based compounds interact with –OH groups, while
the amine groups in DEA tend to link with the ITO surface [34,35]. As can be seen, the
DEA modification resulted in a −0.57 eV shift in the Fermi level of ITO, which should be
attributed to a chemical reaction between DEA and ITO, as supported by the FT-IR data
(Figure S4). The appearance of the N-atom signal in Figure 1 demonstrates the interaction
between the N-atom of DEA and ITO. The -NH- (from the amine group) should function
as an electron donor to engage in chemisorption and modify the energy levels of ITO. To
examine the surface wettability of ITO treated with DEA, the water contact angle was
measured (Figure 3c). Since DEA possesses hydrophilic –OH and amine groups, the water
contact angles of the ITO surface decrease from 70.1◦ to 59.6◦, showing greater wetting
capabilities of DEA-treated ITO. The superior wettability can decrease the nucleation barrier
and aid in the formation of a high-quality perovskite layer.
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The surface morphologies and cross-sectional images of the perovskite layers prepared
on bare ITO and ITO/DEA substrates were taken with help of SEM, as depicted in Figure 4.
It is evident that the perovskite layers that were formed on ITO/DEA have densely packed,
considerably larger grains. In order to facilitate charge transfer, the perovskite layer formed
on ITO/DEA substrate displays entire coverage without any grain boundary gaps. The
larger perovskite grains and improved morphology on the ITO/DEA substrate can be
attributed to the favorable interaction of the –OH group with Pb2+ [35], which promotes the
formation of larger grains and passivation of the perovskite’s grain boundaries. A schematic
representation of the DEA interaction is shown in Figure S3a, where the –OH groups of
the DEA would interact with the Pb-atoms in the perovskite thin film while the N-atom of
DEA tends to create a chemical connection with the Sn atom on the ITO surface. According
to other researchers, the interaction between the –OH group and Pb2+ can improve the
penetration of PbI2 into a TiO2 mesoporous layer [40]. Through the direct mixing of DEA
solution and PbI2 powder, we were able to further test the possible interaction between DEA
and PbI2. Intriguingly, adding PbI2 to DEA has significantly altered the appearance, likely
creating new products. As seen in Figure S3b, the colorless DEA solution and the yellow
PbI2 powder were combined to create an entirely distinct product that was white in color.
The white mixture turns into a colorless liquid after heating (Figure S3c). To further confirm
these interactions, Fourier-transform infrared (FT-IR) spectra in the wavenumber range of
600 to 4000 cm−1 were carried out, as shown in Figure S4. The spectrum of the ITO substrate
shows typical broad bands below 800 cm−1, which is assigned to the stretching vibration
of In-O or Sn-O bonds [41]. The DEA-modified ITO shows broad and strong bands below
800 cm−1. In addition to the broad and strong bands, the DEA-modified ITO displays an
additional sharp and strong peak at 630 cm−1, which is ascribable to the stretching vibration
of the Sn-N bond. Therefore, it is reasonable to assume that the DEA and ITO substrate were
linked by a Sn-N bond, exposing the –OH groups for interaction with the perovskite layer
that was later added. The DEA and PbI2/DEA were characterized using FT-IR spectroscopy,
and the variation in –OH absorption peak was monitored. Broad absorption peaks can be
seen in the DEA and DEA/PbI2 spectra between 1052 and 1458 cm−1, which corresponds
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to the scissoring vibration of the –OH group, as seen in Figure S4b. The peak locations
altered in the PbI2/DEA sample from 1052–1458 cm−1 to 1044–1448 cm−1, indicating a
connection between PbI2 and the –OH groups of DEA. As seen in Figure S3b, the addition
of PbI2 to DEA has significantly altered the appearance, perhaps creating new compounds.
These observations point to a significant interaction between DEA and PbI2. In perovskite
deposition, the exposed –OH groups on the ITO surface would interact favorably with the
PbI2, which is present in the perovskite precursor solution. An even and complete coverage
of the perovskite layer would benefit from this advantageous interaction, ensuring good
interface contact with the ITO/DEA substrate.
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The formation of high-quality perovskite layers may improve the performance of
corresponding PSCs by facilitating charge transport and reducing recombination losses [42].
In addition to morphological characteristics, X-ray diffraction (XRD) and UV-vis absorp-
tion spectra were used to study how DEA deposition affected the structure and optical
performance of the perovskite layers. The high-intensity peaks from the XRD pattern
of the perovskite layer formed on ITO/DEA displayed slightly greater crystallinity com-
pared to bare ITO, as shown in Figure 5a. Additionally, the perovskite layer formed on
the ITO/DEA substrate exhibits slightly greater absorption capabilities throughout the
entire spectral region as evidenced by UV-vis absorbance spectra in Figure 5b. Steady-state
photoluminescence (PL) and time-resolved PL (TRPL) measurements were used to analyze
the charge-carrier dynamics of perovskite layers grown on glass, bare ITO, and ITO/DEA
substrates, as shown in Figure 5c,d. When compared to perovskite layers formed on glass
and glass/ITO, the PL spectra in Figure 5c show a considerable drop in intensity for the
ITO/DEA substrate, suggesting higher electron transfer to the corresponding layer [43] and
lower recombination of charges [44]. A significant quenching effect for the perovskite layer
deposited on the ITO/DEA substrate can be seen in the TRPL spectra given in Figure 5d,
demonstrating the improved electron extraction capability from the perovskite layer to the
DEA-treated substrate. The results were fitted by a biexponential decay function with the
following equation.

Y = k1e
−x
τ1 + k2e

−x
τ2 (2)

where τ1 and τ2 represent decay factors that are closely related to non-radiative recombi-
nation by defects and a component of bulk recombination, respectively. Table S1 shows
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decreased values for τ1 and τ2 for the perovskite layer deposited on the ITO/DEA substrate,
indicating minimized recombination losses.
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We fabricated PSCs with and without DEA for the evaluation of photovoltaic param-
eters after carefully examining the morphology and substantial role of the DEA at the
ITO/perovskite interface. The schematic diagram of the as-prepared device and energy
levels of each layer are depicted in Figure S5. The cross-sectional SEM images, current-
voltage (J-V) characteristic curves, and photovoltaic parameters of the as-prepared PSCs
are depicted in Figure 6 and Table 1, respectively. The PSC employing bare ITO displays an
open-circuit voltage (Voc) of 1.096 V, a short-circuit current density (Jsc) of 22.94 mA cm−2, a
fill factor (FF) of 74.19%, and a power conversion efficiency (PCE) of 18.65% under reverse
scan condition. In comparison, the DEA-modified PSC shows improved performance of up
to PCE of 20.77%, a Voc of 1.109 V, a Jsc of 24.45 mA cm−2, and an FF of 76.60% under the
same scan condition. It is noteworthy that the DEA-modified PSC exhibits significantly
better performance and less hysteresis in the J-V curves. The better layer quality and im-
proved charge-carrier transport at the ITO/DEA/perovskite interface might be primarily
responsible for the improved performance and decreased hysteresis, which is consistent
with the dark J-V curves, as discussed below, where we observed a decrease in the density
of trap states in the DEA-modified PSCs.
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Figure 6. Cross-sectional SEM images of as-fabricated devices with ITO substrate (a) and ITO/DEA
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substrate (d).

Table 1. Photovoltaic parameters of the PSCs under forward bias and reverse bias.

Device Scan Voc (V) Jsc (mA cm−2) FF (%) PCE
(%)

ITO/Psk./spiro/Au Reverse 1.096 22.94 74.19 18.65

Forward 1.083 20.83 74.24 16.75

ITO/DEA/Psk./spiro/Au Reverse 1.109 24.45 76.60 20.77

Forward 1.096 24.02 77.94 20.52

To further confirm the charge-carrier dynamics and charge-carrier recombination in
the devices with bare ITO and ITO/DEA, the dark J-V measurement was carried out. As
seen in Figure 7a, the device with DEA has a lower current density than the device with
bare ITO. This shows that the DEA/perovskite interface has efficient charge transport. In
order to quantitatively assess the trap density in the as-prepared devices, we also fabricated
electron-only devices (ITO/Perovskite/PCBM/Au and ITO/DEA/perovskite/PCBM/Au),
as shown in Figure 7b. The trap density (Ntrap) can be determined with the equation

Ntrap =
2ε0εVTFL

eL2 (3)

where ε0, ε, VTFL, e, and L are the vacuum permittivity, relative dielectric constant, trap-
field limit voltage, elementary charge, and perovskite layer thickness, respectively. Since
Ntrap and VTFL are linearly related, a device with a smaller VTFL will exhibit fewer defects
overall. As seen in Figure 7b, the device with DEA exhibits a significantly lower VTFL
(0.25 V) than the device with bare ITO (0.33 V), indicating DEA successfully reduces the
defect density. The smooth morphology with fewer grain boundaries and the high-quality
crystallinity of the perovskite layer deposited on the ITO/DEA substrate are responsible
for the reduced trap density. Electrochemical impedance spectroscopy (EIS) measurements
were conducted in order to learn more about how DEA affects the interfacial charge
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transport and recombination processes in the PSCs. Figure 7c displays the Nyquist plots
of the corresponding devices with a bias voltage of 0.9 V under dark conditions and a
frequency range of 1 Hz to 1 MHz. At higher frequencies, the semicircle stands in for the
charge transport resistance (Rct), which originates from the substrate and perovskite contact.
Because ITO/DEA made better contact with the perovskite surface, the DEA-treated PSC
showed a lower Rct value (29.76 kΩ) than the ITO-based device (Rct of 54.06 kΩ), indicating
more efficient electron transfer and electron extraction at the corresponding interface.
Additionally, measurements of external quantum efficiency (EQE) were made in order to
assess how well the J-V and EQE curves agreed. The matching Jsc values integrated from
the EQE curves (Figure 7d) for both devices are consistent with J-V characteristic curves.
Here, we noticed a minor discrepancy between the EQEs of the PSCs and the absorption
spectra of the perovskite layers prepared on ITO and DEA-treated ITO substrates in the
range of 400–500 nm. This can be attributed to the fact that the absorption spectra do
not represent an external property of the PSCs but rather an internal property of the
perovskites (originating from the distinctive energy-band structure) [45–47]. Moreover, the
EQE spectrum encompasses all excitonic and/or thermal broadening effects, along with the
architectural features of the PSC, and this reflects the occupied density of states as specified
in the entire PSC rather than in individual perovskites.
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Furthermore, we acquired performance data from 9 PSCs with bare ITO and ITO/DEA,
respectively, to show the reproducibility of the devices. The ITO/DEA-based PSCs exhibit
improved performance and reproducibility when compared to PSCs with bare ITO, as
shown in Figure S6. In addition to the high PCEs, the PSCs should have long-term stability.
Figure 8a illustrates the tracking of the steady-state PCEs of the PSCs with ITO/DEA
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and bare ITO under AM 1.5 G at maximum power at 0.9 V bias voltage and ambient
temperature. After 120 s of continuous illumination, the ITO/DEA-based device showed
a stabilized PCE of 19.71%, which is considerably near the highest PCE of 20.77% for the
same PSC. Additionally, for 550 h of AM 1.5 G irradiation, the stabilities of the unsealed
PSCs made with bare ITO and ITO/DEA substrates were evaluated every 34 h. After
each stability test, the tested PSCs were kept in a glass oven at 60% humidity and 25 ◦C.
Figure 8b demonstrates how the stability of the ITO/DEA-based PSCs exceeded that of the
ITO-based devices. After 550 h, the ITO/DEA-based PSC still had 80% of the original PCE.
The bare ITO-based PSCs under the same testing conditions only retained 37% of the initial
PCE, demonstrating poor stability and quick degradation. The degradation of ITO-based
PSCs is associated with rapid erosion because the perovskite layer formed on the bare ITO
substrate has a defective surface morphology. As mentioned above, high-quality perovskite
layers were created on the DEA-treated ITO substrates, with compact, large grains, and
reduced grain boundaries. Starting from the grain boundaries makes it considerably easier
to decompose perovskite films. Less oxygen, water, etc. will intermix within the grain
boundaries of the perovskite films because there are fewer grain boundaries. The stability
of PSCs made using DEA-treated ITO substrates is ultimately improved by the perovskite
film with fewer grain boundaries, which effectively shields perovskite films from water
penetration. Conversely, erosion occurs more rapidly in the perovskite thin films generated
using the ITO substrates because these have a considerably rougher surface with smaller
grain sizes and numerous grain boundaries.

Nanomaterials 2023, 13, x FOR PEER REVIEW 11 of 14 
 

 

unsealed PSCs made with bare ITO and ITO/DEA substrates were evaluated every 34 h. 
After each stability test, the tested PSCs were kept in a glass oven at 60% humidity and 25 
°C. Figure 8b demonstrates how the stability of the ITO/DEA-based PSCs exceeded that 
of the ITO-based devices. After 550 h, the ITO/DEA-based PSC still had 80% of the original 
PCE. The bare ITO-based PSCs under the same testing conditions only retained 37% of 
the initial PCE, demonstrating poor stability and quick degradation. The degradation of 
ITO-based PSCs is associated with rapid erosion because the perovskite layer formed on 
the bare ITO substrate has a defective surface morphology. As mentioned above, high-
quality perovskite layers were created on the DEA-treated ITO substrates, with compact, 
large grains, and reduced grain boundaries. Starting from the grain boundaries makes it 
considerably easier to decompose perovskite films. Less oxygen, water, etc. will intermix 
within the grain boundaries of the perovskite films because there are fewer grain bound-
aries. The stability of PSCs made using DEA-treated ITO substrates is ultimately im-
proved by the perovskite film with fewer grain boundaries, which effectively shields per-
ovskite films from water penetration. Conversely, erosion occurs more rapidly in the per-
ovskite thin films generated using the ITO substrates because these have a considerably 
rougher surface with smaller grain sizes and numerous grain boundaries. 

 
Figure 8. Stability analyses of the PSCs prepared with ITO substrates and ITO/DEA substrates. PCE 
at maximum power point tracking under continuous illumination of AM 1.5 G irradiation (a) and 
Normalized PCE for 550 h under AM 1.5 G irradiation (b). 

4. Conclusions 
We used DEA to generate Sn-N and –OH–Pb chemical linkages between the perov-

skite layer and the ITO substrate. The interface contact, perovskite crystallinity, and film 
quality have all increased due to these chemical interactions, and the perovskite layer’s 
grain boundaries and trap states have decreased. Based on the creation of interfacial di-
pole layers, our results imply that the addition of DEA can modify the band misfit at the 
ITO/perovskite contact, hence reducing the voltage deficits. Transient PL, TRPL, and IS 
measurements revealed that the rates of electron extraction and charge transfer have dra-
matically improved. The PCE of the PSCs has significantly increased as a result, rising 
from about 18.65% to 20.77%. Additionally, DEA modification has increased the stability 
of the PSCs, with 80% PCE retention even after 550 h without encapsulation. This is likely 
because the DEA modification improved the interfacial contact and thin-film quality of 
the perovskite. Our research opens up scientific pathways for the facile fabrication of ESL-
free PSCs. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Figure S1: Transmittance spectra of bare ITO and DEA-treated ITO sub-
strates; Figure S2: KPFM images (a,b) and corresponding potential difference curves (c,d) of the bare 

Figure 8. Stability analyses of the PSCs prepared with ITO substrates and ITO/DEA substrates. PCE
at maximum power point tracking under continuous illumination of AM 1.5 G irradiation (a) and
Normalized PCE for 550 h under AM 1.5 G irradiation (b).

4. Conclusions

We used DEA to generate Sn-N and –OH–Pb chemical linkages between the perovskite
layer and the ITO substrate. The interface contact, perovskite crystallinity, and film quality
have all increased due to these chemical interactions, and the perovskite layer’s grain
boundaries and trap states have decreased. Based on the creation of interfacial dipole
layers, our results imply that the addition of DEA can modify the band misfit at the
ITO/perovskite contact, hence reducing the voltage deficits. Transient PL, TRPL, and
IS measurements revealed that the rates of electron extraction and charge transfer have
dramatically improved. The PCE of the PSCs has significantly increased as a result, rising
from about 18.65% to 20.77%. Additionally, DEA modification has increased the stability of
the PSCs, with 80% PCE retention even after 550 h without encapsulation. This is likely
because the DEA modification improved the interfacial contact and thin-film quality of
the perovskite. Our research opens up scientific pathways for the facile fabrication of
ESL-free PSCs.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13020250/s1, Figure S1: Transmittance spectra of bare ITO and
DEA-treated ITO substrates; Figure S2: KPFM images (a,b) and corresponding potential difference
curves (c,d) of the bare ITO and DEA-modified ITO substrates; Figure S3: An strengthened link
at the ITO/perovskite interface is highlighted by a coupling between the –OH group and Pb in
the perovskite in this schematic example of surface modification of ITO-substrate with DEA (a),
Photos of DEA liquid, PbI2 powder and PbI2/DEA mixture (b), Photos of DEA liquid, PbI2 powder
and PbI2/DEA mixture under 135 ◦C (c); Figure S4: FT-IR spectroscopy of the ITO and ITO/DEA
substrates (a), and DEA liquid and PbI2/DEA mixture (b); Figure S5: Schematic illustration of
as-prepared PSC (a) and energy band diagrams of the corresponding layers (b); Figure S6: Statistical
analyses of the ESLs-free PSCs prepared with bare ITO and DEA-modified ITO substrates, Voc (a),
Jsc (b), FF (c), and PCE (d); Table S1: TRPL data for the perovskite layers prepared on bare ITO and
DEA-modified substrates.
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