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Abstract: The discovery of high-Tc superconductivity in cuprates in 1986 moved strongly correlated
systems from exotic worlds interesting only for pure theorists to the focus of solid-state research. In
recent decades, the majority of hot topics in condensed matter physics (high-Tc superconductivity,
colossal magnetoresistance, multiferroicity, ferromagnetism in diluted magnetic semiconductors, etc.)
have been related to strongly correlated transition metal compounds. The highly successful electronic
structure calculations based on density functional theory lose their predictive power when applied to
such compounds. It is necessary to go beyond the mean field approximation and use the many-body
theory. The methods and models that were developed for the description of strongly correlated
systems are reviewed together with the examples of response function calculations that are needed
for the interpretation of experimental information (inelastic neutron scattering, optical conductivity,
resonant inelastic X-ray scattering, electron energy loss spectroscopy, angle-resolved photoemission,
electron spin resonance, and magnetic and magnetoelectric properties). The peculiarities of (quasi-)
0-, 1-, 2-, and 3- dimensional systems are discussed.

Keywords: strongly correlated solids; charge-transfer insulators; Löwdin downfolding; canonical
transform; Schrieffer–Wolff transform; Hubbard model; Anderson model; cuprates

1. Introduction

The strongly correlated transition metal compounds remain a focus of attention in the
condensed matter scientific community since they may show high-Tc superconductivity in
quasi-two-dimensional cuprates [1,2], frustrated magnetism in low-dimensional cuprates
and other materials [3–6], colossal magnetoresistance and observation of Griffiths phase
in manganites [7–10], multiferroism [11,12], or spin liquid behavior [13–15], as well as
many other interesting properties. The interpretation of the vast experimental information
depends on the calculation of various response functions. The task becomes highly non-
trivial for the transition metal compounds because of the strong correlations in the d- or
f -electron shell of the transition metal ions. The difficulty is due to the necessity to take
into account the many-body effects. These effects cannot be described by finite orders of the
perturbation theory because of high (macroscopically large) degeneracy of the unperturbed
state. Thus, the summation of terms up to the infinite order of perturbation theory or
non-perturbative theoretical methods should be used [16].

The commonly used approach has serious limitations: for an interpretation of an
experiment, the response function is calculated for a model, the parameters of the model
being taken from a fit to experimental data. The model thus describes the dynamics of the
studied system in an energy range that is relevant for the calculated response. However,
the interrelation between responses on different energy scales is missing in this approach.
In particular, the models describing the optical response (the energy range of several eV)
has usually nothing in common with the spin-Hamiltonians that describe the magnetic
properties of the same compound (the energy range of several meV).

The aim of this review is to outline a systematic theoretical approach for the calcula-
tion of physical properties and response functions for different kinds of transition metal
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compounds on the basis of modern understanding of electronic structure and of the role of
correlations in electron motion. We introduce the models and methods that are exploited
for the description of strongly correlated systems. Simple analytically solvable finite system
Hamiltonians demonstrate the basis physics of strongly correlated systems.

2. Electron Correlations. Finite Systems
2.1. Hydrogen Molecule

As we mentioned in the Introduction, the description of transition metal compounds
demands the account of correlation in the motion of d and f -electrons [16]. The simplest
system that demonstrates the role of correlation effects is the electronic structure of the
hydrogen molecule. We adopt the Born–Oppenheimer approximation, where the nuclei
positions are fixed in the points R1, R2. So, we consider the motion of two electrons that
experience an attraction by protons and a repulsion from each other.

In the mean field Hückel theory [17–20], it is assumed that every electron moves in
a self-consistent external field VSCF(r) that is a sum of the attraction to the nuclei and the
repulsion from the second electron averaged over the positions of this electron. On the
basis of orthogonalized functions of the hydrogen atom ground state φi(r) = φ(r− Ri), the
mean-field theory Hamiltonian has the form (in the second quantization)

ĤSCF = εSCF ∑
i,s

a†
i,sai,s + t̂, t̂ = −t ∑

s

(
a†

1,sa2,s + a†
2,sa1,s

)
(1)

where the diagonal and non-diagonal matrix elements are (t > 0)

εSCF = 〈φi(r)| −
1
2
4+ VSCF(r)|φi(r)〉, −t = 〈φ1(r)| −

1
2
4+ VSCF(r)|φ2(r)〉 (2)

operator a†
i,s creates an electron with orbital function φi(r) and spin index s =↑, ↓. Without

loss of generality, we may assume the orthogonality of basis functions
〈
φi(r)|φj(r)

〉
= δij;

then creation and annihilation operators satisfy usual fermionic commutation relations
ai,sa†

j,s + a†
j,sai,s = δij (for the generalization for the non-orthgonal basis case see chapter 2

of the P. Fulde book [16]).
Within the approximations made, the Hamiltonian ĤSCF (1) has (for each value of the

spin projection s) two eigenfunctions (bonding and antibonding orbitals, see Figure 1) with
energies e± = εSCF ± t

|ψ±〉 =
1√
2
[φ1(r)∓ φ2(r)]. (3)

t

2t

Figure 1. Mean field description of hydrogen molecule electronic structure.
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In the ground state, both electrons occupy the lowest energy bonding orbital |ψ−〉. The
electrons should have opposite spins. So, two electron ground state function has the form

|gSCF〉 = a†
−,↑a

†
−,↓|vac〉 = 1√

2
(|s1〉+ |s2〉) (4)

=
1√
8
[φ1(r1)φ2(r2) + φ2(r1)φ1(r2) + φ1(r1)φ1(r2) + φ2(r1)φ2(r2)](α1β2 − β1α2),

|s1〉 =
1√
2

[
a†

1,↑a
†
2,↓ + a†

2,↑a
†
1,↓

]
|vac〉, |s2〉 =

1√
2

[
a†

1,↑a
†
1,↓ + a†

2,↑a
†
2,↓

]
|vac〉. (5)

The spinors α, β refer to spin up and spin down, respectively. We see that electrons
move independently in the mean field approximation. The probability of finding them on
the same site (it is given by the square of the coefficient of the so-called ionic configurations
that are given by the terms of the form a†

i,↑a
†
i,↓|vac〉) equals the probability to finding the

electrons on different sites (square of the coefficient of the terms a†
1,↑a

†
2,↓|vac〉). This means

the absence of the correlations in the electron motion in the mean field approximation.
In order to consider the correlations, we have to go beyond the mean-field approxima-

tion and take into account so-called residual interaction, which is the difference between
the bare electron–electron Coulomb repulsion

ŵ =
1
2 ∑

ijkl,s,s′
wijkla†

i,sa†
j,s′al,s′ak,s, wijkl =

∫ ∫
d3rd3r′ϕ∗i (r)ϕ∗j (r

′)
1

|r− r′| ϕk(r)ϕl(r
′) (6)

and its part that was accounted for in the mean field [16]. The residual interaction is
much more localized compared to the bare Coulomb interaction (6). That is why Hubbard
proposed to use the basis of localized atomic-like Wannier functions and to take into
account only the largest terms having i = j = k = l [21]. Then, the Hamiltonian ĤSCF (1) is
supplemented by the term

ĤH,res = Û − Ĥc, Û = U ∑
i

a†
i,↑ai,↑a†

i,↓ai,↓, Ĥc = U

(
n
2 ∑

i,s
a†

i,sai,s −
n2

4

)
, (7)

where n ≡ 〈gSCF|∑s a†
i,sai,s|gSCF〉. The one-particle Hamiltonian Ĥc subtracts the part of

interaction Û, which was accounted for in the self-consistent field. As a result, the average
〈gSCF|ĤH,res|gSCF〉 = 0. In our problem, n = 1. The general form of ĤH,res for the full
Coulomb interaction (6) is given in Eq. (2.3.35) of Ref. [16]. In our notations [the Coulomb
matrix elements of Ref. [16] are connected with ours (6) via relation Vikjl = wijkl], it is

Ĥres =
1
2 ∑

ijkl,s,s′
wijkla†

i,sa†
j,s′al,s′ak,s − ∑

ijkl,s

(
wikjl −

1
2

wil jk

)
Pjla†

i,sak,s +
1
2 ∑

ijkl

(
wikjl −

1
2

wil jk

)
PikPjl , (8)

where the bond order Pij ≡ 〈gSCF|∑s a†
i,saj,s|gSCF〉 is introduced.

Now, the Hamiltonian for the hydrogen molecule acquires the form of the Hubbard
Hamiltonan

ĤH = ε ∑
i,s

a†
i,sai,s + t̂ + Û, (9)

where we have dropped the constant term Un2/4. The diagonal matrix element is now
ε = εSCF −Un/2. We take it as the zero of energy ε ≡ 0. We shall solve the problem by the
Heitler–London approach [22], which uses the many-body function basis. The Hamiltonian
conserves the total spin S of the system. We can find the solution separately for singlet
(S = 0) and triplet (S = 1) sectors of the Hilbert space. In addition, the Hamiltonian
conserves the parity of the wave functions.

Triplet sector has three degenerate wave functions
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|t,+1〉 = a†
1,↑a

†
2,↑|vac〉, |t, 0〉 = 1√

2

[
a†

1,↑a
†
1,↓ − a†

2,↑a
†
2,↓

]
|vac〉, |t,−1〉 = a†

1,↓a
†
2,↓|vac〉. (10)

The energy of the triplet is Et = 2ε = 0.
In the singlet sector, we have three basis functions, one odd

|s3〉 =
1√
2

[
a†

1,↑a
†
1,↓ − a†

2,↑a
†
2,↓

]
|vac〉 (11)

with the eigenenergy E3 = U, and two even: |s1〉 and |s2〉 (5). We obtain a 2× 2 problem
for even singlets

ĤH |s1〉 = −2t|s2〉, ĤH |s2〉 = U|s2〉 − 2t|s1〉.

Its eigenvalues are

Eν =
U
2
+ νR, R ≡

√(
U
2

)2
+ 4t2 ≈ U

2

(
1 +

8t2

U2

)
, (12)

where ν = ±1. The last approximate equality (12) is valid in so-called strongly correlated
limit U � t. In this limit,

E− ≈ −
4t2

U
, E+ ≈ U +

4t2

U
. (13)

The eigenvectors are

|gν〉 = αν|s1〉+ βν|s2〉, αν =
1√
2

√
1− νU

2R
, βν = − ν√

2

√
1 +

νU
2R

. (14)

Thus, for the ground state |gS〉 = |g−〉, we have

|gS〉 ≈
(

1− 2t2

U2

)
|s1〉+

2t
U

(
1− 6t2

U2

)
|s2〉. (15)

Comparing it with |gSCF〉 (4), we see that the weight of ionic states |s2〉where electrons
are found on the same site is strongly suppressed in the correlated wave function.

In the mean field approximation, the lowest excited state corresponds to one-electron
excitation from bonding to antibonding orbital. It is separated from the ground state by the
energy ∆ESCF = 2t. In contrast to the mean field theory, the many-body approach obtains
the first excited state of the system as magnetic excitation that flips the spin of one electron
and transfers the singlet ground state |gS〉 to one of the triplet states |t, m〉, m = 0,±1. The
excitation energy is

∆EJ = Et − E− ≈
4t2

U
= J � t. (16)

The set of four lowest states |gS〉, |t, m〉 is separated from other states by an energy
∆EU ∼ U. It is easy to show that this set may be described by a low-energy effective Hamiltonian

ĤJ = JŜ1 · Ŝ2, (17)

which is just the antiferromagnetic Heisenberg Hamiltonian.

Temperature Dependence of Optical Conductivity

It is clear that the triplet states will be populated at temperatures kBT ∼ J. The tem-
perature dependence of some response functions of a strongly correlated system becomes
observable at these temperatures. The values of effective exchange integral J/kB may vary
from one to hundreds of Kelvins. Figure 2 illustrates the dependence of the charge response
of the system on the magnetic initial state: the transition over the gap is allowed in the
singlet state (left panel) and is prohibited in the triplet state (right panel) due to the Pauli
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exclusion principle. The population of the triplet states by temperature will evidently affect
the response. Let us illustrate this statement by the calculation of the optical conductivity
for an ensemble of molecules having a temperature T.

U

t

U

t

Figure 2. Description of the hydrogen molecule in the Heitler–London approach (account of correlations).

Optical conductivity for an ensemble of finite systems is given by (polarization of light
is along the x-axis parallel to the molecule)

σxx(z) =
1
V
〈〈

P̂x| ̂x
〉〉

=
1

Vz
[〈[

P̂x, ̂x
]〉

+ i〈〈 ̂x| ̂x〉〉
]
, (18)

〈〈 ̂x| ̂x〉〉 = ∑
µ

wµ(T)|〈µ| ̂|ν〉|2
[

1
z−ωνµ

− 1
z + ωνµ

]
,

where

wµ(T) =
exp

(
−Eµ/kBT

)
∑µ′ exp

(
−Eµ′/kBT

) (19)

is the thermodynamic weight of the initial state |µ〉, ωνµ = Eν − Eµ is the energy of the
transition, V is the volume per one system, P̂x and ̂x = −i

[
P̂x, ĤH

]
are the polarization

and the current operators.
The absorptive real part of the optical conductivity is

Reσ(ω + i0, T) = ∑
µ

wµ(T)σµ(ω), (20)

σµ(ω) =
π

V ∑
ν

|〈µ| ̂|ν〉|2

ωνµ

[
δ
(
ω−ωνµ

)
+ δ
(
ω + ωνµ

)]
, (21)

where σµ(ω) is the contribution to the optical conductivity of transitions from the state |µ〉.
In our restricted basis for a two site system, only optical transitions with charge

transfer between sites is possible. The current operator is

̂ = −ited ∑
s

(
a†

1,sa2,s − a†
2,sa1,s

)
, (22)

d is the distance between sites, and e is the electron charge. Non-zero matrix elements
exist only between singlets |s1〉 and |s3〉. We thus have 〈s1| ̂|s3〉 = −2ited, and 〈gν| ̂|s3〉 =
−2itedαν and we are able to calculate the optical conductivity analytically for any tempera-
ture and parameters of Hamiltonian (9).

Figure 3 shows the optical conductivity for strongly correlated regime U/t = 10 (a
finite imaginary part η = 0.1t was added to ω in order to visualize the δ-function). The
typical value of t is ∼ 1 eV=11604 K·kB. Thus, for any realistic temperature, only the
transition from the ground state (15) will be observed both in strongly (U � t) and in
weakly (U � t) correlated limits. We may introduce the weight of the transition (the
coefficient before δ

(
ω−ωνµ

)
)

Wνµ(T) =
[
wµ(T)− wν(T)

] π|〈µ| ̂|ν〉|2

V
(
Eν − Eµ

) . (23)
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The temperature dependence of W3g is given in Figure 4. We see that the peculiarity of a
strongly correlated system is a strong variation of W(T) with temperature. As the transition
energy ω3g ∼ U � T , we may neglect w3(T). In addition, we may neglect all terms
∼ exp(−U/kBT) in the denominator of Equation (19), which is the partition function. Then,

wg(T) ≈
1

1 + 3 exp[−(Et − E−)/kBT]
=

1
1 + 3 exp(−J/kBT)

. (24)

This means that the characteristic temperature of optical response variation is the
magnetic energy J. This is the general property of strongly correlated systems [23–25].

In the next subsection, we will show that the same conclusion holds for the tempera-
ture dependence of resonant inelastic X-ray scattering (RIXS) spectra for another simple
finite system.
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2.2. “Cu-O-Cu” Molecule. Temperature Dependence of RIXS Spectra
2.2.1. The Hamiltonian and Its Spectrum

We consider the three-site “Cu-O-Cu” cluster, which is described by a many-band
Hubbard model (see Figure 5) [26]

Ĥ = ∆ ∑
σ

p†
σ pσ + t ∑

i,σ

(
Zσ0

i pσ + p†
σZ0σ

i

)
, (25)

where the operator p†
σ creates a particle with the spin projection index σ =↑, ↓ on the

uncorrelated “O” site,
Zσ0

i ≡ |i, σ〉〈i, 0| = d†
σ

(
1− d†

−σd−σ

)
(26)

is the Hubbard projection operator that creates a particle with the spin projection index
σ on the site i = 1, 2, where strong correlations prohibit the double occupancy of the site
(see Appendix C). Thus, we consider a limiting case of the Emery (multi-band Hubbard)
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model [27] (later in Section 4.2 we will discuss the Emery model for cuprates more in detail)
when 1/Ud = Up = 0, Ud(Up) being on-site repulsion on the “Cu”(“O”) site. The remaining
energetic parameters are the charge-transfer energy ∆ (positive for hole representation),
and the hopping t. The typical values for cuprates are ∆ ∼ 4, t ∼ 1 eV, and below we
give the analytic formulas for exact values together with the expansion over t/∆� 1. We
consider the insulating case when we have two holes in the cluster.

t

∆

p

dd

Figure 5. Energy level scheme in a “Cu-O-Cu” molecule.

The Classification of States. We may characterize the wave function by total spin value,
its projection on the z-axis, and parity with respect to exchange of “Cu” sites 1↔ 2. In the
two-particle sector, we have (Figure 6)

(i) S = 0
(1) even:

|sd〉 =
1√
2

(
Z↑01 Z↓02 − Z↓01 Z↑02

)
|vac〉, (27)

|ZRSs〉 = 1√
2
[|ZRS, 1〉+ |ZRS, 2〉], (28)∣∣sp

〉
= p†

↑p†
↓|vac〉, (29)

where
|ZRS, i〉 = 1√

2

(
Z↑0i p†

↓ − Z↓0i p†
↑

)
|vac〉, (30)

is the Zhang–Rice singlet state [28,29] formed by holes on neighboring Cu-O sites.

p

d d d d

p

d d

p

Figure 6. Scheme of |sd〉, |ZRS1〉, and
∣∣sp
〉

states (27)–(30) in a “Cu-O-Cu” molecule.

(2) odd:

|ZRSa〉 = 1√
2
[|ZRS, 1〉 − |ZRS, 2〉], (31)

(ii)S = 1, Sz = 1
(1) even:

|ts〉 = 1√
2

p†
↑

(
Z↑01 + Z↑02

)
|vac〉, (32)

(2) odd (Figure 7):

|td〉 = Z↑01 Z↑02 |vac〉, (33)

|ZRT〉 = 1√
2

p†
↑

(
Z↑02 − Z↑01

)
|vac〉. (34)

The wave functions with other values of Sz may be obtained by the action of operator
Ŝ− on the above states.
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p

d d d d

p

Figure 7. Scheme of |td〉 and |ZRT〉 states (33),(34) in a “Cu-O-Cu” molecule.

Summary of the spectrum. The Hamiltonian (25) has 13 two-particle eigenstates (See
Appendix A.1 for the details): 4 singlets (31), (A6), and 3 triplets (32) ,(A12), and (A13). In
the low-energy states | f = 0〉(A6) and |Gt〉 (A12), the dominant contribution comes from
the states |sd〉(27) and |td〉(33), both having two particles occupying different “Cu” sites. In
this low-energy part of the spectrum, the system has only spin degrees of freedom which
are described by an effective Heisenberg Hamiltonian

Ĵ = JŜ1 · Ŝ2 + 2ed (35)

with the superexchange parameter J = Et,0 − E0 ≈ 4t4/∆3 � t, ∆. The constant shift
2ed = −2t2/∆ comes from the hybridization contribution to the “crystal field” on the
“Cu” site.

The excited states corresponding to a transfer of charge between the “Cu” and the “O”
sites lie higher in energy by the value about ∆.

2.2.2. O K RIXS Spectrum for Finite Temperature

General Expression The O K RIXS process has the following stages: (i) in a system being
in an initial state |g〉, an X-ray quantum excites an electron from an oxygen core 1s-state to
a 2p-state on the same site R; (ii) the valence electron system propagates in the presence of
the immovable core-hole at site R; (iii) the 2p-electron recombines on the same site R with the
core 1s-hole, another X-ray quantum is emitted, and the system is left in a finite state | f 〉.

The RIXS spectrum intensity at finite temperature is given by (see e.g., [30–33])

I(T, Ω, ω,~ε,~ε′) =
〈

Ig(Ω, ω,~ε,~ε′)
〉

T =
∑g exp(−Eg/kT)Ig(Ω, ω,~ε,~ε′)

∑g exp(−Eg/kT)
, (36)

where 〈· · · 〉T denote the statistical average over initial states |g〉 for a temperature T,
k ≈ 1/11604 eV/K is the Boltzmann constant, ~ε(~ε′) is the polarization vectors of inci-
dent(emitted) photons, and Ω and ω are the incident and emitted photon energies.

For a given |g〉, the intensity of the O K RIXS signal is (see e.g., [31–33])

Ig(Ω, ω,~ε,~ε′) = ∑
f

∣∣∣∣∣ ∑
R,m,µ,ν

〈f|ε′µT̂µ,R|m, R〉〈m, R|ενT̂ν,R|g〉
Eg + Ω− Em,R − ıΓ

∣∣∣∣∣
2

δ
(

Eg + Ω− E f −ω
)

(37)

where T̂µ,R = ∑σ s†
Rσ pRµσ + h.c., s†

Rσ is the creation operator of the O 1s-hole with spin
projection σ at site R, p†

Rµσ creates a 2p-hole at the same site, µ and ν are Cartesian indices
of 2p-orbitals, and |m, R〉 is the eigenstate of the Hamiltonian of the system in the presence
of the core hole at site R (in the stage ii)

ĤR = Ĥpd + ĤC,R, ĤC,R = εs ∑
σ

s†
RσsRσ + Q ∑

σ,σ′ ,µ
s†

RσsRσ p†
Rµσ′ pRµσ′ . (38)

In Equation (38), the first term Ĥpd is the generalized many-band Hubbard Hamilto-
nian that describes the valence electron system of cuprates; ĤC,R describes the O 1s hole
and its interaction with valence p-holes which is assumed to be reduced to local Coulomb
repulsion. The sum in Equation (37) runs over sites R where the core hole is created at
stage (i), rests at stage (ii), and annihilates at stage (iii), cf. Equation (3) of Ref. [33] where
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apparently a triple sum over R is present. In fact, the expression (38) implies that the core
hole does not move and is annihilated at the same site where it was created. This reduces
the triple sum to a single one.

With the assumptions inherent in Equation (38), the role of the core hole is reduced
to the change of the on-site energy of valence p-states at the stage (ii) of the RIXS process.
This may be shown in the following way: let us recall that the core hole is absent in the
initial and final states, i.e., we can write |f〉 = | f 〉 ⊗ |0C〉, |0C〉 being the vacuum for core
states. Then, we have

〈0C|T̂µ,R|m, R〉〈m, R|T̂ν,R|0C〉
Eg + Ω− Em,R − ıΓ

= 〈0C|∑
γ,σ

p†
RµγsRγ

1
z− Ĥpd − ĤC,R

s†
Rσ pRνσ|0C〉

〈0C|sRγ
1

z− Ĥpd − ĤC,R
s†

Rσ|0C〉 = 〈0C|sRγ
1

z− Ĥpd

[
∞

∑
n=0

(
ĤC,R

1
z− Ĥpd

)n]
s†

Rσ|0C〉

= 〈0C|
1

z− Ĥpd

∞

∑
n=0

[(
εs + Q ∑

σ′ ,α
p†

Rασ′ pRασ′

)
1

z− Ĥpd

]n

sRγs†
Rσ|0C〉

=
1

z− Ĥpd −
(
εs + Q ∑σ′ ,α p†

Rασ′ pRασ′
) δγσ, (39)

with z ≡ Eg + Ω− ıΓ. In the derivation of (39), we have used the relation

〈0C|sRγĤC,R = 〈0C|
([

sRγ, ĤC,R
]
+ ĤC,RsRγ

)
= 〈0C|

εs + Q ∑
σ′ ,µ

p†
Rµσ′ pRµσ′

sRγ. (40)

The substitution of (39) into (37) gives Equation (41). We see that the O K RIXS spectral
function (within the approximation made) is defined by the dynamics of valence electrons
only. Thus, we obtain

Ig(Ω, ω,~ε,~ε′) = ∑
f

∣∣∣∣∣ ∑
R,µ,ν

ε′µεν M f g
Rµν(Ω)

∣∣∣∣∣
2

δ
(

Eg + Ω− E f −ω
)

, (41)

M f g
Rµν(Ω) = ∑

σ

〈 f |p†
Rµσ

1
z− Ĥpd −

(
εs + UC ∑σ′ ,α p†

Rασ′ pRασ′
) pRνσ|g〉, (42)

where p†
Rµσ creates a 2p-hole with spin projection σ at oxygen site R, µ = x, y, z. Ĥpd is the

generalized many-band Hubbard Hamiltonian that describes the valence electron system,
εs is the energy of 1s hole level, and UC is the interaction strength between the 1s- and
valence 2p-holes. The interaction is assumed to be reduced to local Coulomb repulsion.

The expressions (36)–(42) involves only valence states. The stages i)-iii) may be
reformulated as:

(i′) in a system being in the N-hole ground state |g〉, a hole in a 2p-state on the site R
is annihilated;

(ii′) the N − 1 hole system is perturbed by the increase of site energy on the site R by
the value UC;

(iii′) the 2p−hole on the same site R is created, and the system is left in an excited state | f 〉.
Application to the Three-Site Model As we have already mentioned, the charge-transfer

excitations have energies of the order of several eV. They will never be populated at
temperatures reachable in an RIXS experiment (T < 0.1 eV). So, we should make the
statistical average only over the low-energy states

I(T, Ω, ω) = ws I0(Ω, ω) + wt It(Ω, ω),

where ws = 1/Q(T) and wt = 3 exp(−J/kT)/Q(T) are statistical weights of the lowest
singlet and triplet states, and Q(T) = 1 + 3 exp(−J/kT) is the partition function.
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In the intermediate state, our system has only one hole. The eigenenergies of even
states are

E± =
∆ + UC

2
± r, (43)

where r =
√

1 + 8[t/(∆ + UC)]2. The eigenstates are

|σ,+〉 = cos γp†
σ|vac〉+ sin γ

1√
2

(
Zσ0

1 + Zσ0
2

)
|vac〉, (44)

|σ,−〉 = sin γ|td〉 − cos γ
1√
2

(
Zσ0

1 + Zσ0
2

)
|vac〉, (45)

here sin γ and cos γ are given by expressions similar to Equations (A14) with the change
Rt → r, and ∆→ ∆ + UC.

An odd state |σ, a〉 = 1√
2

(
Zσ0

1 − Zσ0
2
)
|vac〉 has the energy Ea = 0. The calculated RIXS

and XAS spectra are shown in Figures 8–11. We clearly see the resonant character of the
spectra shown on Figure 8. The resonsnce occurs at different incident energies for singlet
and triplet initial states. The occupation of different initial states depends on temperature.
This leads to temperature dependence of the RIXS spectra. The changes of temperature
on the scale of magnetic interaction value J leads to drastic changes of spectra on a much
larger scale t� J as shown in Figure 10.
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Figure 8. RIXS for |sd〉 (left) and |td〉 (right) starting states in a “Cu-O-Cu” molecule.
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Figure 9. XAS spectrum in a “Cu-O-Cu” molecule. Arrows show the input X-ray frequencies.

The strong temperature dependence of the RIXS spectrum was first observed for
Li2CuO2 and CuGeO3 edge-shared cuprate compounds in Ref. [34]

The XAS spectrum also depends on temperature, but this dependence is weak.
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3. Effective Low-Energy Models
3.1. Resolvent Method (Löwdin Downfolding)

This method provides the simplest way to obtain a low-energy effective Hamiltonian
from a full Hamiltonian of a system. It was proposed in a series of works of P.-O. Löwdin
(e.g. Refs. [35,36]), where he called this method the “Partitioning technique”. Here, we
briefly review the technique.

We assume that a full Hilbert space of states of a system described by a Hamiltonian
Ĥ may be divided into two parts A and B, A being an “interesting low-energy part” in
some sense. Then, we may write the Hamiltonian matrix and an eigenvector symbolically

H =

(
HA HAB
H†

AB HB

)
, c =

(
a
b

)
. (46)

Then, the secular equation Hc = Ec becomes{
HAa + HABb = Ea,
H†

ABa + HBb = Eb.
(47)

We substitute the expression for b found from the second equation

b =
1

E− HB
H†

ABa (48)

into the first one and obtain(
HA + HAB

1
E− HB

H†
AB

)
a = Ea. (49)

Equation (49) looks like an effective secular equation He f f a = Ea for a matrix in the
subspace A, but He f f contains the inversion of a large matrix E − HB. This inversion
is calculated iteratively. We separate HB into diagonal and non-diagonal parts HB =
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H0,B + VB and expand (E− H0,B − VB)
−1 in a power series in VB. Then, we have up to

fourth order

He f f (E) = HA + HAB
1

E− H0,B
H†

AB + HAB
1

E− H0,B
VB

1
E− H0,B

H†
AB

+ HAB
1

E− H0,B
VB

1
E− H0,B

VB
1

E− H0,B
H†

AB + · · · . (50)

Note that He f f (E) depends on the eigenenergy. So, Equation (49) is a non-linear
equation. We should write E = E(0) + E(2) + · · · , and solve the equation iteratively.

Let us pay attention to an outstanding feature of the expansion (50). It never diverges if
the states in the subspace A are separated by an energy gap from the states in B. This is the
case when we derive an effective magnetic Hamiltonian for a strongly correlated insulating
system. Then, the subspace B contains the states with charge excitations which are separated
by a charge-transfer or a Hubbard gap for the charge-transfer or Mott–Hubbard insulators,
respectively (for the classification of correlated systems see Section 4.4).

3.2. The Effective Hamiltonian after Fourth-Order Canonical Transform

Let us consider another way to obtain an effective Hamiltonian. We denote

Ĥ = Ĥ0 + V̂, Ĥ0 = ∑
m
|m〉Em〈m|, V̂ = ∑

m 6=n
|n〉tnm〈m|, (51)

where the eigenvalues Em and eigenvectors |m〉 of an unperturbed Hamiltonian Ĥ0 are
assumed to be known. Without loss of generality, we may assume that the perturbation V̂
contains only non-diagonal terms. The operator

Ŵ = ∑
n 6=m
|n〉 tnm

Em − En
〈m| (52)

has the property [
Ĥ0, Ŵ

]
≡ Ĥ0Ŵ − ŴĤ0 = −V̂. (53)

Then, up to the fourth order, the canonical transformation gives

Ĥe f f = exp(−Ŵ)Ĥ exp(Ŵ) = Ĥ0 + Ĥ2 + Ĥ3 + Ĥ41 (54)

= Ĥ0 +
1
2
[
V̂, Ŵ

]
+

1
3
[[

V̂, Ŵ
]
, Ŵ
]
+

1
8
[[[

V̂, Ŵ
]
, Ŵ
]
, Ŵ
]
.

The explicit calculation gives

Ĥ2 =
1
2 ∑

n,m,j
|n〉tnjtjmDnjm〈m|, Ĥ31 =

1
3 ∑

n,j,k,m
|n〉tnjtjktkmDnjkm〈m|, (55)

Ĥ41 =
1
8 ∑

n,j,k,l,m
|n〉tnjtjktkltlmDnjklm〈m|, (56)

Dnjm ≡
(

1
Enj
− 1

Ejm

)
, Emj ≡ Em − Ej, (57)

Dnjkm ≡
1

Enj
Djkm − Dnjk

1
Ekm

=
1

EnjEjk
− 2

EnjEkm
+

1
EjkEkm

, (58)

Dnjklm ≡
1

Enj
Djklm − Dnjkl

1
Elm

=
1

EnjEjkEkl
+

3
EnjEjkEml

− 3
EnjEklEml

+
1

EjkEklEml
. (59)

The advantage of this approach is that it gives an energy-independent effective Hamil-
tonian. However, we can see a substantial difference of the Hamiltonian (54) from (50). The
denominators of the third and fourth orders (58) and (59) contain the energy differences
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between intermediate states. These terms may diverge if the states are (quasi-)degenerate
even if these states are well separated by an energy gap from the states in the subspace A.
In fact, the generator Ŵ has excluded the non-diagonal terms due to the property (53) only
up to the second order. For the derivation of the fourth order effective Hamiltonian, we
need to also exclude non-diagonal terms in Ĥ2. So, we perform a second transform with
the generator

Ŵ2 = ∑
n 6=m
|n〉 θnm

Em − En
〈m|, θnm ≡

1
2 ∑

j
|n〉tnjtjmDnjm〈m|. (60)

Then, the fourth-order term becomes

Ĥ4 = Ĥ41 + Ĥ42 =
1
8 ∑

n,j,k,l,m
|n〉tnjtjktkltlmGnjklm〈m|, (61)

Ĥ42 =
1
2 ∑

n,m,k
|n〉θnkθkmDnkm〈m| =

1
8 ∑

n,m,j
|n〉tnjtjkDnjktkltlmDklmDnkm〈m|, (62)

Gnjklm = DnjkDklmDnkm + Dnjklm. (63)

After some algebra (see Appendix B for the details), we obtain

Gnjklm =
4

EnjEml

(
1

Emk
+

1
Enk

)
+

2Emn

EnjEml

(
1

EmkEjk
+

1
EnkEkl

)
. (64)

Now, compare Equation (61) with Gnjklm given by (64) and the Löwdin result (50).
We see that the first term of (64) produces the form similar to (50), if we assume that both
|m〉, |n〉 belong to the subspace A. The second term of (64) looks different. However, we can
note the following: i) it vanishes when Em = En, i.e., when the subspace A is degenerate;
ii) we have written the transformation that tries to remove all non-diagonal terms in (51),
whereas only the part of them, namely HAB, are removed in the Löwdin approach. If we
divide V̂ in (51), into

V̂ = V̂AB + V̂A + V̂B (65)

and make the transformation that removes only V̂AB, we will have the form similar to (50),
but in practice, it is difficult to make the decomposition (65).

As we mentioned above, one of the advantage of the canonical transform is that it
gives an energy-independent effective Hamiltonian. The second important advantage is
that it easily gives the transformed form of any operator to the same order:

Ã = exp(−Ŵ2) exp(−Ŵ)Â exp(Ŵ) exp(Ŵ2), (66)

the transformed form of the wave function may be found as well.

4. Models for Electronic Structure of Strongly Correlated Systems
4.1. Hubbard Model

One of the simplest models that shows the peculiarities of the physics of strongly
correlated electron systems was introduced by J. Hubbard in Ref. [21] (implicitly this model
was used by P.W. Anderson for consideration of the superexchange [37]). The Hubbard
Hamiltonian reads

Ĥ = t̂ + Û, t̂ = −t ∑
R,σ

a†
R,σ

(
∑
g

aR+g,σ

)
, Û = U ∑

R
n̂R↑n̂R↓, (67)

where the summation goes over the sites R of a lattice (here we consider an infinite crystal
lattice), a†

R,σ creates an electron in a state with a wave function φ(r− R) localized at a site
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R with spin projection σ, n̂R,σ = a†
R,σaR,σis the on-site operator of the number of electrons

with spin projection σ, and vector g joins nearest neighbors.
In the mean field approximation, the Hamiltonian reduces to a single-band tight-

binding Hamiltonian

ĤSCF = ∑
k
(tk + Un̄)a†

k,σak,σ, tk = −t ∑
g

eikg, (68)

where the operator annihilating an electron in a band state is given by the Fourier transform

ak,σ =
1√
N

∑
R

e−ikRaR,σ, (69)

where N is the number of sites in the lattice. Our system is translationally invariant; thus,
the on-site average of the electron number 〈∑σ n̂R,σ〉 = n does not depend on R. Here, we
consider a non-spin-polarized case, when also 〈n̂R,σ〉 = n̄ = n/2 does not depend on σ and R.

The simplest approximation that shows the strongly correlated behavior for

U � t (70)

is the so-called Hubbard-I approximation [21], which is a decoupling scheme for the
two-time Green’s function technique.

The aim is the calculation of the retarded Green’s function

Gσ(r, r′, ω) =
〈〈

ψσ(r)|ψ†
σ(r
′)
〉〉

= −i
∫ ∞

0

〈{
ψσ(r, t), ψ†

σ(r
′, 0)

}〉
eıωtdt, (71)

where [A, B]η ≡ AB− ηBA, the time dependence of an operator Â(t) is given by Â(t) =

eitĤ Âe−itĤ , and the angular brackets denote the thermodynamic average〈
Â
〉
≡ Tr

[
exp

(
−βĤ

)
Â
]
/Tr

[
exp

(
−βĤ

)]
, (72)

operator
ψ†

σ(r) = ∑
R

φ∗(r− R)a†
R,σ (73)

creates an electron with spin projection σ at point r;

Gσ(r, r′, ω) = ∑
R,R′

φ(r− R)φ∗(r′ − R′)Gσ,R,R′(ω), Gσ,R,R′(ω) =
〈〈

aR,σ|a†
R′ ,σ

〉〉
. (74)

We consider the system in a non-magnetic state and will drop the spin index of the
Green’s function. The equation of motion for the Green’s function reads

ωGR,R′ = δR,R′ − t ∑
g

GR+g,R′ + UΓR,R′ , (75)

ΓR,R′ ≡
〈〈

aR.σn̂R,−σ|a†
R′ ,σ

〉〉
, (76)

The Hubbard-I decoupling is introduced in the equation for higher-order function (76)

(ω−U)ΓR,R′ = 〈n̂R,σ〉δRR′ − t
〈〈

cR,σ|a†
R′ ,σ

〉〉
, (77)

cR,σ ≡∑
g

aR+g,σn̂R,−σ + aR,σa†
R,−σ ∑

g
aR+g,−σ − aR,σ

(
∑
g

a†
R+g,−σ

)
aR,−σ,〈〈

cR,σ|a†
R′ ,σ

〉〉
' 〈n̂R,−σ〉∑

g
GR+g,R′
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In a non-magnetic state, the average does not depend on σ. Then, Equation (77) becomes

ΓR,R′ = n̄
δRR′ − t ∑g GR+g,R′

ω−U
, (78)

and we find

ωGR,R′ =

(
1 +

Un̄
ω−U

)[
δRR′ − t ∑

g
GR+g,R′

]
. (79)

This equation may be solved using Fourier transform

ωGk,k′ ≡
ω

N ∑
R,R′

exp
(
−ikR + ik′R′

)
GR,R′

=
ω

N ∑
R,R′

exp
(
−ikR + ik′R′

){(
1 +

Un̄
ω−U

)[
δRR′ − t ∑

g
GR+g,R′

]}
= Z(ω)

(
δkk′ + tkGk,k′

)
, (80)

where
Z(ω) ≡ 1 +

Un̄
ω−U

, (81)

From the last Equation (80), we obtain

Gk,k′ = δkk′Gk, Gk =
Z(ω)

ω− Z(ω)tk
. (82)

The Green’s function (82) is always diagonal in k-space for translationally invariant Hamiltonians.
The momentum-dependent spectral density

A(k, ω) = −ImGk(ω + i0)/π (83)

is the main characteristic of the electronic structure of strongly correlated systems. It
contains information both about the quasiparticle energy dispersion (given by poles of
Gk(z)) and about the incoherent bands (corresponding to the branch cuts of the Green’s
function). It is proportional to ARPES intensity in the so-called direct-transitions limit (see
Section 5.4).

Let us study the property of the Green’s function (82). We rewrite it in the form

Gk =
1

ω− tk − Σ(ω)
, Σ(ω) = Un̄

[
1 +

U(1− n̄)
ω−U(1− n̄)

]
. (84)

It is clear that the self-energy Σ(ω) is due to the interaction. Only the static (ω-
independent) part of it, ΣSCF = Un̄, is taken into account in the mean-field approximation.
Then, the Green’s function has a simple pole form

Gk,SCF =
1

ω− tk −Un̄
, (85)

the pole position being the one-particle energy of the mean-field Hamiltonian (68). The
spectral density has a single delta-functional peak

ASCF(k, ω) = δ(ω− tk −Un̄)

with a unit weight for each spin direction.
The correlations are responsible for the dynamic part of the self-energy, which is local

(k-independent) in the Hubbard-I approximation. J. Hubbard was the first to show that the
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correlations split the single mean-field band into two subbands, which are now called the
low- and upper-Hubbard bands. Indeed, the Green’s function (84) has two poles

Gk =
Z1

ω−ω1
+

Z2

ω−ω2
, (86)

where ω1,2 are the solutions of the equation [Gk(ω)]−1 = 0, which gives

ω2 −ω(U + tk)−U(1− n̄)tk = 0,

ω1,2 =
U + tk

2
±

√(
U + tk

2

)2
−Utk(1− n̄), (87)

Z1 =
U(1− n̄)−ω1

ω2 −ω1
, Z2 = 1− Z1 =

ω1 −U(1− n̄)
ω2 −ω1

. (88)

This expression may be simplified in the strong correlation limit (70). Up to the terms
of order tU−1, we may write [16]

ω1 ≈ tk(1− n̄), ω2 ≈ U + tkn̄, Z1 ≈ 1− n̄, Z2 ≈ n̄. (89)

Now, it is clear that the two bands are separated by a gap of the order of U.
The low-energy Hamiltonian for the half-filled system (n̄ = 1) is equivalent to an

isotropic Heisenberg model

Ĥ =
1
2 ∑

R,g
JgŜRŜR+g, (90)

where Jg = 4t2/U. This was proven by the canonical transform, see Refs. [38–41] and
references therein.

4.2. Anderson and Emery Models

The single impurity Anderson model (SIAM) Hamiltonian reads

ĤSIAM = ∑
kσ

εka†
k,σak,σ + Ĥ f + V̂, (91)

Ĥ f ≡ ε f ∑
m

n̂ f
m +

U
2 ∑

m 6=m′
n̂ f

mn̂ f
m′ , V̂ ≡ ∑

k,m,σ
Vk,m,σ f †

mak,σ + h.c., (92)

where the first term of ĤSIAM describes a band of uncorrelated electrons, the second term
Ĥ f is a generalized single-site Hubbard term, which is the Hamiltonian of a transition
metal impurity that has a localized degenerate level with the single-partical energy ε f and
strong Coulomb repulsion U. Operator f †

m creates an electron in a localized state, m is the
set of quantum numbers that characterize the state (e.g. combination of orbital and spin
projection numbers for d-electrons or total moment j projection for f -electrons), n̂ f

m ≡ f †
m fm.

The last term V̂ represents the hybridization between the localized and delocalized states.
The Hamiltonian ĤSIAM (91) was first introduced in Ref. [42] for the explanation of the
existence of localized magnetic moments in dilute magnetic alloys (see also Ref. [43]). The
moments are localized on d-ion impurities in non-magnetic metals and are due to strong
correlations within the d-shell of the ions. The model was intensively studied and allowed
to explain magnetic and transport properties of the dilute magnetic alloys. In the limit of
small s-d mixing, it was shown to be equivalent to the model introduced by Kondo [44].
The equivalence was proved by Schrieffer and Wolff [45] by means of canonical transform
(see Section 3). In the beginning of the 1980s, exact solutions for the Anderson and Kondo
models were found (see the review of Tsvelick and Wiegmann [46]). These solutions are
valid only for the impurities in “good” metals, where the Fermi energy of uncorrelated
electrons EF is the largest energy parameter of the model, and the electron spectrum may
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be linearized ε(k) ≈ vF(k− kF). Then, the model is reduced to a one-dimensional problem
and the Bethe Ansatz approach may be applied [46].

In Ref. [47], the Anderson model was applied for the description of d-ion impurities in
semiconductors. In the following works, it was widely used for the description of diluted
magnetic semiconductors.

The interest in SIAM increased considerably when the dynamical mean-field theory
(DMFT) [48,49] was formulated. The authors of Ref. [50] showed that the Hubbard model in
infinite dimensions may be exactly mapped onto a single-impurity Anderson model.

An important generalization of the Anderson model is the periodic Anderson model
(PAM), where transition metal ions form a periodic sublattice. It is given by the Hamiltonian

ĤPAM = ∑
kσ

εka†
k,σak,σ + ∑

i

(
Ĥ f ,i + V̂i

)
, (93)

where i enumerates the sites of the transition metal sublattice, operators Ĥ f ,i, V̂i have the
form of Equation (92) with the substitution f †

m → f †
m,i.

The discovery of high-Tc cuprate superconductors (HTSC) [1] immediately made the
low-dimensional strongly correlated systems the focus of scientific community attention.
P.W. Anderson realized the importance of correlations for the physics of cuprates [51,52].
The model for the description of hole motion in the CuO2 planes of HTSC was proposed by
Emery [27] as a generalization of the Hubbard model

ĤEmery = ∑
i,j,σ

εi,ja†
i,σaj,σ +

1
2 ∑

i,j,σ,σ′
Ui,ja†

i,σai,σa†
j,σ′ aj,σ′ , (94)

where i labels a copper or an oxygen site, the operator a†
i,σ creates a hole with spin index σ

in the Cu(dx2−y2) or O(px,y) orbitals, which are the ones most strongly hybridized. Only
site diagonal terms (εp,d, Up,d) and nearest neighbor hopping (εi,j = ±t) and interaction
(Ui,j = V) terms were taken into account. The parameter regime

Ud � Up, ∆pd ≡ εp − εd � V, t (95)

is relevant for HTSC (here B� A should be understood as B/A & 2.5). Later, it was found
that the account of the next-nearest neighbor oxygen–oxygen hopping tpp � t is necessary
for a realistic description of HTSC [53,54]. The average number of holes in the unit cell
of the Emery model

〈
n̂d + 2n̂p

〉
= 1 + x, |x| < 1. Positive values of x correspond to hole-

doped HTSC, whereas negative values describe electron-doped HTSC. The model with
x = 0 describes parent compounds, which are antiferromagnetic insulators. In this case,
the low-energy spectrum of the Emery model may be described by an effective isotropic
Heisenberg Hamiltonian (see, e.g., Refs. [55,56]). If one neglects correlations on oxygen sites
(Up ≈ 0), the Emery model becomes a special case of the periodic Anderson model (93).

4.3. Spin-Fermion and t− J Models

The downfolding of the Emery model in the regime given by Equation (95) allows
obtaining low-energy models with a reduced number of degrees of freedom. The ‘minimal’
Emery model that exhibits the essential properties of layered cuprates (1/Ud = Up = tpp = 0)
reads (in hole notation)

ĤH = Ĥ0 + V̂, Ĥ0 = ∆ ∑
r,γ

p̄†
r,γ p̄r,γ, V̂ = t ∑

R,α,γ

(
p̄†

R+aα ,γZ̄0γ
R + Z̄γ0

R p̄R+aα ,γ

)
, (96)

where the Fermi operator p̄r,γ annihilates a hole at site r of the oxygen sublattice with
spin projection index γ, and the Hubbard projection operator Z̄0γ

R , Equation (26), (see also
Appendix C) annihilates a hole with spin index γ on a singly occupied copper site. The
double occupancy of copper sites is thus excluded from (96). The first term, Ĥ0, includes
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the on-site energies (∆ = εp − εd, εd is taken as zero of energy), V̂ is the p-d hybridization,
α = x,−x, y,−y characterizes the direction of a nearest-neighbor vector a, and the phase
factors in V̂ are absorbed into the definition of the operators p̄r,σ, Z̄0γ

R .
In the limit t/∆� 1, further downfolding by means of a canonical transformation of

operators of the form

Âe f f = exp(−Ŝ)Â exp(Ŝ) = Â +
[
Â, Ŝ

]
+ · · · , Ŝ = − t

∆ ∑
R,α=±x,±y,γ

(
p†

R+aα ,γZ0γ
R − Zγ0

R pR+aα ,γ

)
. (97)

leads to the model

Ĥs−f ≈ Ĥ0 − 4τ ∑
R,γ

Zγγ
R + τ ∑

R,α1,α2,γ
p†

R+aα1,γ1
pR+aα2,γ2

(
Z00

R δγ1γ2 + Zγ2,γ1
R

)
− τ ∑

R,α,γ1

Zγ10
R+gα

Z0γ1
R + Ĵs , (98)

(see also Ref. [54] for the notation). Here, p and Z mean transformed operators, Ĵs is the
AFM copper–copper superexchange interaction, and g points to neighboring copper sites.
The parameters are τ = t2/∆, and the AFM exchange J ∝ t4/∆3. The model (96) is called
the spin-fermion model [29,57,58].

As we have mentioned in a previous subsection, in the absence of doping, the Emery
model is equivalent to the nearest-neighbor AFM Heisenberg model Ĵs. An extra hole
on the oxygen site forms a Zhang–Rice singlet and triplet states with a neighboring Cu
site [28,29], the triplet state being ∼ 8τ higher in energy than the singlet. Exclusion of the
triplet states leads to the t− J model [28]

Ĥt−J = −t ∑
i,g,σ

c̃†
i,σ c̃i+g,σ + J ∑

i

(
SiSi+1 −

nini+1

4

)
= −t ∑

i,g
Zσ0

i Z0σ
i+g +

J
2 ∑

i
Zαβ

i Zβα
i+1, (99)

where c̃†
i,σ ≡ Zσ0

i . The model (99) describes the hole motion in the antiferromagnetic
background of cuprate superconductors and the formation of a spin polaron [2,59–63].

4.4. Classification of Strongly Correlated Systems

In the seminal work of J. Zaanen, G. A. Sawatzky, and J. W. Allen [64], the transition
metal compounds were classified according to the relations between the energetic parameters:

• The Coulomb interaction within the d-shell of the transition metal ion U = E(dn+1
i dn−1

j )−
E(dndn);

• The charge-transfer energy ∆ = E(dn+1
i L)− E(dn) between the transition metal ion

and surrounding ligand;
• The hopping integral t between a ligand and transition metal ion.

According to this work (see Figure 3 of Ref. [64]), the transition metal strongly corre-
lated compounds may behave as:

(A) Mott Hubbard insulators: t � U � ∆, then the gap value is Egap ∼ U; both holes
and electrons move in d bands and are heavy. The one-band Hubbard model (67)
describes the main physics of these systems.

(B) Charge transfer insulators: t � ∆ � U, then Egap ∼ ∆ (and proportional to the
electronegativity of the anion); holes are light (anion valence band), and electrons
are heavy (d bands). The Emery model (94) and the periodic Anderson model (93)
with an explicit account of the anion states are used for the description of this class
of compounds. The high-Tc cuprate superconductors and other cuprates are the
most studied examples. Diluted magnetic semiconductors also belong to this class
of compounds.

(AB) Intermediate region t� ∆ ∼ U.
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4.5. Many-Band Generalization of the Models

For a realistic description of a specific compound, the generalizations of the above
models are necessary. In most compounds, several correlated states per site and the
dependence of the Vk,m,σ matrix element in Equation (92) on the symmetry of m-th orbital
should be taken into account (see e.g., [65]). An account of the geometry of bonds and the
symmetry of anion’s ligand orbitals is also necessary for the quantitative description of the
transition metal compounds.

In Ref. [66], the five-band p− d model was introduced for the electronic structure of
so-called edge-shared compounds (see also [33,34,67]). The model is used for the unified
consideration of magnetic properties and the optic and RIXS spectra of the compounds
(e.g., [24,25,34,68–71]). The orbital basis (Figure 12) consists of a single 3dxy orbital on each
Cu site and the 2px and 2py orbitals on each oxygen site. It is

H = ∑
m,l,α,σ

tml
d,pα

[d†
m,σ pα,l,σ + h.c.] + ∑

l,l′ ,α,σ
tll′

pα ,pα
[p†

α,l,σ pα,l′ ,σ + h.c.]

+ Ud ∑
m

nd
m,↑n

d
m,↓ + Up ∑

l,α
npα

l,↑n
pα

l,↓ + ∑
σ,σ′

[Up − δσ,σ′Kp]∑
l

npx
l,σn

py
l,σ′

− Kp ∑
l,σ

p†
x,l,σ px,l,σ̄ p†

y,l,σ̄ py,l,σ

+ Kp ∑
l
(p†

x,l,↑py,l,↑p†
x,l,↓py,l,↓ + p†

y,l,↑px,l,↑p†
y,l,↓px,l,↓)

+ ∑
σ,σ′

[Upd − δσ,σ′Kpd] ∑
m,l,α

nd
m,σnpα

l,σ′ − Kpd ∑
l,m,α,σ

d†
m,σdm,σ̄ p†

α,l,σ̄ pα,l,σ

+ Kpd ∑
l,m,α

(d†
m,↑pα,l,↑d†

m,↓pα,l,↓ + p†
α,l,↑dm,↑p†

α,l,↓dm,↓)

+ ∑
<m,m′>,σ,σ′

Uddnd
m,σnd

m′ ,σ′ + ∑
m,σ

εd,mnd
m,σ + ∑

l,α,σ
εp,l,αnpα

l,σ (100)

where m, m′ are Cu site indices, l, l′ are oxygen site indices, α = x, y are orbital indices for
the 2px,y orbitals, 〈. . . 〉 is a sum over nearest neighbors, and nd, npα are the usual number
operators for the Cu and O orbitals. Besides the one-particle on-site energies εd,m, εp,l,α,
hoppings tml

d,pα
, tll′

pα ,pα
, the Hamiltonian (100) accounts for the Hubbard terms on Cu and O

sites with parameters Ud and Up, the Hund coupling on O site (Kp), the direct Coulomb
(Upd) and exchange (Kpd) interactions between neighboring Cu and O sites, and Coulomb
interaction (Udd) between neighboring Cu sites.
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Figure 12. Basis of the five-band p− d model for a CuO2 chain.

When electron-lattice coupling is strong due to the Jahn–Teller effect, the orbital
degrees of freedom come into play. Then, the relevant low-energy model is the so-called
Kugel–Khomskii Hamiltonian [72]. Its main feature is the appearance of pseudo-spin values
that characterize the orbital degrees of freedom. There exists a close analogy between a hole
moving in the antiferromagnetic background and an electron moving in the alternating
orbital environment of double exchange ferromagnets. The term “orbital polaron” was
originally introduced by R. Kilian and G. Khaliullin for a quasi-particle for which the charge
degree of freedom is not only coupled to orbital fluctuations, but also to the lattice [73].
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Later, the term was used in studies on effective, low-energy t− J such as Hamiltonians in
the field of manganites for orbital quasi-particles [74–78].

5. Response Functions Calculations and Spectroscopies

A theoretical interpretation of experimental data demands calculations of response
functions. Above, we have given some examples of the calculations for finite systems,
Equations (18) and (37). Below, we give more examples of the response function calculations
for extended strongly correlated systems.

5.1. Ab initio Ligand Field Theory to Determine Electronic Multiplet Properties

There is a fundamental problem in electronic structure theory of solids, namely the
proper description of multiplet effects of local magnetic centers built up of d or f elec-
trons, which are intrinsically many-body states, in translational invariant settings. The
many-electron multiplet levels are characterized by strong Coulomb interactions, electron
correlations, and spin orbit coupling. The multiplets have been well understood for many
years in atomic physics. Such multiplets persist in solids, either as sharp levels in the gap of
insulators or semiconductors or as resonances in metals and small gap semiconductors. The
influence of the surrounding crystal on the d or f electron shell of an ion is described by a
few new parameters that are traditionally called crystal field (CF) or ligand field (LF) [79,80]
parameters. The knowledge of LF parameters allows describing the splittings and mixing
of single-ion many-body states in a crystal and calculating the response functions, which
are determined by local multiplet effects.

In the literature, one can find several approaches to calculate LF parameters. First,
there are wave function quantum chemistry methods [81]. However, it is difficult for
these methods to treat a periodic crystal, and they become numerically expansive for
heavy ions and large systems. There exist numerous attempts in the scientific literature to
calculate multiplets and LF parameters in an ab initio style and based on density functional
theory (DFT) [82–84]. The authors of Refs. [12,85] follow a much simpler way by starting
with the non-spin-polarized calculation using GGA functional [86]. Then, they obtain the
LF parameters by a Wannier fit to the non-magnetic band structure. In Ref. [85], the LF
parameters serve as input for an exact diagonalization computer program ELISA (electrons
localized in single atom) to calculate the response functions sensible to local multiplet
effects, i.e., electron paramagnetic resonance (EPR), optical spectroscopy, inelastic neutron
scattering (INS), X-ray absorption, and X-ray magnetic circular dichroism (XAS and XMCD)
as well as resonant inelastic X-ray scattering.

When RIXS experiment exploits a resonance on a core level of a transition metal ion,
its intensity is given by the formula

I(ω) = ∑
f

δ(ωin −ωout − (E f − Ei))|A f |2 (101)

where ω = ωin − ωout is the energy transfer, the indices i and f denote initial and final
states, respectively, and with the scattering amplitude

A f = A f (ωin) = ∑
m

〈 f |~Ein ·~r|m〉〈m|~Eout ·~r|0〉
ωin − (Em − Ei) + iΓ

(102)

where we sum over all intermediate states m, and ~Ein,~Eout are polarization vectors of
incoming and outgoing X-ray radiation.

The optical absorption spectra are calculated by using the approach of Sugano and
Tanabe [87], where the d-d transitions between two states a and b become possible by
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combining a parity changing perturbation Vodd with the dipole operator ~P = q ·~r to give
the transition probability by

W =

∣∣∣∣ 2
∆E
〈a|Vodd~P|b〉

∣∣∣∣2 , (103)

where ∆E is the energy difference between the given configuration with an incomplete d
shell and the first excited configuration with odd parity.

To calculate the optical and X-ray spectra, the dipole transition probabilities are
calculated in the ELISA code as it was published for XAS and XMCD [88].

5.2. Spin-Hamiltonians and Magnetic Response.

As we have already mentioned, in strongly correlated systems, charge and spin degrees
of freedom are well separated in energy. For insulators, the spin and phonon excitations
have the lowest energy and thus are responsible for thermodynamic properties. Magnetic
properties are described by effective spin-Hamiltonians. Theoretical determination of
parameters of the spin-Hamiltonians is the application of Löwdin downfolding to the
generalized Hubbard model. The downfolding for magnetic impurities in non-magnetic
materials is performed in three steps [89]: First, the virtual hoppings of electrons between
the impurity ion and surrounding ligands are eliminated, and one obtains an effective
ligand-field Hamiltonian. In the second step, one takes into account the fact that the largest
part of the LF Hamiltonian (usually, the cubic splitting) is smaller than the remaining
Coulomb interactions. Thus, an effective Hamiltonian for the lowest multiplet is obtained.
Finally, the couplings of the ground state manifold with higher levels due to the smallest
low-symmetry LF terms and by the spin-orbit interaction are eliminated. Thus, it is possible
to obtain an analytical closed expression which connects the parameters of the microscopic
Hamiltonian of the generalized Hubbard model with the parameters of the effective spin
Hamiltonian [85,89,90].

Analogous downfolding is possible for the extended systems where magnetic ions
form a regular sublattice. We have already mentioned the equivalence of the Heisenberg
model and the low-energy behavior of the half-filled Hubbard model [38–41] and of the
undoped Emery model (e.g., [55,91,92] and references therein). The account of spin-orbit
interaction allows obtaining anisotropic terms [93–95].

Now, it becomes a standard to obtain the parameters of a spin-Hamiltonian from the
spin-density-functional calculations. Comparison of total energies of different magnetic
configuration allows finding the exchange values. Here, we cite only a few examples of
such determination of parameters [96–98] just for the illustration of the method. In most
cases, the density-functional theory (DFT) calculations do not provide exact values of the
exchange interactions, but they allow establishing the hierarchy of the interactions. This is
very important for the compounds with competing frustrated interactions. The refinement
of the parameters is then possible by comparison with an experiment. Fitting of the inelastic
neutron scattering (INS) spectra within the linear spin-wave theory may be ambiguous.
It was the case of the quasi-one-dimensional LiCu2O2 edge-shared cuprate compound.
First, the INS spectrum of LiCu2O2 was interpreted in terms of an antiferromagnetic J1− J2
model [99], but the DFT calculations and other experimental evidence has shown that the
main interactions along the chain are ferromagnetic nearest neighbor J1 and antiferromag-
netic next nearest neighbor J2 [100,101]. Both sets of parameters explain the measured
INS spectrum.

Once the spin-Hamiltonian is established, all the magnetic properties of the com-
pound may be described. For example, to model the temperature dependence of the
magnetic susceptibility χ(T), the open-source program code HTE10 may be used [102–104].
It provides the tenth-order high-temperature expansion (HTE) of a general Heisenberg
model with up to four different exchange parameters J1, J2, J3, and J4. The tenth-order
HTE is indispensable for systems where the scale of the exchange interactions JS(S + 1) is
comparable to or exceeds the scale of thermal energy in the entire range of measurement
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temperatures [71,105,106]. Since the maximal measurement temperature is several hun-
dred Kelvins under normal laboratory conditions, it has to be used in the cases where
the exchange energy values (i.e., J/kB ∼ 100 K) are of comparable order and where the
susceptibility does not obey the Curie–Weiss law that follows from the second-order HTE.
The Curie–Weiss law fitting of experimental data, which is a common practice, may lead
to false estimates of magnetic interactions in such a material [105]. The program HTE10
calculates the exact coefficients cn of the normalized susceptibility per one spin calculated in
the tenth-order of HTE,

χHTE(T) =
10

∑
n=1

cn

Tn (104)

and Padé approximants (ratios of two polynomials of m-th and n-th order, Pm(T) and Pn(T),
respectively) χHTE(T) ≈ [m, n] = Pm(T)/Pn(T), m+ n ≤ 10. The Padé approximants allow
extending the region of validity of the HTE [103].

5.3. Electron Energy Loss Spectroscopy

What is actually measured in transmission electron energy loss spectroscopy (EELS)
experiments is the partial cross section [107,108] that may be decomposed into an amplitude
factor and a dynamic structure factor

d2σ

dΩdE
=

4
(a0)2q4 S(q, ω).

The dynamic structure factor characterizes the linear response of the whole electronic
system on longitudinal electric fields with the momentum q and frequency ω (the ionic
contribution may be neglected for the considered frequency range of the order of several eV).
Pronounced peaks in S(q, ω) are related with charge excitations: plasmons and excitons
(sometimes all of them are called “excitons” [109]). The dynamic structure factor is related
to the density–density correlation function

S(q, ω) ≡ 1
2πN

∫ ∞

−∞
dte−iωt〈n̂q(t)n̂−q(0)

〉
=

1
π

1
exp(−βω)− 1

ImN(q, ω), (105)

where β is the inverse temperature,

n̂q =
1√
N

∑
r,s

exp(−iqr)
(

a†
r,sar,s −

〈
a†

r,sar,s

〉)
(106)

is the electronic density operator in the localized basis, the summation runs over all lattice sites
r and orbital sorts s, and 〈. . .〉means the thermodynamic average. For βω � 1, we have

S(q, ω) ≈ − 1
π

ImN(q, ω), where N(q, ω) ≡
〈〈

n̂q|n̂−q
〉〉

(107)

is the retarded Green’s function that defines the inverse dielectric function

ε−1(q, ω) = 1 +
4πe2

vcq2 N(q, ω), (108)

with vc being the volume of the unit cell, and e is the electronic charge. The function
N(q, ω) describes the response to the unscreened external potential. The response to the
total, screened potential is given by the function [110]

Ns(q, ω) = ε(q, ω)N(q, ω), (109)

In the diagrammatic language, the linear response to the total field may be expressed
by the polarization operator where only irreducible graphs (which do not contain the
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contribution of the macroscopic electric field) should be taken into account [111,112].
Combining Equations (108) and (109), we express the dielectric permittivity via Ns(q, ω)

ε(q, ω) = 1− 4πe2

vcq2 Ns(q, ω). (110)

Substituting ε(q, ω) from Equation (110) to Equation (109), we obtain the relation

N(q, ω) =
Ns(q, ω)

1− 4πe2

vcq2 Ns(q, ω)
(111)

which is exact for q → 0, as it was shown in Ref. [111]. The density response func-
tion NH(q, ω) calculated within a generalized Hubbard model is an approximation to
Ns(q, ω) [113]. In other words, it describes the motion of transverse (or “mechanical”
by terminology introduced in Section 2.2.2 of the Agranovich and Ginzburg book [109])
excitons. The transverse (“mechanical”) excitons are excitations that correspond to poles
of dielectric permittivity, Equation (110), zeros of the inverse dielectric function, Equa-
tion (108), are determined by short-range interactions.

Using the spectral representation, we may write

Ns(q, z) =
∫ ∞

0

[
− 1

π
ImNs(q, ω′)

]
2ω′dω′

z2 −ω′2
] =

∫ ω0

0
+
∫ ∞

ω0

= NH(q, z) + N∞(q, z). (112)

Here, we bear in mind that the Hubbard model contributes to transitions in the low
frequency region ω < ω0 with ω0 of the order of the bandwidth, and the electrons of the rest
of the solid are excited only at higher energies. In zero approximation, we may assume that
in the frequency region ω > ω0, the electronic polarization of the rest of the solid follows
the external field immediately N∞(q, z) ≈ N∞(q, 0). In other words, the Hubbard model
is embedded into the medium with dielectric permeability ε∞(q) = 1− 4πe2

vcq2 N∞(q, 0). In
fact, ε∞ may have its own dispersion and may be quite anisotropic for a layered or quasi-
one-dimensional compound. In principle, it should be taken from, e.g., LDA calculations
(we have assumed that the rest of the solid is uncorrelated) or from the experiment. It is
obvious that the peak positions of the loss function

L(q, ω) ≡ −Im
[
ε−1(q, ω)

]
(113)

and their intensity strongly depend on the value of ε∞(q). Usually, one neglects the q-
dependence and the anisotropy of ε∞, but it is a crude approximation, as well as another
one which assumes ε(q, 0) = const. For a quantitative description of EELS experiments,
the detailed knowledge of ε∞(q) is necessary. Then, the total dielectric function and its
inverse are

ε(q, ω) = ε∞ −
4πe2

vcq2 NH(q, ω) ≡ ε∞εH , ε−1(q, ω) = ε−1
∞ ε−1

H . (114)

In Ref. [56], the problem of dielectric response in the strong coupling regime of a
charge-transfer insulator was considered. An approach that starts from the correlated
paramagnetic ground state with strong antiferromagnetic fluctuations was proposed. A
set of coupled equations of motion for the two-particle Green’s function was obtained and
approximately solved by means of the projection technique. The solution is expressed by
a two-particle basis that includes the excitonic states with electron and hole separated at
various distances. The method was applied to the multiband Hubbard (Emery) model
that describes layered cuprates. It was shown that strongly dispersive branches exist in
the excitonic spectrum of the ’minimal’ Emery model (1/Ud = Up = tpp = 0). For this
purpose, the downfolding to the spin-fermion model, Equation (98), was performed using
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the canonical transform, Equation (97), for the Hamiltonian and for the density operator,
Equation (106). Then, the motion of electrons and holes in the effective Hamiltonian was
considered. The exciton spectrum dependencies were analyzed on finite oxygen hopping
tpp and on the value of on-site repulsion on oxygen, Up.

5.4. Angle-Resolved Photoemission Spectroscopy

It is commonly believed that the intensity of the angle-resolved photoemission spectra
(ARPES) is proportional to the one-particle spectral function [114], which is an imaginary
part of the retarded Green’s function [cf. Equation (84)] divided by −π

A(k, ω + i0) = −ImGk(ω + i0)/π, Gk(ω) = 1/(ω− εk − Σk,ω), (115)〈〈
ak1 |a

†
k2

〉〉
ω
≡ −i

∫ ∞

0

〈{
ak1(t), a†

k2
(0)
}〉

eiωtdt = δk1 ,k2
Gk1(ω), (116)

where ak,s,α annihilates an electron in a bulk Bloch state,
{

Â, B̂
}
≡ ÂB̂ + B̂Â, the time-

dependent operator Â(t) is Â(t) = exp(itĤ)Â exp(−itĤ), and the angular brackets denote
the ground state or thermodynamic average, Equation (72).

In Ref. [115], it was shown that this is the case only for one- and two-dimensional
systems with a negligible dispersion normal to the surface. However, the actual crystals
are three-dimensional, and the ARPES intensity (i.e., the steady radial photocurrent of
electrons emerging from the solid along the observation direction defined by the unit vector
q̂ with energies between E and E + dE) is proportional to the spectral function of a more
complicated Green’s function

A(q̂, ω) = − 1
π

ImG(q̂, ω + i0), G(q̂, ω) =
〈〈

Ĉ|Ĉ†
〉〉

ω
, (117)

where the operator

Ĉ†(q̂, E) ≡
∫

d3xψ̂†(x)χ(x, q̂, E) (118)

creates an electron in a state with the wave function

χ(x, q̂, E) =

{
Ô(x)ϕ∗>(x, q̂, E), x inside the crystal
= 0, otherwise.

(119)

Here, ϕ> is the low-energy electron diffraction (LEED) wave function, Ô(x) is the
operator of electron–light coupling. The function χ(r) decays into the solid owing to the
spatial decay of the LEED function, and, at the same time, it rapidly vanishes in the vacuum
owing to the confinement of the initial states.

It was shown how the spectra depend on physical properties of the initial and final
states of the photoemission process. Both kinds of states are solutions of the Schrödinger
equation with the same Hamiltonian. For the initial states, it is necessary to find the Green’s
function of the semi-infinite crystal. In the description of final states, the inelastic scattering
due to electron–electron interaction in the propagation of the outgoing electron may be
taken into account phenomenologically by introducing an absorbing optical potential into
the effective Schrödinger equation for the function ϕ>(x, q̂, E) [116–118].

6. Application of the Methods to Specific Material Families

In this section, we briefly outline applications of the above methods for studies of
strongly correlated materials.

6.1. High-Tc Cuprate Superconductors

In cuprate materials, the most important features of the electronic structure are a
large hybridization of O2p and Cu3d states in the pdσ-band and a strong local Coulomb
repulsion on Cu3d states in the CuO2 plane. As we have already mentioned in Section 4.2,
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the generalized Hubbard model was proposed by Emery [27], Equation (94). The hopping
parameters t, tpp were taken from DFT band-structure calculations that were regarded as
equivalent to applying mean-field theory to the model. Hubbard repulsion parameters
were derived from photoemission and optical experiments in Refs. [119–121]. Later, the
calculations with the constrained-density-functional approach [122,123] confirmed the
obtained values. The importance of the account of Cu-O direct exchange Kpd was pointed
out in Ref. [124].

Within the Emery model, the hole spectrum [53,54,125,126], optical conductivity [127]
and EELS [56] were studied. The mechanism of superconductivity was proposed in
Ref. [128].

The t − J model (see Section 4.3) obtained by downfolding of the Emery model
allowed describing most of the low-energy physics of the high-Tc superconductors. A
comprehensive review is given in the book [2].

6.2. Edge-Shared Cuprates

The electronic structure close to Fermi energy of these compounds is defined by Cu
3d and oxygen 2p states in CuO2 chains (Figure 12). As we have noted in Section 4.5, the
electronic structure of the chain is described by the five-band p− d model, Equation (100).
The magnetic part of its spectrum is well described by the one-dimensional spin-1/2 J1-J2
Heisenberg model.

The ESC compounds represent a particular class of quantum magnets in which the
local geometry gives rise to competing nearest ferromagnetic (FM) or antiferromagnetic
(AFM) exchange coupling J1 and frustrating antiferromagnetic next-nearest neighbor J2
superexchange couplings.

In this rich family, one of the most studied compounds is Li2CuO2. The INS studies
reported in Ref. [68] supplemented by the DFT calculations and exact diagonalization
studies of CunO2n+2-clusters (n = 5, 6) allowed establishing a set of consistent parameters of
the five-band p− d model that describe optical, EELS, O 1s XAS-spectral data [24,129], RIXS
spectra [34,70], value of the magnetic saturation field [130], and temperature dependence
of magnetic susceptibility [105].

7. Concluding Remarks: Building of a Microscopic Model for a Description of a
Specific Material

We have outlined a realistic strategy in the description of transition metal compounds.
The common steps of the model building are outlined in Figure 13. First, state-of-

the-art density functional theory calculations should be performed for the given com-
position and the crystal structure. Numerous computer codes are available for this pur-
pose. We mention here the most popular codes: the Vienna ab initio simulation package
(VASP) [131,132], WIEN2k [133], and FPLO [134]. A comparison of accuracy and an ex-
tensive list of the DFT codes may be found in Refs. [135,136]. If it is difficult to make a
DFT calculation (e.g., because of a large unit cell or in the case of modeling of an impurity),
Harrison’s model (see Appendix D) [137] may be used.

Photoemission spectra provide an additional input that allow estimating the value of
the Hubbard repulsion U for the transition metal ions.

On the base of the DFT calculations and photoemission data, the hierarchy of interac-
tions in the compound may be established. Then, the generalized many-band Hubbard
model is formulated. This model allows describing the electronic structure of the system
on the energy scale of several eV. The general features of charge response (approximate
energies of charge-transfer transitions) may be estimated on this step.

For the calculation of magnetic response and of thermodynamic properties, one needs
to pass to the low-energy scale (about onetenth or one one-hundredth of eV) using Löwdin
downfolding, canonical transform or a mapping of models using energy spectra of small
clusters. In previous Sections 2.1 and 2.2, we have given examples of mapping of low-
energy spectra of Hubbard models onto the Heisenberg model. These methods allow
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connecting the parameters of the low-energy model with the parameters of the initial
Hubbard model.

We have also shown that the detailed calculations of charge response should take into
account the magnetic state of the system.

Figure 13. Scheme of the building of a microscopic model for a description of a specific material.
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Appendix A. Details of “Cu-O-Cu” Cluster Spectrum

Appendix A.1. Spectrum in the Singlet Sector

The Hamiltonian matrix in the subspace of even singlets (27)–(29) is

Ĥs =

 0 t
√

2 0
t
√

2 ∆ 2t
0 2t 2∆

, (A1)

its eigenvalues are

E0 = ∆− 2
√

Q

(√
3

2
cos

ϕ

3
+

1
2

sin
ϕ

3

)
, E1 = ∆ + 2

√
Q sin

ϕ

3
, (A2)

E2 = ∆ + 2
√

Q

(√
3

2
cos

ϕ

3
− 1

2
sin

ϕ

3

)
, (A3)

φ = arcsin
R√
Q3

, Q =
1
3

(
∆2 + 6t2

)
, R = −t2∆. (A4)

It is instructive to expand the above expressions in powers of t/∆ to reproduce the
perturbative expansion up to the fourth order

E0 ≈ −
2t2

∆
, E1 ≈ ∆− 2t2

∆

(
1− 6t2

∆2

)
, E2 ≈ 2∆ +

4t2

∆
− 12t4

∆3 . (A5)

The matrix (A1) has tridiagonal form, and its eigenvectors are

| f 〉 =
2

∑
j=0

α
f
j |j〉, α

f
j =

1
A f

Pj(E f ), (A6)

where A2
f = ∑2

j=0

∣∣∣Pj(E f )
∣∣∣2, the basis states |j = 0, 1, 2〉 are given by Equations (27)–(29)

correspondingly, and Pj(E) are polinoms, given by the recursion

EPn(E) = anPn(E) + bnPn−1(E) + bn+1Pn+1(E), (A7)

with the initial conditions P0 = 1, P−1 = 0; an = Hs,n,n are diagonal, and bn = Hs,n,n+1 are
off-diagonal elements of the matrix (A1), thus

P1(E) =
1
b1
(E− a0), P2(E) =

1
b2

[
(E− a1)

E− a0

b1
− b1

]
, (A8)

Up to the second order, we have for the eigenvector matrix

∥∥∥α
f
j

∥∥∥ =

 1− y2 −
√

2y
√

2y2

−
√

2y −1 + 3y2 2y√
2y2 2y 1− 2y2

,

here y ≡ t/∆.
The odd singlet (31) has the energy EZRSa = ∆

Appendix A.2. Triplet Sector

The energy of even triplet is Ets = ∆. The Hamiltonian matrix in the subspace of odd
triplets (33) and (34) is

Ĥt =

(
0 t

√
2

t
√

2 ∆

)
, (A9)
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its eigenvalues are

Et,0 =
∆
2
(1− Rt) ≈ −

2t2

∆
+

4t4

∆3 , (A10)

Et,1 =
∆
2
(1 + Rt) ≈ ∆ +

2t2

∆
− 4t4

∆3 , (A11)

where Rt ≡
√

1 + 8(t/∆)2. The eigenvectors are

|Gt〉 = cos φt|td〉+ sin φt|ZRT〉, (A12)

|T1〉 = sin φt|td〉 − cos φt|ZRT〉, (A13)

where
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2
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1
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(
t
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2
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1− 1
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2
(

t
∆

)
. (A14)

Appendix B. Simplification of the Result of Fourth-Order Canonical Transform

Let us simplify the expression (63)

Gnjklm =
1

EnjEmlEmk
+

1
EnjEmlEnk

+
1
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.

We recall that Emj ≡ Em − Ej, then

Gnjklm =
1
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(
1
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1
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(
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)
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. (A15)

Now, the last term we rewrite as following

1
Enk

(
Em + 3Ek − 2El − 2Ej

)
(En − Ek)

EnjEmlEjkEkl
+

1
Emk

(
En + 3Ek − 2El − 2Ej
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. (A16)

Combining terms with similar denominators, we have
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Appendix C. Hubbard Projection Operators

The Hubbard projection operators are defined as

Xαβ
i ≡ |α, i〉〈β, i|, α, β = 0, ↑, ↓, 2. (A18)

They are related with bare fermionic and spin operators through

X0σ
i = c̃†

i,σ = ci,σ(1− ni,−σ), Xα2
i = −σci,−σni,σ, (A19)

X+−
i = S+

i = c†
i,↑ci,↓, Xσσ

i =
1
2
+

σ

2

(
c†

i,↑ci,↑ − c†
i,↓ci,↓

)
=

1
2
+ σSz

i (A20)

Other relations are easy to obtain with the use of the main property of Hubbard
operator algebra

Xαβ
i Xγλ

i = δβγXαλ
i (A21)

that follows immediately from the definition (A18).

Appendix D. Harrison’s Understanding of Electronic Structure

In his seminal book [137], W.A. Harrison succeeded in describing the electronic struc-
ture of a huge number of compounds, assuming the existence of an orthonormal basis of
one-particle spherically symmetric functions localized on lattice sites. It is also a “minimal”
basis set, i.e., one radial function suffices for the description of one electronic shell.

According to the Harrison model [137], the hopping tij
dα ,pβ

between a dα-function of

metal ion (α = xy, yz, zx, x2 − y2, z2) and pβ-function of ligand (β = x, y, z) is expressed via
direction cosines l, m, n of the direction of the vector Ri − Rj, and two Slater–Koster [138]
parameters Vpdσ(R), Vpdπ(R), which depend on sorts of metal ions and on the distance
R =

∣∣Ri − Rj
∣∣

Vpdm(R) = ηpdm
h̄2r3/2

d
mR7/2 , ηpdσ = −2.95, ηpdπ = 1.36, (A22)

where the value rd (Å) is specific for a transition metal ion. The distance R is measured in
Å and tpdm in eV and the ratio h̄2/m = 7.62 eV·Å2.

Often, the Harrison model is applied to strongly correlated solids before/instead of
elaborated DFT calculations.
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