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Abstract: Presently, the separation of oil and water through functional membranes inevitably entails
either inefficient gravity-driven processes or energy-intensive vacuum pressure mechanisms. This
study introduces an innovative photothermal evaporator that uses solar energy to drive oil–water
separation while concurrently facilitating the detection of Fe3+ in wastewater. First, by alkali deligni-
fication, small holes were formed on the side wall of the large size tubular channel in the direction
of wood growth. Subsequently, superhydrophilic SiO2 nanoparticles were in situ assembled onto
the sidewalls of the tubular channels. Finally, carbon quantum dots were deposited by spin-coating
on the surface of the evaporator, paralleling the growth direction of the wood. During the pho-
tothermal evaporation process, the tubular channels with small holes in the side wall parallel the
bulk water, which not only ensures the effective water supply to the photothermal surface but also
reduces the heat loss caused by water reflux on the photothermal surface. The superhydrophilic
SiO2 nanoparticles confer both hydrophilic and oleophobic properties to the evaporator, preventing
the accumulation of minute oil droplets within the device and achieving sustained and stable oil–
water separation over extended periods. These carbon quantum dots exhibit capabilities for both
photothermal conversion and fluorescence transmission. This photothermal evaporator achieves an
evaporation rate as high as 2.3 kg m−2 h−1 in the oil–water separation process, and it has the ability
to detect Fe3+ concentrations in wastewater as low as 10−9 M.

Keywords: evaporator; oil–water separation; fluorescence; photothermal conversion

1. Introduction

As is well known, more and more industries produce a large amount of oily wastewa-
ter, making it difficult for people to obtain enough clean water [1,2]. Due to the small size of
the emulsion droplet (<20 µm) and its easy deformation, the efficient separation of oil–water
emulsions is considered a challenging task and one with great urgency [3]. Many separation
techniques have been developed in industry, such as filtration [3], centrifugation [4] and
precipitation [5], but these methods are inefficient and time-consuming.

In recent years, membrane separation technology has been widely used in the sep-
aration of oil–water emulsions due to its advantages of high separation efficiency and
high separation selectivity. At present, there are two main membrane functional materials
used for oil–water separation, including the superhydrophobic membrane [6,7] and the
superhydrophilic membrane [8,9]. The superhydrophobic membrane usually possesses
special micro- and nano-structure, which can form a high contact angle on its surface.

Nanomaterials 2023, 13, 2696. https://doi.org/10.3390/nano13192696 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13192696
https://doi.org/10.3390/nano13192696
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-1627-5159
https://doi.org/10.3390/nano13192696
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13192696?type=check_update&version=1


Nanomaterials 2023, 13, 2696 2 of 10

When the oil–water emulsion to be separated passes through the superhydrophobic mem-
brane, under certain pressure, the oil molecules will be adsorbed on the surface of the
superhydrophobic membrane, and they will enter the other side along the direction of
the micro- and nano-structure through the membrane hole. This is due to the interaction
between its surface tension and the surface of the superhydrophobic membrane. In addi-
tion, water molecules can neither wet the surface of the superhydrophobic membrane nor
enter the other side of the membrane through the pores, thus achieving efficient oil–water
separation. Zhang et al. [10] reported a biomimetic nanofiber membrane with underwa-
ter superhydrophobicity and antifouling properties. Water in oil emulsion with droplet
size ranging from nanometer to micrometer was successfully separated, which showed
good flux (~12,994 L·m−2·h−1) and high separation efficiency (water content of the filtrate
was less than 50 ppm). However, due to their inherent lipophilicity, superhydrophobic
membrane can lead to the blockage of membrane pores during long-term use, which is
one of the key limitations resulting in low permeability flux and high transmembrane
pressure [11,12]. Compared with the superhydrophobic membrane, the superhydrophilic
membrane has a strong hydrophilicity, which can quickly adsorb water molecules and
form a hydration layer to provide a spatial exclusion barrier so as to better prevent oil
droplets from entering the membrane pores and achieve efficient oil–water separation. For
example, by using electrospinning/electrospraying technology, Sun et al. [13] obtained
a superwetting membrane (PAN@PP FM) with a hierarchical structure that has a water
contact angle of 0◦ and an underwater oil contact angle of 166◦, allowing for the effective
separation of oil and water under the action of gravity. In addition, due to the high porosity
and the interconnection between the pores, the membrane can separate different types
of oil and water with high throughput, excellent oil discharge efficiency and excellent
anti-fouling performance. However, the above methods are driven by gravity or vacuum
pressure to achieve the separation of oil–water emulsions, which has the limitations of high
energy consumption and long separation time.

In previous reports, CDs and wood have been applied to solar interface water evap-
oration as photothermal materials and water-transferring materials, respectively [14,15].
However, no work has been reported on CDs and wood being applied to solar-driven
oil–water separation. The operation of a solar-driven oil–water separator relies on clean
and renewable solar energy, which can reduce the utilization of fossil fuels and the cost
of water purification. Here, a solar-driven oil–water separator was designed in this study,
which was obtained by removing lignin from the wood, modifying carbon quantum dots
on the upper surface and constructing superhydrophilic structures on the lower surface.
Compared with the traditional membrane separation technology, this oil–water separator,
which can combine good thermal management, efficient photothermal conversion and
good underwater oil drainage, can avoid the implementation of pressure in the oil–water
separation process of emulsion, which has better economic benefits and applicability. In
addition, the photothermal layer containing carbon quantum dots has fluorescence sensing
ability, achieving the removal and fluorescence detection of Fe3+ in wastewater.

2. Materials and Methods
2.1. Materials

Tannin (TA), citric acid monohydrate (CA), ethanol (CH3CH2OH), anhydrous ethylene-
diamine, sodium dodecyl sulfate (SDS), y-amino-propyl triethoxy silane (APTES), polyvinyl
alcohol 1799 (PVA), dichloromethane, sodium sulfite (Na2SO3), hydrogen peroxide (H2O2)
and sodium hydroxide (NaOH) were purchased from Sinopharm Chemical Reagent Co.,
Ltd., Shanghai, China. All reagents were used directly without further purification. Balsa
was obtained from Yichuang, Hebei, China.

2.2. Fabrication of Delignified Wood Blocks

Balsa wood blocks (26 mm × 20 mm × 5 mm) were immersed in a mixed aqueous
solution containing 2.5 M NaOH and 0.4 M Na2SO3. The solution was brought to a boil
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at 100 ◦C for 7 h. Subsequently, the wood blocks were rinsed with deionized water. The
treated wood blocks were then soaked in a boiling 2.5 M H2O2 solution until they turned
white, which was designated as delignified wood (DLW) [16–18].

2.3. Fabrication of DLW Modified by SiO2 Nanospheres

Initially, a mixed solution of Tris-HCl (pH = 8.5) and ethanol in a volumetric ratio of
5:1 was prepared. The DLW was then submerged in this mixed solution and subjected
to ultrasonication for 10 min. Next, 50 mg of TA and 60 mg of APTES were dissolved in
20 mL of Tris-HCl solution and 4 mL of ethanol. The pretreated DLW was subsequently
immersed in the TA and APTES mixture at room temperature for 6 h, resulting in SiO2
nanosphere-modified DLW, which was denoted as TPDLW. The TPDLW was then sonicated
in deionized water for 1 h to thoroughly remove surface impurities [19].

2.4. Fabrication of Carbon Quantum Dots (CDs)

The typical synthesis of CDs is as follows: 1.0507 g of hydrated citric acid and 335 µL
of anhydrous ethylenediamine were successively added in 10 mL of ultrapure water. The
solution was subjected to ultrasonication for 30 min and then underwent a hydrothermal
reaction at 200 ◦C for 5 h. Finally, the product was dialyzed (1000 D) for one week and
subsequently freeze-dried to obtain carbon quantum dot powder [20,21].

2.5. Fabrication of v-TPDLW@CDs@PVA Evaporator

Initially, 1 g of PVA was dissolved in 18 g of deionized water at 90 ◦C for 3 h. Sub-
sequently, 5 mg of CDs was dissolved in 1 mL of the obtained PVA solution. Finally,
the v-TPDLW@CDs@PVA evaporator was generated when the solution was spin-coated
onto the TPDLW surface in the direction of the tree growth at a speed of 5000 rpm. The
h-TPDLW@CDs @PVA evaporator was generated using a similar method, except that the
solution was spin-coated on the cross-section of TPDLW.

2.6. Preparation of Oil-in-Water Emulsion

Water and dichloromethane were mixed in a volume ratio of 9:1 with 0.1% weight as
SDS. The mixture was continuously stirred for 24 h to yield a white emulsion.

2.7. Analysis of Water Evaporation Performance

The oil-in-water emulsion was put in a container with a 25 mm inner diameter. The
emulsion was transferred to the bottom of the v-TPDLW@CDs@PVA evaporator by a cotton
thread. Solar evaporation experiments were conducted under simulated sunlight, with
a CEL-HXF300 xenon lamp (China Education Au-light, Beijing, China) providing a light
intensity of 1 KW m−2. The change in water evaporation mass was recorded at 5 min
intervals, and the water evaporation rate was calculated based on the water evaporation.
The light irradiation area (26 mm × 20 mm) and water transfer thickness (5 mm) of all
types of evaporators were the same. The entire experiment was conducted at an ambient
temperature of 25 ◦C and a humidity of 60%.

2.8. Characterization

Transmission electron microscopy (TEM, JEM-2100 plus, JEOL, Tokyo, Japan), scan-
ning electron microscopy (SEM, S-4800, Hitachi, Tokyo, Japan) and ultra-depth three-
dimensional microscopy (VHX-1000C, Keyence, Osaka, Japan) were used to observe the
morphology of the samples. The solar water evaporation was performed under the ra-
diation of the 300 W xenon lamp (CEL-HXF300, CEAuLight, Beijing, China) as a visible
light source. The surface temperature of the samples was measured by an infrared camera
(FLIR E6). The photoluminescence (PL) spectra were measured at room temperature on
a fluorescence spectrophotometer (FS5, Edinburgh Instrument Company, UK) with an
excitation wavelength of 340 nm. Surface wettability was characterized by using a contact
angle measurement system (OCA 40, Dataphysics Company, Filderstadt, Germany).
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3. Results and Discussion
3.1. Fabrication Process and Morphological Characterization

The fabrication process of the v-TPDLW@CDs@PVA evaporator is illustrated in
Figure 1a. Initially, the wood (W) was subjected to an alkali treatment to eliminate lignin.
Subsequently, hydrogen peroxide bleaching was employed to further remove residual
lignin and hemicellulose, resulting in DLW. Microscopic morphology of the inner trunk,
both perpendicular (Figure 2a) and parallel (Figure 2b) to its growth direction, reveals
the presence of cylindrical channels with diameters ranging from 10 to 40 µm, exhibiting
smooth and dense channel walls. Alkali treatment leads to an increase in the number of
channels within the trunk, accompanied by the formation of 1–5 µm pores on the surface
of channel wall, as depicted in Figure 2c,d. These channels can not only provide water
transport channels but can also improve light absorption by increasing the number of light
reflections [22,23]. Subsequently, DLW was immersed in a mixed solution of tannic acid and
aminopropyltriethoxysilane (TA/APTES) for silane functionalization. The resulting SiO2
nanoparticles were bonded onto DLW channels, generating TPDLW. The SiO2 nanopar-
ticles, uniformly distributed on the channel walls’ surface, possess sizes ranging from
100 to 200 nanometers, as shown in Figure 2e. These SiO2 nanoparticles establish a robust
connection with TA adsorbed on the microchannel walls, forming a secure binding. Finally,
a solution of PVA with embedded CDs was spin-coated onto the surface of TPDLW, aligned
parallel to the tree growth direction, thereby obtaining the v-TPDLW@CDs@PVA evapora-
tor. The CDs were uniformly dispersed on the microchannel walls of TPDLW, with particle
diameters measuring only 3–4 nm, as depicted in Figure 2f,g. The solar-driven oil–water
separator of v-TPDLW@CDs@PVA and h-TPDLW@CDs@PVA are shown in Figure 1b. The
tubular channels of v-TPDLW@CDs@PVA are parallel to the bulk water surface, and the
tubular channels of h-TPDLW@CDs@PVA are perpendicular to the bulk water surface. The
tubular channels within the evaporator run parallel to the bulk water, while the hole on
the channel walls are oriented perpendicular to the bulk water. This arrangement ensures
ample water transport to the evaporator surface for efficient evaporation, simultaneously
extending the water’s transport pathway to reduce thermal losses caused by surface-heated
water reflux back into the bulk water.
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Figure 2. SEM images of different structures: (a,b) the channel structure of W; (c,d) the channel struc-
ture of DLW; (e) SiO2 nanoparticles; (f) TEM images of CDs; (g) SEM images of v-TPDLW@CDs@PVA,
the illustration is an enlarged version of the corresponding SEM image; (h) the contact angles of
v-TPDLW@CDs@PVA.

3.2. Verification of the Advantages of Evaporator Design

In order to demonstrate the design advantages of the proposed evaporator, v-
TPDLW@CDs@PVA was compared with v-TPDLW@CDs and h-TPDLW@CDs@PVA. CDs
are not only good photothermal materials, but they are also fluorescent materials that are
responsive to metal ions [24–28]. The results of the comparisons indicate that the water
evaporation rate of v-TPDLW@CDs@PVA is much higher than those of v-TPDLW@CDs,
as shown in Figure 3a. The PVA has a good bonding effect, which can increase the load
of CDs on the evaporator surface. On one hand, it can enhance the efficiency of sunlight
absorption, and then improve the photothermal capacity of the evaporator. On the other
hand, the hydrogen bonding between PVA and water can reduce the enthalpy of water
evaporation [29], which can increase the water evaporation rate of the evaporator. Mean-
while, the fluorescence intensity of v-TPDLW@CDs@PVA is much higher than that of
v-TPDLW@CDs, as shown in Figure 3b. PVA can effectively prevent the accumulation
of CDs. However, high load of CDS can improve the absorption of excitation light with
single-wavelength fluorescence, and thus improve its fluorescence intensity. In the absence
of PVA, CDs resided on the wood surface, with surface oxygen functional groups prone to
aggregation, inducing non-radiative energy transfer and leading to fluorescence quenching
in v-TPDLW@CDs. Conversely, for v-TPDLW@CDs@PVA, the presence of hydroxyl groups
in PVA facilitated hydrogen bonding with CDs, which increases the distance between CDs
and thus reduces the probability of fluorescence quenching [30,31].
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Figure 4 shows that the evaporation rate of v-TPDLW@CDs@PVA surpasses that of
h-TPDLW@CDs@PVA. Before the simulation of solar radiation, the temperature of the
water on the evaporator surface was 23.1 ◦C. After simulating solar illumination for 1 h, the
surface temperatures of v-TPDLW@CDs@PVA and h-TPDLW@CDs@PVA reached 31 ◦C
and 33.6 ◦C, respectively. In comparison to h-TPDLW@CDs@PVA, v-TPDLW@CDs@PVA
exhibits a certain thermal insulation advantage. Specifically, within v-TPDLW@CDs@PVA,
water was rapidly diffused laterally through many tubular channels, while the evaporating
surface of the evaporator was wetted longitude-wise by capillary water absorption through
holes in the side walls of the channels during the process of evaporation. When the hot
water on the surface of the evaporator returns downward, this structure extends the return
path and reduces the heat loss of the water backflow. Although the tubular channels
in h-TPDLW@CDs@PVA are oriented perpendicular to the bulk water, offering a rapid
upward path for water transport and steam escape, this swift water transfer also leads to
increased thermal losses due to backflow [32,33].
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3.3. Oil–Water Separation Performance

Figure 5 has shown the oil–water separation capability of v-TPDLW@CDs@PVA in
solar-driven water vapor processes, comparing it with v-W@CDs@PVA and v-DLW@CDs@PVA.
It has been observed by optical microscopy that the size of droplets in the newly prepared
emulsified oil–water mixture ranges from tens to hundreds of micrometers (Figure 5a).
The condensate collected after oil–water separation through different solar water evap-
orators is shown in Figure 5b,c. Post-evaporation treatment with v-W@CDs@PVA and
v-DLW@CDs@PVA still exhibits the presence of residual small-sized oil droplets in the
collected water phase. In contrast, no oil droplets are discerned in the collected water phase
following the evaporation treatment with v-TPDLW@CDs@PVA. This indicates that the
v-TPDLW@CDs@PVA evaporator can effectively prevent oil droplets from entering the
evaporator, thereby achieving effective oil–water separation. However, due to the fact
that dichloromethane can be partially dissolved in water, the condensed water collected
after evaporation may contain low concentrations of dichloromethane. To elucidate this
phenomenon, water contact angle measurements were conducted on the surface contacting
with the lotion, as shown in the insets of Figure 5b,c. The contact angle at the lower surface
of v-W@CDs@PVA was 121.9◦, and it takes 67 s for the water droplets to spread completely.
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Conversely, the contact angle at the lower surface of v-DLW@CDs@PVA was 74.7◦, and
the water droplets can be completely spread within 8 s. Remarkably, the contact angle
at the lower surface of v-TPDLW@CDs@PVA was reduced to as low as 0◦, and the water
droplets spread out rapidly within 1 s, thereby showing exceptional superhydrophilic
capabilities. This phenomenon is attributed to the potent water-capturing capacity of the
hydrophilic nanospheres on the lower surface of v-TPDLW@CDs@PVA. This remarkable
superhydrophilic property facilitates the formation of a stable hydration layer on the sam-
ple surface, significantly enhancing its oil-repelling performance in water, consequently
promoting oil–water separation [34].
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In order to assess the durability of v-TPDLW@CDs@PVA, ten cycles of solar-driven
oil–water separation experiments were conducted. The variations in water evaporation
rates during this process were investigated, and the experimental results are shown in
Figure 6. Following the completion of each testing cycle, the samples were cleaned with
distilled water to prepare for subsequent oil–water separation experiments. Through ten
cycles of testing, the water evaporation rate of v-TPDLW@CDs@PVA only exhibited a
marginal decrease of 0.01 kg m−2 h−1, indicating remarkable durability. This suggests that
v-TPDLW@CDs@PVA consistently maintains its effectiveness in efficiently separating water
from oil–water emulsions over extended durations. Furthermore, after ten consecutive
cycles of experimentation, an underwater oil contact angle assessment was performed on v-
TPDLW@CDs@PVA. The specific experimental procedure involved placing an oil droplet in
water, then gradually lowering the sample until complete contact was achieved between the
sample and the oil droplet. Subsequently, the sample was slowly raised to achieve complete
separation from the oil droplet. The changes in the oil contact angle are illustrated in the
inset of Figure 6. After ten cycles of experimentation, v-TPDLW@CDs@PVA continued to
exhibit robust underwater oleophobicity, validating its reliability over prolonged periods
of oil–water separation processes.
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3.4. Fluorescence Sensing of Fe3+

Within v-TPDLW@CDs@PVA, the CDs serve a dual role as not only photothermal con-
verters but also as fluorescent quantum dots endowed with a profusion of oxygen-bearing
functional groups on their surfaces. Through coordination with Fe3+, CDs were fluores-
cence quenching, thereby enabling fluorescence-based sensing of Fe3+. In this context,
v-TPDLW@CDs@PVA was employed for the photothermal evaporation of wastewater con-
taining varying concentrations of Fe3+. During the evaporation process, driven by capillary
forces, Fe3+ ions are continuously transported into the channel of v-TPDLW@CDs@PVA.
Subsequently, these ions interact with the CDs on the channel surface through cooperative
ligand bonding, leading to the attenuation of fluorescence intensity and enabling the recog-
nition of Fe3+, as shown in Figure 7a. After 35 min of photothermal water evaporation,
v-TPDLW@CDs@PVA demonstrates the capability to detect ultra-low concentrations of Fe3+

ions, reaching as low as 10−9 mol/L. This achievement in trace Fe3+ fluorescence detection
is attributed to the capacity of photothermal water evaporation to concentrate Fe3+ ions
onto the surface of the v-TPDLW@CDs@PVA evaporator. In addition, water evaporation
rates of v-TPDLW@CDs@PVA for Fe3+ solutions of different concentrations were shown in
Figure 7b. Before the action of Fe3+, the water evaporation rate of v-TPDLW@CDs@PVA
stands at 2.33 kg m−2 h−1. Remarkably, upon exposure to varying concentrations of
Fe3+, the water evaporation rate experiences only marginal reduction, ranging from 0.02
to 0.09 kg m−2 h−1. This phenomenon is attributed to potential coordination effects be-
tween Fe3+ ions and carbon quantum dots, which may influence the hydrogen bonding
interactions between carbon quantum dots and water molecules.
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4. Conclusions

In conclusion, the v-TPDLW was formed by modifying superhydrophilic SiO2 nanospheres
inside ligninized wood with a tannin-amino-siloxane reagent. The v-TPDLW@CDs@PVA
evaporator which can separate oil and water was fabricated by spinning a CDs-PVA solu-
tion. The performance of water evaporation, oil–water separation and fluorescence sensing
of v-TPDLW@CDs@PVA were studied. Notably, v-TPDLW@CDs@PVA demonstrates
remarkable oil–water separation ability, maintaining excellent underwater oil-repellent
capability over 10 cycles of water-assisted oil–water separation experiments, with a wa-
ter evaporation rate as high as 2.3 kg m−2 h−1. Due to the efficient water evaporation
of v-TPDLW@CDs@PVA, Fe3+ ions are enriched on the evaporative surface, enhancing
the sensitivity of the substrate towards Fe3+ detection with a detection limit as low as
10−9 M. This research provides a new approach for oil–water separation. However, the
v-TPDLW@CDs@PVA oil–water separator cannot be used again for ion detection after
absorbing iron ions. How to solve this problem is worthy of further research.
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