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Abstract: Zinc–air batteries (ZABs) have garnered significant interest as a viable substitute for lithium-
ion batteries (LIBs), primarily due to their impressive energy density and low cost.
However, the efficacy of zinc–air batteries is heavily dependent on electrocatalysts, which play
a vital role in enhancing reaction efficiency and stability. This scholarly review article highlights
the crucial significance of electrocatalysts in zinc–air batteries and explores the rationale behind
employing Fe-Co-Ni-Zn-based metal–organic framework (MOF)-derived hybrid materials as po-
tential electrocatalysts. These MOF-derived electrocatalysts offer advantages such as abundancy,
high catalytic activity, tunability, and structural stability. Various synthesis methods and characteri-
zation techniques are employed to optimize the properties of MOF-derived electrocatalysts. Such
electrocatalysts exhibit excellent catalytic activity, stability, and selectivity, making them suitable
for applications in ZABs. Furthermore, they demonstrate notable capabilities in the realm of ZABs,
encompassing elevated energy density, efficacy, and prolonged longevity. It is imperative to continue
extensively researching and developing this area to propel the advancement of ZAB technology
forward and pave the way for its practical implementation across diverse fields.

Keywords: zinc–air batteries; electrocatalysts; metal–organic frameworks (MOFs); energy density;
energy storage and conversion

1. Introduction
1.1. Background on Zinc–Air Batteries

The energy demand has increased as a result of rapid urbanization and technological
innovation. In order to combat human-caused global warming and keep up with the need
for energy, it is becoming increasingly important to design an eco-friendly energy environ-
ment [1]. Li-based batteries, Zn-based batteries, Na-based batteries, and supercapacitors
make up the most well-known green energy storage systems (ESS) [2,3]. Notably, Zn-based
batteries have drawn a significant amount of interest because of their efficient electro-
chemical behavior, their affordability, and the abundance of Zn metal relative to lithium.
However, their potential for long-term use is restricted due to their inadequate energy
density of approximately 250 Wh kg−1 [4,5]. Recently, researchers have been devoted to the
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synthesis of metal–air batteries due to their exceptional energy density, which produces
electricity via metal–oxygen redox reactions in the atmosphere [6]. Zinc–air batteries have
a history that goes back to the early 1800s, when experiments began exploring the use
of zinc and oxygen for generating electricity [7,8]. In the 1960s, researchers dedicated their
efforts to improving zinc–air batteries, which are known for their high energy density and
their ability to be recharged by replacing the zinc anode. These batteries found practical
applications in hearing aids, military devices, and more. Recent advancements in mate-
rials science have led to the improved performance and durability of these batteries [9].
Scientists are actively addressing challenges such as anode corrosion and limited recharge
ability to make zinc–air batteries suitable for widespread use [10]. Zinc–air batteries have
promising properties that make them appealing for use in electric cars, renewable energy
storage, and a variety of other applications. These features include their high energy density,
cost-effectiveness, and environmental friendliness [9]. Ongoing research aims to unlock
their full potential and enhance their overall performance.

1.2. The Importance of Electrocatalysts in Zinc–Air Batteries

For zinc–air batteries to operate more effectively and efficiently, electrocatalysis is
essential. There are numerous important reasons why electrocatalysts for zinc–air batteries
are important. First, electrocatalysts speed up the conversion of oxygen molecules into
hydroxide ions by facilitating the oxygen reduction process (ORR) at the cathode [9,11].
This enhancement in reaction efficiency leads to reduced energy losses during the ORR,
thereby improving the overall battery performance. Bhardwaj et al. created a cubic
CaCu3Ti4O12 perovskite electrocatalyst and used it as the air electrode in a Zn–air battery,
as perovskite-based composites have been proven to improve the catalytic activity [12,13].
The material demonstrated a high specific capacitance of 801 mAh g−1 and remarkable cy-
cling efficiency during charge–discharge cycles, with a power density of 127 mW cm−2 [12].
Additionally, electrocatalysts lower the over potential required for electrochemical reac-
tions by reducing the activation energy barrier. This results in improved energy efficiency
and increased voltage output of the battery [11,14]. Quian et al. prepared web-like in-
terconnected porous carbon through the pyrolysis of NaCl/ZIF-8 composite and used
it as the electrocatalyst in a ZAB. The composite exhibited a 6.6% higher output power
(55.0 mW vs. 51.6 mW) in comparison to Pt/C. Further, the battery’s cycling life has
been significantly enhanced and is now more than 140 h. This is 90 h more than Pt/C.
The enhancement of performance can be attributed to excellent ORR activity and the stable
discharge voltage of the composite [15]. To ensure the long-term functionality of zinc–air
batteries that undergo repetitive charge and discharge cycles, electrocatalysts must exhibit
excellent stability and durability [16]. A robust electrocatalyst can resist degradation and
maintain its catalytic activity, thereby ensuring the prolonged performance and lifespan
of the battery. Yang et al. created wrinkled MoS2/Fe-N-C nanospheres that were used
as an ORR/OER electrocatalyst for a wearable Zn-air battery. The device had a specific
capacitance of 442 mAh g−1 and an outstanding power density of 78 mW cm−2, with
a cycle stability of 50 cycles at a current density of 5 mA cm−2. Here, Fe-N4 moieties
combined with MoS2 particles contribute to lowering the energy barrier of ORR and OER.
Furthermore, the Fe-N-C shell protects the MoS2 core from corrosion induced by alkaline
electrolytes, which contributes to the device’s long life [17]. Moreover, electrocatalysts
facilitate the oxygen evolution reaction (OER) at the cathode, allowing the efficient recharge-
ability of rechargeable zinc–air batteries [18–20]. By accelerating the OER, electrocatalysts
minimize energy losses during the charging process, enabling efficient and effective recharg-
ing. Effective electrocatalysts significantly enhance the power density, energy density, and
overall performance of zinc–air batteries. They promote faster reaction kinetics, improve
cell efficiency, and increase the specific capacity of the battery, making them particularly ad-
vantageous for high-energy-demand applications such as electric vehicles and grid energy
storage [21]. Li et al. employed a low-cost green approach to develop a CoN/CoFe/NC
bifunctional electrocatalyst. The composite demonstrated outstanding electrocatalytic
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characteristics, with a low potential of 1.609 V for OER and a half-life potential of 0.89 V
for ORR. The enormous number of reactive sites produced by the two-phase interface
formed by coupling two structures can be attributed to the material’s exceptional OER and
ORR performance. Furthermore, when employed as an air electrode in ZAB, the composite
demonstrated an outstanding power density of 246 mW cm−2 and a constant voltage gap
of 180 h [22]. Several studies have reported the capability of various MOF-based electrocat-
alysts to lower the overpotential and boost the stability, power density, and output voltage
of the zinc–air battery [23–26]. In conclusion, electrocatalysts play a vital role in zinc–air
batteries by enhancing reaction kinetics, reducing overpotential, ensuring stability, en-
abling rechargeability, and ultimately improving overall battery performance and efficiency.
Continued research and development in electrocatalyst materials are crucial for further
advancements in zinc–air battery technology.

1.3. Overview of Metal–Organic Frameworks (MOFs)

MOFs are crystalline materials made up of metal ions or clusters coordinated with
organic ligands. They possess a porous structure with a large internal surface area, making
them suitable for diverse applications. MOFs are synthesized through self-assembly, where
metal ions or clusters bind with organic ligands to create extensive networks [27,28].
More than 20,000 MOF materials have reportedly been synthesized thus far, according
to reports [29,30]. MOFs offer versatility at the molecular level, allowing researchers
to design them with specific properties like pore size, surface chemistry, and thermal
stability [27,31]. This adaptability enables customization for applications such as energy
storage [32], separation [33], catalysis [34], and sensing [35]. The remarkable porosity
of MOFs provides a substantial surface area for gas adsorption and storage, making them
valuable for tasks like carbon capture and storage, as well as precise gas purification
through selective separation [36]. In catalysis, MOFs act as platforms for organizing
catalytically active sites, enhancing reaction efficiency by facilitating reactant accessibility.
Their tunability also enables the incorporation of different metal species or clusters, leading
to efficient and selective catalysts for specific chemical reactions. MOFs have further
applications in drug delivery systems, utilizing their porous structure to encapsulate and
deliver therapeutic agents with high loading capacities, controlled release kinetics, and
targeted delivery [37]. Additionally, MOFs have been explored in sensing and detection,
capitalizing on their selective adsorption capabilities to detect various analytes, including
gases, volatile organic compounds, and heavy metal ions. By tailoring the MOF structure,
their response to specific analytes can be customized, making them promising for sensor
applications [38]. Overall, MOFs are a versatile and promising material class with wide-
ranging applications in energy storage, gas storage, catalysis, drug delivery, and sensing.
Continuous research and development in MOFs hold great potential for advancements and
applications across industries [39,40].

1.4. Motivation for (Fe-Co-Ni-Zn)-Based MOFs-Derived Electrocatalysts

The motivation for employing electrocatalysts derived from Fe, Co, Ni, and Zn-based
MOFs in zinc–air batteries can be attributed to several key factors. Firstly, Fe, Co, Ni, and
Zn are abundant and widely available elements, making them cost-effective choices for elec-
trocatalyst materials [41,42]. This utilization of abundant elements contributes to reducing
the overall cost of the electrocatalyst, making it more economically feasible for large-scale
production of zinc–air batteries. Moreover, materials derived from these MOFs exhibit high
catalytic activity towards the ORR and OER occurring at the cathode and anode, respec-
tively [43–45]. This enhanced catalytic activity facilitates the efficient and rapid conversion
of oxygen molecules during discharge and recharge cycles, thereby improving the overall
battery performance [46,47]. Tsai et al. developed a SAC (Fe, Ni, Zn)/NC bifunctional
catalyst by anchoring a Fe-Ni-Zn triple single-atom catalyst (SAC) in an N-doped carbon
structure. The material demonstrated excellent OER and ORR characteristics. Catalytic sites
for OER and ORR reactions are provided by Fe-Nx, Zn-Nx, and Ni-Nx, and the synergetic
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combination of the three SAC in NC further enhances the catalytic activities. At 10 mA
cm−2 current density, the composite displayed a half-wave potential of 0.88 V for ORR and
a potential of 1.63 V for OER. A ZAB device with SAC (Fe-Ni-Zn)/NC as an air electrode
demonstrated 809 mAh g−1 specific capacitance at 50 mA cm−2 and an outstanding power
density of 300 mW cm−2. It additionally achieved cyclic stability of 2150 cycles over 358.3 h
at 10 mA cm−2 current density [48]. MOFs derived from Fe, Co, Ni, and Zn offer tun-
able properties as they can be synthesized with different compositions and structures [49].
This tunability allows researchers to optimize the electrocatalyst’s performance by tailoring
its structure, morphology, and composition to meet the specific requirements of zinc–
air batteries, including activity, stability, and durability [50]. Additionally, MOFs derived
from these metals often possess inherent structural stability, which is crucial for maintaining
the electrocatalyst’s integrity and functionality during prolonged battery operation [51,52].
For instance, Gui et al. reported that a (Fe-Co)-based MOF-derived hybrid catalyst en-
hanced the performance of a zinc–air battery, catalyzing ORR and OER, resulting in high
peak power density and a longer charge–discharge cycle [53]. Their robust structures
enable them to withstand the demanding electrochemical conditions experienced during
charge–discharge cycles, ensuring the long-term performance and lifespan of the energy
storage system [54]. Furthermore, combinations of Fe, Co, Ni, and Zn-based MOFs as elec-
trocatalysts can exhibit synergistic effects, where the presence of different metal species
enhances catalytic activity and stability beyond what individual metals can achieve alone.
This synergistic effect contributes to the improved overall performance and efficiency
of zinc–air batteries. Jin et al. performed in situ carbonization of metal ion-absorbed PANI
precursors, resulting in a composite with alloy nanoparticles encapsulated graphitic layer
which is uniformly distributed in a N-doped carbon framework. The electrocatalyst demon-
strated remarkable stability in ORR and OER processes. Furthermore, the electrocatalyst
was used as an air electrode for flexible ZABs, and the assembled ZAB displayed a long
cycling life of 22 h with an elevated power density of 125 mW cm−2 [55]. By incorporating
Fe, Co, Ni, and Zn-based MOF-derived electrocatalysts into zinc–air batteries, researchers
strive to develop cost-effective, high-performance, and durable energy storage systems.
These electrocatalysts possess favorable properties such as abundance, catalytic activity, tun-
ability, structural stability, and potential synergistic effects, making them highly promising
candidates for advancing zinc–air battery performance and enabling practical applications
in various fields, including portable electronics, electric vehicles, and renewable energy
storage. Ren et al. synthesized a (Fe-Co-Ni)-based carbon nanorod hybrid and studied its
catalytic application in a zinc–air battery. They reported that the synergetic effect of the com-
bination of different metal components facilitated the accessibility of the reactants, resulting
in an ORR half-wave potential of 0.84 V and an OER potential of 1.54 V at 10 mA cm−2.
The zinc–air battery using the Fe-Co-Ni-based electrocatalyst exhibited a low voltage gap
and longer durability [56]. Similarly, Li et al. reported a (Zn-Co-Fe)-tridoped-N-C nanocage
as an efficient and stable electrocatalyst for the ORR in zinc–air batteries [57].

2. Synthesis Methods for (Fe-Co-Ni-Zn)-Based MOFs
2.1. Synthesis Techniques for (Fe-Co-Ni-Zn)-Based MOFs

A variety of synthesis techniques are utilized to create Fe, Co, Ni, and Zn-based MOFs
as electrocatalysts for energy storage and conversion applications. These techniques include
solvothermal [58], hydrothermal [59], microwave-assisted [27], ultrasound-assisted [27],
electrochemical [60], and ionothermal [61] methods, which are graphically represented
in Figure 1. Solvothermal synthesis involves dissolving metal salts and organic ligands
in a suitable solvent at high temperatures and pressures, followed by cooling to form
MOF crystals. For instance, suitable solvents, such as N, N-dimethylformamide (DMF),
or ethanol, are used to dissolve metal salts like nitrates, sulfates, chlorides, and organic
linkers [58]. Lan et al. produced NiFe-MOF/NiFe2O4 spheres using a solvothermal
technique and employed them as a bifunctional electrocatalyst for ORR/OER in ZABs.
The synthesized composite outperformed pristine NiFe2O4 and NiFe-MOF in catalytic
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performance, indicating a synergetic combination of both. The resulting Zn-air battery
has a power density of 158.4 mW cm−2 and a current density of 246.1 mA cm−2 [62].
Hydrothermal synthesis employs water as the solvent and promotes MOF crystal formation
in a closed vessel under elevated temperatures and pressures [59]. In the experiment con-
ducted by Lu et al., a bimetallic MOF framework (Co-Fe/Ni@HPA-MOF) was synthesized,
and it exhibited excellent electrocatalytic behavior during OER [63]. Microwave-assisted
synthesis utilizes microwave irradiation to rapidly heat the reaction mixture and accelerate
MOF crystal formation. This approach necessitates considerably less reaction time com-
pared to other established techniques. For example, the production of HKUST-1 utilizing
microwave assistance in its synthesis, which has a chemical formula of [Cu3(BTC)2(H2O)3]
(where BTC3− = benzene-1,3,5-tricarboxylate), resulted in crystals that exhibited better
yield and physical properties [59]. Ultrasound-assisted synthesis employs ultrasound
waves to enhance the nucleation and growth of MOF crystals through acoustic cavitation.
In an experiment conducted by Shahryari et al., a solution comprising Cu(NO3)2·5H2O
and 2,6-pyridine dicarboxylic acid was prepared in double-distilled water. The mixture
was subjected to ultrasound irradiation with a fixed frequency of 20 kHz for a duration
of 20 min at a power output of 190 W and temperature maintained at 30 ◦C to yield
Cu-MOF [59]. Electrochemical synthesis involves the use of electric current to drive the for-
mation of MOF films or nanoparticles on conductive substrates. Mueller and colleagues
conducted an academic inquiry into the characteristics of HKUST-1 that was produced
via anodic dissolution. The method involved employing two copper plates submerged
in a methanol solution of BTC, which were then subjected to a voltage range between
12 and 19 volts (resulting in a current flow of 1.3 amperes) for approximately 150 min.
As revealed by their study, the resulting MOF exhibited significantly higher surface area
compared to other synthesis approaches utilized for this purpose [60]. Ionothermal syn-
thesis utilizes ionic liquids as reaction media, facilitating the synthesis of MOFs with
enhanced stability and unique structures at high temperatures [61]. Azbell et al. have
recently revealed that the employment of diverse linkers in conjunction with low-melting
metal halide (hydrate) salts results in the production of exceptional-quality MOFs without
requiring additional solvents. Frameworks synthesized using these ionothermal conditions
exhibit porosities similar to those prepared through conventional solvothermal methods.
Additionally, they reported the ionothermal synthesis of two frameworks that cannot be
prepared directly under solvothermal conditions [60]. These synthesis techniques offer con-
trol over the composition, size, morphology, and crystallinity of Fe, Co, Ni, and Zn-based
MOFs as electrocatalysts. The selection of a specific synthesis method depends on desired
properties, scalability, and compatibility with energy storage and conversion applications.
Ongoing research aims to develop innovative synthesis approaches to further enhance
the performance and efficiency of MOF-based electrocatalysts.

2.2. Characterization Methods for MOFs-Derived Electrocatalysts

A variety of characterization techniques are used to analyze and comprehend the prop-
erties of electrocatalysts derived from MOFs. These methods provide valuable insights
into these electrocatalysts’ structure, morphology, composition, surface chemistry, and
electrochemical properties [64]. Commonly employed characterization methods for MOF-
derived electrocatalysts include X-ray Diffraction (XRD), Scanning Electron Microscopy
(SEM), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray Spectroscopy
(EDS), X-ray Photoelectron Spectroscopy (XPS), Fourier-transform infrared spectroscopy
(FTIR), X-ray absorption spectroscopy (XAS), and various electrochemical techniques.

XRD is utilized to determine the crystal structure and phase purity of MOF-derived
electrocatalysts. It provides information about the arrangement of atoms in the material
and enables the identification of different crystalline phases present [65]. For instance,
Ao and colleagues created a MOF-derived sulfide-based electrocatalyst that displayed
a distinct phase of pure crystallinity in its XRD pattern (Figure 2a) [66].
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SEM allows for the visualization of the surface morphology and particle size of the elec-
trocatalyst. It offers high-resolution images and can uncover the presence of agglomerates
or surface defects [67]. As an illustration, the SEM images of iron-doped cobalt- vanadate-
cobalt oxide with metal–organic framework-oriented nanoflakes synthesized by Muthurasu
and researchers demonstrated surface morphology, its thickness, and its layered structure
of Fe-doped MOF CoV@CoO nanoflakes (Figure 2b) [68].
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TEM provides detailed information about the internal structure and morphology
of MOF-derived electrocatalysts at the nanoscale. It enables the determination of particle
size, shape, distribution, and the presence of defects or dislocations [64]. To give an idea,
the TEM image of integrated bimetallic sulfide-coupled 2D MOF-derived mesoporous CoS2
nanoarray hybrids, developed by Chhetri and researchers showed heterointerfaces of FeS2,
MoS2, and CoS2 with their respective interplanar spaces (Figure 2c,d) [69]. EDS is employed
to analyze the elemental composition of the electrocatalyst. By detecting the characteristic
X-rays emitted by the elements in the material, it provides quantitative information about
their relative concentrations [70]. The presence of Co, Mo, Fe, C, N, and S in the nanoflakes
was confirmed by EDS, in the work done by Chhetri and researchers (Figure 2e,f) [69].

XPS is employed to determine the elemental composition and chemical state of the elec-
trocatalyst’s surface. It provides information about the oxidation states of the elements and
can detect surface contaminants or adsorbates [71]. The XPS study of iron-doped cobalt-
vanadate- cobalt oxide with metal–organic framework-oriented nanoflakes synthesized
by Muthurasu and researchers provided the idea of the oxidation state of the resulting
materials. XPS clearly demonstrated the variable oxidation state of Co, Fe, O, N, and V
(Figure 2g–i) [68].

FTIR is a common characterization method used to get an infrared spectrum of absorp-
tion or emission of a solid, liquid, or gas. FTIR helps to identify organic, polymeric, and,
in some cases, inorganic materials. The FTIR analysis method uses infrared light to scan test
samples and observe chemical properties [69,72]. Additionally, XAS is a commonly used
technique to examine atomic local structure as well as electronic states. Usually, an X-ray
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strikes an atom and excites a core electron that can either be promoted to an unoccupied
level or ejected from the atom [73]. It can interpret the properties of catalytic materi-
als in situ and operand. XAS can be divided into X-ray absorption near edge structure
(XANES) and the extended X-ray absorption fine structure (EXAFS). XANES delivers evi-
dence on the electronic structure of the catalyst, while the EXAFS evaluates the interatomic
distances and coordination numbers of the atoms in the electrocatalyst [74].
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Various electrochemical techniques, such as cyclic voltammetry, linear sweep voltam-
metry, chronoamperometry, chronopotentiometry, electrochemical surface area (ECSA),
and electrochemical impedance spectroscopy, are utilized to assess the electrochemical
activity, stability, and performance of MOF-derived electrocatalysts. These techniques
offer information about catalytic activity [75], reaction kinetics [76], and charge transfer
processes occurring at the electrode–electrolyte interface [76]. By employing a combination
of these characterization methods, researchers can gain a comprehensive understanding
of the morphological, compositional, and electrochemical properties of MOF-derived elec-
trocatalysts [51]. This knowledge aids in the optimization and design of efficient and stable
electrocatalytic materials.

3. Electrocatalytic Properties of (Fe-Co-Ni-Zn)-Based MOFs-Derived Electrocatalysts

The electrocatalysts derived from (Fe-Co-Ni-Zn)-based MOFs exhibit a range of electro-
catalytic properties that hold promise for diverse applications. These properties encompass
their performance in key reactions such as the ORR and OER, which are critical for effi-
cient energy conversion in fuel cells and metal–air batteries [77,78]. The electrocatalysts
demonstrate notable ORR activity by facilitating the conversion of oxygen molecules into
hydroxide ions at the cathode [79]. Similarly, they exhibit excellent OER activity by promot-
ing the oxidation of water molecules, generating oxygen gas during the charging process
in energy storage devices [80]. The catalytic efficiency of these MOFs-derived electrocatalysts
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is high due to their distinctive composition and structure, leading to reduced overpotential
requirements for electrochemical reactions. Consequently, this enhances energy efficiency
and overall performance in electrochemical devices. Notably, the electrocatalysts based on Fe,
Co, Ni, and Zn elements offer exceptional stability and durability, enabling them to maintain
catalytic activity even under demanding operating conditions, ensuring the long-term per-
formance and lifespan of electrochemical devices [81–83]. The composition and structure
of (Fe-Co-Ni-Zn)-based MOFs-derived electrocatalysts can be precisely tuned to achieve
desired properties. Through the combination of different metal ions or clusters, syner-
gistic effects can be harnessed, resulting in enhanced catalytic performance surpassing
that of individual metals alone [84]. These electrocatalysts also exhibit selectivity in cat-
alytic reactions, enabling precise control over the desired products. They can promote
specific chemical transformations while minimizing undesired side reactions, rendering
them suitable for applications requiring high selectivity, such as in the pharmaceutical and
fine chemical industries [85]. Moreover, MOF-derived electrocatalysts possess a highly
porous structure, providing a large surface area for electrochemical reactions [86,87].
This increased surface area enhances reactant accessibility to catalytic sites, thereby im-
proving reaction kinetics and overall efficiency. The exceptional electrocatalytic properties
of (Fe-Co-Ni-Zn)-based MOFs-derived electrocatalysts, including high ORR and OER activ-
ity, catalytic efficiency, stability, tunability, selectivity, and large surface area, position them
as attractive candidates for various energy storage and conversion applications such as fuel
cells, metal–air batteries, and electrolyzers [88]. Further research and development efforts
in this domain are crucial for optimizing their electrocatalytic performance and expanding
their practical applications.

4. Performance in Zinc–Air Batteries

Zinc–air batteries are appealing for a variety of applications due to their favorable
characteristics such as high energy density, affordability, and eco-friendliness [89]. The per-
formance of zinc–air batteries is evaluated based on several key factors. Energy density is
a crucial measure, representing the amount of energy stored per unit weight or volume
of the battery [90]. Zinc–air batteries possess comparable or even superior energy den-
sity to lithium-ion batteries, making them suitable for power-hungry devices like electric
vehicles and portable electronics [91]. Specific energy and specific power are important
considerations, indicating the amount of energy stored per unit weight and the rate at
which the energy can be delivered, respectively [92]. Zinc–air batteries typically demon-
strate high specific energy, enabling substantial energy storage [93]. However, their specific
power is generally lower compared to other battery technologies, which can restrict their
performance in applications requiring high power output [94]. Zinc–air batteries offer
a relatively high cell voltage, typically ranging from 1.2 to 1.4 volts, which is advantageous
for many applications [95]. Traditionally, zinc–air batteries have been non-rechargeable,
meaning they cannot be recharged once depleted. However, ongoing research is focused
on developing rechargeable zinc–air batteries by addressing challenges such as dendrite
formation, electrolyte stability, and electrode degradation [10]. The lifespan of a zinc–air
battery depends on various factors, including electrode materials, electrolyte composition,
and operating conditions. Under optimal circumstances, zinc–air batteries can exhibit
a long lifespan, making them suitable for applications requiring prolonged use [10,94]. Ad-
ditionally, zinc–air batteries with suitable electrolytes have an extended shelf life, allowing
them to be stored for extended periods without significant self-discharge [96]. Zinc–air
batteries are environmentally friendly as they utilize abundant and non-toxic zinc as the an-
ode material [97]. Zinc is readily available, making it a cost-effective and sustainable choice.
Moreover, zinc–air batteries produce no greenhouse gas emissions during operation [98].
Despite their advantages, zinc–air batteries face challenges such as limited rechargeability,
relatively lower specific power, and the need for improved electrolyte stability [99]. Ongo-
ing research and development endeavors aim to overcome these limitations and enhance
the performance of zinc–air batteries, making them more competitive in applications that
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require high energy density and cost-effectiveness. Table 1 summaries electrocatalytic
and ZAB performances shown by oxygen electrocatalysts of (Fe-Co-Ni-Zn)-based MOF
materials in recent years.

Table 1. Electrocatalytic and ZAB performances shown by oxygen electrocatalysts of (Fe-Co-Ni-Zn)-
based MOF materials.

S. N. Electrocatalysts ORR Eonset
[V]

ORR E1/2
[V]

Open Circuit
Voltage [V]

Specific Capacity
[mAh g−1]

Durability
@mA cm−2

Peak Power Density
[mW cm−2] Ref.

1. Fe-N-CNT 1.015 0.89 1.36 720 - 131.7 [24]

2. ZFN-900 - 0.85 1.21 - - 115.8 [26]

3. Ni0.6Fe0.4CM 0.88 0.75 1.44 - 69 h @ 10 59.83 [100]

4. Co5.47N/Co3Fe7/NC - 0.89 1.502 - 180 h @ 5 264 [22]

5. 3DOM Fe-N-C - 0.875 1.45 768.3 100 h @ 5 235 [101]

6. NiFe-MOF/NiFe2O4 0.73 - 1.39 700 - 158.4 [62]

7. Fe-N-S CNN - 0.91 1.37 700 - 132 [102]

8. FeCu-BTC/WO3-WC - 0.81 1.43 - 300 h @ 5 135.2 [20]

9. Co-NC@LDH - 0.80 1.41 806 300 h @ 5 107.8 [25]

10. (Zn,Co)/NC - 0.87 1.2 807 60 h @ 5 186 [103]

11. Zn/Mo2C@Co-
NCNTs 0.918 0.838 1.506 741.9 100 h @ 0.5 223.54 [104]

12. CoZn-NCNTs 0.94 0.82 1.46 757 320 h @ 2 214 [105]

13. ES-Co/Zn-CNZIF 0.9953 0.857 1.369 802.6 254 @ 10 42.37 [106]

14. Co-MOF-800 - 0.84 1.38 671.6 54 @ 10 144 [107]

15. FeS/Fe3C@NS-C-900 1.03 0.78 1.455 750 865 h @ 2 90.9 [108]

16. Co0.25Ni0.75@NCNT 0.94 0.84 1.53 - 36 h @ 5 167 [109]

17. FeCO3−NC-1100 1.05 0.877 2.958 - 190 h @ 10 372 [110]

18. Mn/Co-N-C-0.02-800 0.90 0.80 1.39 - 120 h @ 20 136 [111]

19. Co-N-CNT 0.97 0.90 1.365 - 15 h @ 2 101 [112]

20. FeNiCo@NC-P - 0.84 1.36 807 130 h @ 10 112 [56]

21. CoPx@CNS 0.83 0.76 1.40 - 130 h @ 5 110 [113]

22. CoxP@NPC - 0.82 1.43 - 140 h @ 5 157 [114]

23. FeNiP/NCH - 0.75 1.48 - 500 h @ 10 250 [115]

4.1. Integration of (Fe-Co-Ni-Zn)-Based MOFs-Derived Electrocatalysts in Zinc–Air Batteries

The catalytic properties of MOFs have been extensively studied with various transition
metals, such as iron, cobalt, nickel, and zinc [116]. These metals are capable of producing
stable MOFs using organic ligands that accompany excellent redox activity and enhance
ORR performance [117]. Hence, they are suitable for electrochemical reactions in the for-
mation process of zinc–air batteries. The synthesis route for creating metal-based catalysts
using Fe/Co/Ni/Zn involves mixing the two components, metal ions, and linker, under
appropriate conditions so that porous crystalline structures are obtained [118,119].

Radwan et al. synthesized a new Fe3N embedded in 3D high surface area ZIFs
as a precursor to producing nitrogen-doped carbon network encapsulated Fe3N (ZFN-900),
and then employed it as a low-cost and efficient electrocatalyst for ORR and ZABs. Such
ZFN-900 has noticeable activity in an O2-saturated electrolyte with the cathodic current
peak at ≈0.80 V, compared to that within a N2-saturated solution, signifying a promising
ORR electrocatalytic performance (Figure 3a). The remarkable ORR performance for ZFN-
900 was examined, showing a significant half-wave potential (E1/2) of 0.85 V than that
of Pt/C (0.82 V) and N-doped carbon (0.71 V) (Figure 3b). As presented in Figure 3c,
the Tafel slope for ZFN-900 is 53 mV dec−1, lesser than that for Pt/C (78 mV dec−1), N-
doped carbon (90 mV dec−1), and Fe3N (99 mV dec−1), signifying quicker reaction kinetics
in ZFN-900. Figure 3d inset shows the n value to be ≈4.0 in a potential window of 0.3–0.7 V,
signifying first-order reaction kinetics, four-electron pathway of ORR for ZFN-900 [26].
Similarly, Li et al. developed MOF-derived Ni-Fe alloys embedded graphitic carbon



Nanomaterials 2023, 13, 2612 10 of 25

electrocatalyst with a smaller voltage gap (0.76 V) than that for commercial Pt/C and RuO2
and a power density of 59.83 mW cm−2 for ZAB performance. Likewise, Li and a team
of researchers developed a bifunctional electrocatalyst via Fe/Ni-based MOF following
carbonization. As shown in Figure 3e,f, LSV of NixFe1−xCMs (0 < x < 1) showed significant
ORR performance compared to single metal element-based carbon materials (SMCMs),
and lower Tafel slopes also verifies the synergetic effect of two metals for electrocatalytic
properties of double metal elements-based carbon materials (DMCMs). The OER LSV
of NixFe1−x CMs (0 < x < 1) showed remarkable OER performance as compared to RuO2,
and DMCMs displayed lower Tafel slope than SMCMs (Figure 3g,h) [100].
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Zhang et al. developed porous Fex-N@MOF as a highly efficient catalyst for oxygen
reduction over a wide pH range with a maximum power density of ca. 274 mW cm−2,
which is approximately 28% greater than that of Pt/C (196 mW cm−2) in (Figure 4a) [120].
Paudel et al. functionalized metal nodes–organic bridge ligands that were integrated on poly-
valent tungsten oxide–carbide interfaces with highly porous nano-dendritic architecture.
Thus, the formed FeCu-BTC/WO-WC showed a power density of 135.2 mW cm−2 (Figure 4b)
for ZAB [20]. Similarly, Chen et al. synthesized a composite (Co-NC@LDH) by anchoring
NiFe-layered double hydroxide (NiFe-LDH) nanosheets on the surface of a ZIF-derived
carbon-based framework. It showed a high peak power density (107.8 mW cm−2) (Figure 4c)
and excellent durability (over 300 h) when used in ZAB [25]. Liu and a team of researchers
constructed (CoZn-NCNTs) composite by Co nanoparticles embedded in like N-doped carbon
nanotubes, which showed a high-power density of 214 mW cm−2 (Figure 4d) with a voltage
retention of 99.4%, in ZAB [105]. Likewise, Duan et al. constructed novel Co-MOF, O-doped
carbon (Co-MOF-T) based on Zn, Co-doped glucosamine, and ZIF-8. The primary Zn–air
batteries using a Co-MOF-800 air electrode achieved a high open-circuit voltage of 1.38 V,
a specific capacity of 671.6 mAh g−1, and a prominent peak power density of 144 mW cm−2

(Figure 4e) [107]. Furthermore, Li and co-authors synthesized FeS/Fe3C nanoparticles embed-
ded in a porous N, S-dual doped carbon honeycomb-like composite (FeS/Fe3C@NS-C-900).
It demonstrated a power density of 90.9 mW cm−2 (Figure 4f), a specific capacity of 750 mAh g−1,
and cycling stabilities over 865 h (1730 cycles) at 2 mA cm−2 for rechargeable ZAB [108].
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Figure 4. (a) Polarization curve and power density plot of Zn-air fuel cell with the Fe0.05-N@MOF
and Pt/C as cathode (reproduced with permission from [120]); (b) FeCu-BTC/WO3-WC and Pt-C+
RuO2 (reproduced with permission from [20]); (c) Co-NC@LDH and Pt/C-RuO (reproduced with
permission from [25]); (d) CoZn-NCNTs and Pt/C + RuO (reproduced with permission from [105]);
(e) Co-MOF-800 and Pt/C (reproduced with permission from [107]); and (f) FeS/Fe3C@NS-C-900
(reproduced with permission from [108]).

Rong et al. prepared a two-dimensional nanoporous Co single-atom decorated
nitrogen-doped carbon catalyst (NP-CoSANC) by the pyrolysis of urea-adsorbed Co-TPyP
MOF precursor, which displays the peak power density of 158.1 mW cm−2 at the current
density of 249.0 mA cm−2, exceeding that of Pt/C + RuO2 (Figure 5a). Additionally, at
the current density of 20 mA cm−2, the aqueous primary ZAB with NP-CoSANC air cathode
shows a higher voltage platform than that of Pt/C + RuO2 air cathode (Figure 5b). Interest-
ingly, an aqueous primary ZAB with NP-CoSANC air cathode can steadily light up a LED
panel, suggesting its real-time application and favorable prospects in power devices (inset
in (Figure 5b)). The quasi-solid-state ZAB shows a high open circuit voltage of 1.321 V un-
der a flat state in ambient air (inset in (Figure 5c)) [121]. Moreover, Dong et al. reported that
FePc@NC-1000 delivered a higher power density of 120.37 mW cm−2 compared to Pt/C,
indicating good mass transfer kinetics (Figure 5d). As portrayed in Figure 5e, the ZABs
upheld a relatively steady output voltage from 5 to 100 mA cm−2. Furthermore, upon
returning the current density to 5 mA cm−2, the discharge voltage of the ZABs resumed
to its initial value, indicating high rate capability and durability. The specific capacity
of the ZAB based on FePc@NC-1000 (725.3 mAh g−1) is significantly higher than that
of Pt/C (645.4 mAh g−1) discharged at 10 mA cm−2 (Figure 5f). Overall, the FePc@NC-1000
proves to be an appropriate Pt-free cathode catalyst with significant applications [122].
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Pt/C; (b) discharge curves of aqueous primary ZABs for NP-CoSANC and Pt/C (inset: photograph
of LED screen powered by an aqueous primary ZAB); (c) long time discharge/charge cycle testing
of two aqueous primary ZABs with NP-CoSANC catalyst and Pt/C + RuO2 catalyst [121]; and
(d–f) polarisation and power density profiles, rate capacity, and mass-specific capacity of FePc@NC-
1000 and Pt/C, respectively [122].

As scientific exploration progresses toward the enhancement and refinement of elec-
trocatalyst composition and fabrication, encouraging progress is foreseen in creating sus-
tainable energy storage solutions that are enduring, proficient, and environmentally benign.
The incorporation of electrocatalysts derived from MOF material into ZABs holds optimistic
potential for establishing dependable high-capacity energy-storing mechanisms.

4.2. Comparison with Other Electrocatalysts

For ZABs to become a viable and sustainable source of energy storage, various criteria
must be taken into account in the selection of electrocatalysts. These factors include catalytic
efficiency, cost-effectiveness, scalability, stability, and availability [123]. Current studies are
focused on advancing research efforts toward designing efficient electrocatalysts aimed
at promoting extensive usage of these batteries as an eco-friendly solution for long-term
energy storage needs. Numerous categories of electrocatalysts have been investigated
for their viability in ZAB usage, with the primary function being to promote ORR and OER.
The role played by these electrocatalysts is pivotal.

In comparison to commercial non-porous noble metal catalysts, MOF-based catalysts
hold several distinct advantages [124]. Firstly, they enable the simple incorporation of highly
dispersed hetero atoms such as metal atoms and N, O, S, and P, which can customize the local
electronic configuration of the catalyst; this reduces the adsorption energy of intermediate
species, leading to enhanced catalytic performance. Secondly, controlling size, morphology,
and pristine structure help improve that performance. Thirdly, conductive ligands impart
good electrical conductivity within MOFs, ensuring prompt electron transfer. Fourthly, their
supramolecular attributes provide superior electrochemical stability and durability in electro-
catalysis applications [125], hence, crucially making it essential to develop MOFs with proper
organic ligand architecture characteristics containing appropriate accessible voids along with
suitable metallic ions for productive MOF-based catalysis reactions.
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5. Strategies for Enhancing Performance

To enhance the performance of catalysts in zinc–air batteries, various strategies can
be employed. These strategies involve designing catalysts with precision, modifying
their surface properties [126], utilizing nanostructures [127], incorporating alloying [128]
and hybrid materials [129], employing porous catalyst supports [86], ensuring catalyst
stability [81], optimizing the interface between the catalyst and electrolyte [130], utilizing
advanced characterization techniques, and optimizing the integration of the catalyst into
the battery system. By implementing these strategies, the goal is to improve catalytic
activity, enhance charge transfer kinetics, increase durability, and facilitate efficient mass
transport [88]. Ultimately, these enhancements result in improved energy efficiency, higher
power output, and a longer lifespan for zinc–air batteries.

5.1. Doping and Alloying Approaches

Doping heteroatoms into the catalyst materials is a technique used to boost the perfor-
mance of zinc–air batteries. By incorporating heteroatoms like nitrogen, carbon, or sulfur
into the catalyst’s structure, various enhancements can be achieved [131,132]. The presence
of heteroatoms alters the catalyst’s electronic structure, surface chemistry, and catalytic
activity, resulting in improved ORR and OER capabilities [132]. Heteroatom doping en-
hances the electrocatalytic activity, increases the number of active sites, and accelerates
the overall reaction kinetics [133]. For example, nitrogen doping in carbon nanotubes has
been shown to significantly enhance their electrocatalytic activity for ORR in fuel cells, due
to the introduction of nitrogen heteroatoms modifying the electronic structure of carbon
nanotubes, creating additional active sites for oxygen adsorption and facilitating the trans-
fer of electrons during the ORR [134]. This approach holds great promise for optimizing
zinc–air batteries, leading to enhanced energy efficiency and prolonged battery life [12].
Huang et al. synthesized porous carbon doped with Co, Ni, N, and Zn using a one-pot
technique. With a half-wave potential of 0.864 V, a low current density of 6.40 mA cm−2,
and an excellent cycle life, the porous multi-doped carbon demonstrated remarkable ORR
performances. The porous structure, Co-N reactive sites, and synergetic combination
of different dopant atoms can be attributed to the excellent ORR performance of Ni-Co-
Zn-N-PC. Similarly, ZABs with Ni-Co-Zn-N-PC cathodes demonstrated exceptional ca-
pacity, power density, and endurance [135]. Kundu et al. synthesized hierarchical hollow
Co0.25Ni0.75@NCNT for OER/ORR/ZAB (Figure 6) cycles [109]. The analysis using TEM,
HRTEM, and SAED revealed the presence of a hierarchical hollow structure with lattice
fringes spacing of 0.21 and 0.34 nm for CoNi alloy and graphitic carbon, respectively
(Figure 6a–d). Figure 6e shows that our ZAB (zinc–air battery) has an open-circuit voltage
of approximately 1.53 V. Furthermore, the ZAB based on Co0.25Ni0.75@NCNT30 demon-
strated a peak power density of around 167 mW cm−2 (Figure 6f). To assess the cycling
stability, galvanostatic charge–discharge measurements were conducted at a current density
of 5 mA cm−2 (Figure 6g). The results confirmed that the device remains rechargeable
for 36 h with an initial voltage gap of about 0.9 V. Throughout 215 cycles, there was only
a slight increase of approximately 20 mV in the voltage gap (Figure 6c, inset). The ini-
tial voltaic efficiency was measured at 56.3%, and after 36 h of long charge–discharge
cycles, the voltaic efficiency experienced only a marginal loss of around 1.6%, demon-
strating excellent stability and rechargeability of our ZAB. Upon meticulous analysis
of the charge–discharge profile, as depicted in Figure 6c, it becomes readily apparent that
the initial voltage manifests at approximately 1.5 V, in consonance with the discharge
polarization curve delineated in Figure 6f. A more granular examination of the segment
of the discharge profile, as illustrated in Figure 6g (inset), elucidates a discernible atten-
uation in oxygen reduction reaction (ORR) activity. This diminution is likely attributed
to the incipient deterioration of the catalyst and the concurrent corrosion of the carbon
support, phenomena frequently observed in the context of alternating charge–discharge
cycles, consistent with analogous observations made with alternative catalyst formulations.
Noteworthy, however, is the observation that the ORR activity of the catalyst in question
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does not succumb to substantial degradation, as is evidenced by the sustained charge–
discharge profile over protracted cycling intervals. Manifesting a mere marginal alteration
of approximately 20 mV in the voltage gap after an exhaustive 36 h cycling period, the catalyst’s
performance remains commendably stable. Furthermore, it merits consideration that the dis-
charge voltage exhibited by our catalyst modestly trails that of the reference zinc–air battery (ZAB).
This phenomenon may be ascribed, at least in part, to the engagement of a two-electron pathway
for the oxygen reduction process, introducing an intricacy into the electrochemical landscape.
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Alloying metal is a method employed to enhance the electrocatalyst performance
in zinc–air batteries. By blending different metals within the catalyst, a range of improve-
ments can be achieved. Alloying modifies the catalyst’s electronic structure and surface
characteristics, resulting in enhanced oxygen reduction and evolution reactions. It also re-
inforces the catalyst’s structure, increasing its durability and preventing degradation [136].
Furthermore, alloying enhances the electrochemical stability of the catalyst, enabling reli-
able performance even in demanding conditions. Overall, incorporating alloyed metals
in the electrocatalyst significantly boosts the efficiency, energy conversion, and overall
effectiveness of zinc–air batteries.

5.2. Structural Modifications of MOFs-Derived Electrocatalysts

Structural modifications are utilized to enhance the performance of electrocatalysts
derived from MOFs based on Fe, Co, Ni, and Zn [137]. These modifications involve alter-
ing the composition, morphology, and architecture of the electrocatalysts. One common
approach is the inclusion of dopants, such as heteroatoms or different elements, to improve
electrocatalytic activity and stability [126]. This adjustment of the electronic properties
enhances active sites and facilitates efficient charge transfer. Surface functionalization is
another strategy where the MOFs-derived electrocatalysts are modified with functional
groups or active sites to enhance their interaction with reactant molecules and catalytic
performance [138]. This can be achieved through the addition of organic ligands, metal
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complexes, or nanoparticles on the surface [139]. For instance, Poudel et al. functionalized
metal nodes–organic bridge ligands integrated on polyvalent tungsten oxide–carbide inter-
faces with highly-porous nano-dendritic architecture. Thus, formed FeCu–BTC/WO-WC
demonstrated a half-wave potential of 0.81 V (very similar to benchmark Pt-C) along with
an elevated power density of 135.2 mW cm−2 for ZAB [20]. Nanostructuring techniques
involve controlling the size, shape, and distribution of nanoparticles within the MOF
structure. This nanostructuring enhances the surface area, facilitates mass transport, and
improves reactant accessibility to catalytic sites [140]. Liu and a group of scientists fabri-
cated a composite material by embedding Co nanoparticles in N-doped carbon nanotubes.
This resulted in an exceptional power density value of 214 mW cm−2 for ZAB, with superior
stability (only 11 mV negative shift for 5000 cycles). It is much higher than the bench-
mark catalysts, respectively, derived from zinc- and cobalt-based MOF precursors [105].
Hierarchical structures can also be created by combining MOFs with other materials or in-
corporating secondary templates, improving mass transport, active site utilization, and
catalytic performance by offering multiple porosity length scales [86]. Xu et al. engineered
hierarchical MOF, Fe3O4/Fe-N-C-CNT (FeNC) using Fe3+ adsorbed ZIF-8 as a chemical
precursor. FeNC displayed remarkable ORR capabilities, endurance, and specificity com-
pared to the conventional Pt/C electrocatalyst under alkaline conditions. When employed
as an air electrode in a primary zinc–air battery, it exhibits a superior peak power density
of 118.05 mW cm−2 than that observed with a Pt/C cathode while also exhibiting faster re-
action kinetics [141]. Metal cluster engineering allows for the precise control of catalytically
active sites by designing MOFs with specific metal clusters or nanoparticles, resulting in en-
hanced catalytic activity, selectivity, and stability [142]. In 2020, Li and co-authors synthe-
sized FeS/Fe3C nanoparticles embedded in a porous N, S-dual doped carbon honeycomb-
like composite (FeS/Fe3C@NS-C-900). This metal cluster demonstrated a power density
of 90.9 mW cm−2, and cycling stabilities over 865 h at 2 mA cm−2 for rechargeable ZAB [108].
Defect engineering involves the intentional introduction of controlled defects or vacancies
in the MOF structure to create additional active sites and modify electronic properties, lead-
ing to improved catalytic activity, charge transfer, and facilitating specific reactions [143].
Zhao et al. manufactured carbon fibers with natural carbon imperfections (D-CFs) by in-
troducing heteroatoms through seaweed polysaccharide precursor fabrication, followed
by de-doping. The ORR electrocatalyst capability of D-CFs resulted in an initial potential
of 0.92 V while the peak power density observed from zinc–air batteries was notably higher
at 238 mW cm−2 than those made from commercially available Pt/C materials which had
only managed a reading of about 154 mW cm−2 [144]. Similarly, Wei et al. synthesized
Mn/Co-N-C as a highly effective dodecahedral nanocage electrocatalyst for ORR/zinc–air
batteries (Figure 7a–d) [111]. This investigation entailed an exploration into the efficacy and
versatility of the Mn/Co-N-C-0.02-800 electrocatalyst through the construction of all-solid-
state zinc–air batteries employing an alkaline poly(vinyl alcohol) electrolyte. The assembled
battery exhibited an impressive open circuit potential of 1.39 V and successfully powered
an LED viewing screen using three batteries in series (Figure 7e). Moreover, the bat-
tery’s flexibility was tested by bending it into different shapes, yet it maintained a stable
charge (1.92 V) and discharge (1.21 V) at 2 mA cm–2 potentials even at various angles
(Figure 7f). The Mn/Co-N-C-0.02-800 cathode displayed excellent first charge and dis-
charge potentials of 1.95 V and 1.23 V, respectively, and showcased superb cycling stability
after 60 charging and discharging cycles (Figure 7g). These results demonstrate the poten-
tial of the catalyst for use in high-performance, flexible, and stable all-solid-state zinc–air
batteries due to the synergism of manganese dopant and Co-N-C in the Mn/Co-N-C.
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of the Mn/Co-N-C-0.02-800 all-solid-state zinc–air battery (reproduced with permission from [111]).

Thus, structural modifications enable the customization and optimization of Fe, Co,
Ni, and Zn-based MOFs-derived electrocatalysts for various electrochemical applications.
By tailoring the molecular and nanoscale structure, researchers can achieve improved
catalytic performance, stability, selectivity, and efficiency, making these electrocatalysts
highly suitable for energy storage, conversion, and other electrochemical processes.

5.3. Surface Engineering and Catalyst Support Strategies

To enhance the performance of zinc–air battery electrocatalysts, surface engineering
techniques, and catalyst support strategies are employed [145]. These methods involve
modifying the surface characteristics and optimizing the support materials to improve
catalytic activity, stability, and overall effectiveness [88]. Surface engineering focuses on al-
tering the composition, structure, and shape of the electrocatalyst surface to optimize
electrochemical reactions at the electrode–electrolyte interface [146]. This can be achieved
through surface functionalization, introducing active sites or functional groups to facilitate
specific electrochemical reactions and improve reaction kinetics [146,147]. Additionally, sur-
face modifications improve the interaction between the electrocatalyst and the electrolyte,
enhance reactant and product transport, and minimize undesired side reactions [148].
For instance, through the utilization of a tellurium sacrificial template and surface cus-
tomization, Agrawal et al. synthesized “pseudo-carbon nanotubes”. The ZIF-8 component
was infused with a combination of iron, cobalt, and zinc to form CoFeZn@pCNTs that
possess remarkable catalytic performance in ORR, evidenced by their E1/2 value equiv-
alent to 0.87 V vs. RHE [77]. Catalyst support strategies, on the other hand, involve
selecting and optimizing support materials that enhance electrocatalyst performance and
stability. Carbon-based materials, such as carbon nanotubes, graphene, and carbon black,
are commonly used as support materials due to their high surface area, which provides
an enlarged active surface for catalytic reactions and improves conductivity [149]. In 2019,
Jin and a team of researchers synthesized Fe, N, and S co-doped carbon nanotube nanocom-
posites (Fe-N-S CNN) by pyrolysis of ZIF-8 impregnated with iron salt. Here, the use
of carbon-based materials when used as an electrocatalyst enhanced the ZAB performance
showing a high specific capacity of 700 mA h g−1 [102]. Moreover, incorporating metal
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oxide nanoparticles or conducting polymers as support materials can also enhance catalytic
activity and stability by shielding active sites from corrosion, providing additional catalytic
sites, and improving structural integrity, including, for example, the use of conductive
metallic foam such as nickel foam, copper foam, iron foam, nickel mesh, etc. [145,150].
Through the adoption of an in situ growing technique, Xiong et al. successfully created
NiFe MOF, NiCo MOF, Fe MOF/Ni MOF, and Co MOF/Ni MOF. The Ni Foam served
as a conductive substrate during the electrocatalytic reaction to enhance electron transfer
while also preventing MOF structure collapse [151]. Likewise, in 2020, Chen and a team
of researchers synthesized a composite (Co-NC@LDH) by anchoring NiFe-layered double
hydroxide (NiFe-LDH) nanosheets on the surface of a ZIF-derived carbon-based frame-
work. The obtained electrocatalyst showed impressive catalytic efficiency, great kinetics,
and adequate durability against OER due to the extensively exposed metal active sites, im-
proved conductivity, and stable structure [25]. Thus, it can be said that surface engineering
and catalyst support strategies offer promising ways for developing efficient and durable
electrocatalysts for zinc–air batteries.

6. Challenges and Future Perspectives

Zinc–air batteries face challenges in terms of limited cycle life, dendrite formation,
air electrode stability, electrolyte degradation, and scalability [152,153]. To enhance their
performance, research focuses on developing advanced electrode materials and electrolytes
to prevent dendrite formation and improve cycle life [154]. Improving the catalytic activity,
durability, and stability of catalyst materials in the air electrode is crucial. Stable and
efficient electrolyte formulations are needed to minimize side reactions and ensure high
ionic conductivity [155]. Scalable and cost-effective manufacturing processes are essential
for commercial viability. Future research should explore new materials, designs, and tech-
nologies to address these challenges and integrate zinc–air batteries with renewable energy
sources and smart grids. Continued research and development will unlock the potential
of zinc–air batteries for energy storage applications.

6.1. Limitations and Challenges in Using (Fe-Co-Ni-Zn)-Based MOFs-Derived Electrocatalysts

The utilization of (Fe-Co-Ni-Zn)-based MOFs-derived electrocatalysts encounters
certain limitations and challenges. One limitation is the instability of MOFs in aque-
ous environments, leading to degradation and reduced catalytic activity over time [156].
This poses a difficulty in maintaining the electrocatalysts’ performance over extended
durations. Additionally, the relatively low electrical conductivity of MOFs hampers ef-
ficient charge transfer during electrochemical reactions, affecting overall efficiency [157].
Another challenge lies in the complex and costly large-scale synthesis of MOFs with desired
properties. Cost-effective and scalable synthesis techniques are necessary to overcome this
obstacle. Ongoing research focuses on optimizing synthesis methods, enhancing electrical
conductivity, improving stability, and enhancing selectivity to enhance the performance
and applicability of (Fe-Co-Ni-Zn)-based MOFs-derived electrocatalysts for diverse energy
storage and conversion applications.

6.2. Potential Solutions and Future Research Directions

To address the limitations and challenges associated with (Fe-Co-Ni-Zn)-based MOFs-
derived electrocatalysts, several potential solutions and future research directions can
be explored. One strategy is to enhance the stability of MOFs in aqueous environments
by implementing protective coatings or encapsulation techniques. This would prevent
degradation and maintain catalytic activity over extended periods. Another approach
is to improve the electrical conductivity of MOFs by incorporating conductive materials
or introducing dopants. This would facilitate more efficient charge transfer and enhance
overall electrocatalytic performance. Additionally, scalable and cost-effective synthesis
methods need to be developed for large-scale production, which may involve optimizing
reaction conditions, exploring alternative precursors, or implementing continuous flow
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synthesis approaches. Increasing the selectivity of MOF-derived electrocatalysts can be
achieved by tailoring active sites or introducing functional groups to minimize unwanted
side reactions. Long-term stability and durability under harsh conditions can be addressed
by designing more robust catalyst architectures. Integration of MOF-derived electro-
catalysts with other materials or catalyst supports could lead to synergistic effects and
improved performance. This could involve exploring carbon-based nanomaterials or metal
oxides as catalyst supports to enhance stability and promote efficient charge transfer.
Overall, future research should focus on advancing the stability, electrical conductivity,
scalability, selectivity, and durability of (Fe-Co-Ni-Zn)-based MOFs-derived electrocatalysts
through innovative synthesis methods, structural modifications, integration with other
materials, and advanced characterization techniques. These efforts will contribute to the
development of highly efficient and practical electrocatalysts for various energy storage
and conversion applications.

6.3. Emerging Trends and Opportunities

Zinc–air batteries are currently emerging trends and opportunities that have the poten-
tial to revolutionize the field of energy storage. These include advancements in recharge-
ability, the development of innovative electrolyte solutions, catalyst design and engineering,
miniaturization for micro-power applications, grid-scale energy storage, and a focus on en-
vironmental sustainability [11,93]. Efforts are being made to enhance the rechargeability
of zinc–air batteries by addressing challenges such as dendrite formation and electrode
degradation [158,159]. Novel electrolyte solutions are being explored and optimized to im-
prove battery efficiency and stability. Catalyst design is also a key area of research, aiming
to create efficient and long-lasting catalysts that can enhance electrochemical reactions [160].
The miniaturization of zinc–air batteries enables their integration into small devices like
wearables and IoT devices. Furthermore, the high energy density and cost-effectiveness
of zinc–air batteries make them attractive for grid-scale energy storage applications. En-
vironmental benefits, including the use of non-toxic and abundant materials, further con-
tribute to the appeal of zinc–air batteries. Ongoing research and development efforts
in these areas are expected to drive the commercialization and widespread adoption of zinc–
air batteries across various industries and applications.

7. Conclusions

Zinc–air batteries (ZABs), due to their high energy density, cost-effectiveness, and
environmental friendliness, are appealing for their use in renewable energy storage, electric
vehicles, and various other applications. Electrocatalysts play a vital role in enhancing
their performance by facilitating the ORR and OER, reducing energy losses, improving
reaction kinetics, and increasing their specific capacity. The present study provided a review
of electrocatalysts derived from Fe, Co, Ni, and Zn-based MOFs and their use in ZABs.
They can be synthesized using various techniques, including solvothermal, hydrother-
mal, microwave-assisted, and electrochemical methods. Their structure, morphology,
composition, and electrochemical properties are provided by several characterization meth-
ods, which include XRD, SEM, TEM, EDS, FTIR, XPS, and electrochemical techniques.
The (Fe-Co-Ni-Zn)-based MOF-derived electrocatalysts offer promising properties such
as abundance, catalytic activity, tunability, and structural stability. These electrocatalysts
exhibit high ORR and OER activity, stability, selectivity, and a large surface area, making
them attractive for energy storage and conversion applications. In zinc–air batteries, they
contribute to higher energy density, cell efficiency, and a longer lifespan. Further research
and development are crucial to optimizing their performance and enabling the widespread
use of ZABs in various fields.

The main findings and contributions of the study involve the successful development
of MOFs utilizing iron, cobalt, nickel, and zinc. These MOFs demonstrate exceptional
electrocatalytic capabilities for zinc–air batteries, resulting in improved energy density and
catalytic performance. This review provides an idea for enhancing the affordability and
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effectiveness of zinc–air battery technology, thereby advancing the field of energy storage
solutions.

The importance and potential of (Fe-Co-Ni-Zn)-based MOFs-derived electrocatalysts
in zinc–air batteries lie in their ability to enhance battery performance and affordability.
These electrocatalysts, derived from MOFs, exhibit impressive electrocatalytic proper-
ties, leading to improved energy density and catalytic efficiency in zinc–air batteries.
Thus, zinc–air battery research offers promising prospects for advancing more efficient and
cost-effective energy storage solutions, making it a valuable contribution to battery technology.
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156. Opanasenko, M.; Dhakshinamoorthy, A.; Čejka, J.; Garcia, H. Deactivation Pathways of the Catalytic Activity of Metal–Organic
Frameworks in Condensation Reactions. ChemCatChem 2013, 5, 1553–1561. [CrossRef]

157. Jiao, L.; Wang, Y.; Jiang, H.-L.; Xu, Q. Metal–Organic Frameworks as Platforms for Catalytic Applications. Adv. Mater. 2018, 30,
1703663. [CrossRef]

158. Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Zinc dendrite growth and inhibition strategies. Mater. Today Energy
2021, 20, 100692. [CrossRef]

159. Yang, W.; Yang, Y.; Yang, H.; Zhou, H. Regulating Water Activity for Rechargeable Zinc-Ion Batteries: Progress and Perspective.
ACS Energy Lett. 2022, 7, 2515–2530. [CrossRef]

160. Liu, X.; Liu, X.; Li, C.; Yang, B.; Wang, L. Defect engineering of electrocatalysts for metal-based battery. Chin. J. Catal. 2023, 45,
27–87. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ijhydene.2022.07.010
https://doi.org/10.1016/j.cej.2020.127111
https://doi.org/10.1021/acsenergylett.9b01541
https://doi.org/10.26599/NRE.2023.9120039
https://doi.org/10.1002/adma.202003021
https://doi.org/10.1007/s42452-022-05156-z
https://doi.org/10.1002/cctc.201200643
https://doi.org/10.1002/adma.201703663
https://doi.org/10.1016/j.mtener.2021.100692
https://doi.org/10.1021/acsenergylett.2c01152
https://doi.org/10.1016/S1872-2067(22)64168-8

	Introduction 
	Background on Zinc–Air Batteries 
	The Importance of Electrocatalysts in Zinc–Air Batteries 
	Overview of Metal–Organic Frameworks (MOFs) 
	Motivation for (Fe-Co-Ni-Zn)-Based MOFs-Derived Electrocatalysts 

	Synthesis Methods for (Fe-Co-Ni-Zn)-Based MOFs 
	Synthesis Techniques for (Fe-Co-Ni-Zn)-Based MOFs 
	Characterization Methods for MOFs-Derived Electrocatalysts 

	Electrocatalytic Properties of (Fe-Co-Ni-Zn)-Based MOFs-Derived Electrocatalysts 
	Performance in Zinc–Air Batteries 
	Integration of (Fe-Co-Ni-Zn)-Based MOFs-Derived Electrocatalysts in Zinc–Air Batteries 
	Comparison with Other Electrocatalysts 

	Strategies for Enhancing Performance 
	Doping and Alloying Approaches 
	Structural Modifications of MOFs-Derived Electrocatalysts 
	Surface Engineering and Catalyst Support Strategies 

	Challenges and Future Perspectives 
	Limitations and Challenges in Using (Fe-Co-Ni-Zn)-Based MOFs-Derived Electrocatalysts 
	Potential Solutions and Future Research Directions 
	Emerging Trends and Opportunities 

	Conclusions 
	References

