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Abstract: Graphene has been broadly studied, particularly for the fabrication of biomedical de-
vices, owing to its physicochemical and antimicrobial properties. In this study, the antibiofilm
efficacy of graphene nanoplatelet (GNP)-based composites as coatings for urinary catheters (UCs)
was investigated. GNPs were functionalized with nitrogen (N-GNP) and incorporated into a poly-
dimethylsiloxane (PDMS) matrix. The resulting materials were characterized, and the N-GNP/PDMS
composite was evaluated against single- and multi-species biofilms of Staphylococcus aureus, Pseu-
domonas aeruginosa, and Klebsiella pneumoniae. Both biofilm cell composition and structure were
analyzed. Furthermore, the antibacterial mechanisms of action of N-GNP were explored. The N-
GNP/PDMS composite showed increased hydrophobicity and roughness compared to PDMS. In
single-species biofilms, this composite significantly reduced the number of S. aureus, P. aeruginosa,
and K. pneumoniae cells (by 64, 41, and 29%, respectively), and decreased S. aureus biofilm culturability
(by 50%). In tri-species biofilms, a 41% reduction in total cells was observed. These results are
aligned with the outcomes of the biofilm structure analysis. Moreover, N-GNP caused changes in
membrane permeability and triggered reactive oxygen species (ROS) synthesis in S. aureus, whereas
in Gram-negative bacteria, it only induced changes in cell metabolism. Overall, the N-GNP/PDMS
composite inhibited biofilm development, showing the potential of these carbon materials as coatings
for UCs.

Keywords: nitrogen-functionalized graphene; composite; antibiofilm activity; multi-species biofilm;
urinary catheters

1. Introduction

Indwelling urinary catheters (UCs) are among the most broadly used medical devices
for the treatment and mitigation of several clinical conditions. Although UCs are valuable
instruments in healthcare settings, they are linked to serious complications, such as urinary
tract infections (UTIs). UTIs are the most common type of healthcare-associated infection,
with approximately 75% of episodes resulting from the insertion of a UC [1,2]. Catheter-
associated urinary tract infections (CAUTIs) have a significant impact on both patient
health and the economic burden of healthcare systems [1,3,4].

Polydimethylsiloxane (PDMS), a silicone-based polymer, is widely used for the fab-
rication of urinary tract devices [5]. Although PDMS presents attractive features, such as
mechanical and chemical stability and high biocompatibility, it is particularly susceptible to
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microbial adhesion [6,7]. In addition, UCs, once inserted, can disrupt the local host defenses
and come into contact with various components of the urinary tract (e.g., salts, proteins, and
other organic molecules), creating favorable conditions for bacterial attachment and biofilm
formation on their surfaces [8,9]. In such intricately organized communities, bacteria are
shielded from the host’s immune system and the effects of antimicrobial agents, which
helps sustain and facilitate the persistence and dissemination of the infection [10].

CAUTIs can be caused by numerous bacteria, namely Escherichia coli, Staphylococ-
cus aureus, Pseudomonas aeruginosa, Proteus spp., Klebsiella pneumoniae, and Enterococcus
spp. [11,12]. In the urinary tract environment, infections often result from multi-species
biofilm formation, which usually makes them less susceptible to antibiotic action and,
consequently, more challenging to treat [13].

Despite multiple approaches that have been adopted to reduce the risk of UC-related
infections, including minimizing unnecessary catheter use, using aseptic techniques during
catheter insertion and maintenance, and promptly removing catheters when no longer
needed, the incidence of CAUTIs remains high [14]. Coating urinary catheters with metals,
such as copper and silver nanoparticles, can provide various benefits, such as reducing
infection risks owing to their strong bactericidal action and improving electrical conductiv-
ity for therapy [15,16]. During the past few years, a growing interest in the application of
carbon materials, such as carbon nanotubes and graphene, as coatings for medical devices
has also been reported [17,18].

Graphene consists of a singular layer of carbon atoms organized in a hexagonal lattice
arrangement, resulting in a two-dimensional (2D) nanomaterial characterized by remark-
able mechanical, electrical, and thermal features [19,20]. Owing to their unique properties,
graphene-based materials have been widely applied in biomedicine [21–23]. These ma-
terials have showcased auspicious antibacterial performance against Gram-negative and
Gram-positive bacteria, both in planktonic and biofilm forms [24]. To date, different antimi-
crobial mechanisms have been proposed for graphene and its derivatives, including the
physical piercing of cell membranes and the induction of reactive oxygen species (ROS)
production [25–27]. However, the antibacterial effectiveness of these carbon materials
also depends on the type of bacteria and their morphology [28], the physicochemical
properties of the cell surface [29], and their growth state (planktonic or biofilm) [30]. Fur-
thermore, chemical functionalization of graphene with different compounds (e.g., acidic,
basic, or natural compounds) has been reported to enhance its antimicrobial properties
and biocompatibility [18].

Therefore, considering the importance of controlling biofilm formation on UC sur-
faces and the antimicrobial potential of graphene materials, the goals of this work were to
(1) produce and characterize nitrogen-functionalized graphene nanoplatelets (N-GNP)/
polydimethylsiloxane (PDMS) composites, and (2) assess their ability to inhibit single- and
multi-species biofilms formed by S. aureus, P. aeruginosa, and K. pneumoniae (three common
colonizers of urinary catheters) under conditions prevailing in the urinary tract environ-
ment. To gain further insight into the efficacy of the synthesized materials, the antimicrobial
mechanisms of action of N-GNP were investigated for the three uropathogenic models. As
far as the authors know, this is the first study to apply N-GNP materials in the biomedical
field and explore their antimicrobial and antibiofilm potential.

2. Materials and Methods
2.1. Synthesis of Nitrogen-Functionalized Graphene (N-GNP)

Graphene nanoplatelets (GNP) functionalization with nitrogen (N) groups was per-
formed using melamine as a nitrogen precursor. Pristine GNP (p-GNP; Alfa Aesar,
Thermo Fisher Scientific, Erlenbachweg, Germany) (0.6 g) were mixed with 0.39 g of
melamine (Sigma-Aldrich Co., Ltd., St. Louis, MO, USA) and ball-milled for 4 h at
15 vibrations s−1 using the Retsch MM200 mixer mill equipment (Retsch GmbH, Haan,
Germany). The conditions used were based on a previous study [31]. The resulting material
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(N-GNP) was then exposed to thermal treatment under a N2 flow (100 cm3 min−1) up to
600 ◦C and maintained at this maximum temperature for 1 h.

2.2. Characterization of Pristine and Nitrogen-Functionalized Graphene
2.2.1. Elemental Analysis

The carbon (C), hydrogen (H), nitrogen (N), and sulfur (S) compositions of p-GNP
and N-GNP were determined by combustion at 1050 ◦C using the CHNS mode of Ele-
mental GmbH MICRO equipment. Oxygen (O) analysis was performed via pyrolysis at
1450 ◦C using OXY equipment (Elemental GmbH, Kalkar, Germany). Each element was
calculated as the mean of three independent measurements using a standard compound
for calibration [32].

2.2.2. Textural Properties

The textural properties of the graphene materials were based on the N2 adsorp-
tion isotherms determined using a Quantachrome Nova 4200e apparatus (Quantachrome
Instruments, Boynton Beach, FL, USA). The surface areas of p-GNP and N-GNP were
estimated by the Brunauer–Emmett–Teller method (SBET), and the total pore volume (Vp)
was calculated from the amount of N2 uptake at a relative pressure of one. The pore size dis-
tribution was assessed using the non-local density functional theory (NLDFT) as described
in Gomes et al. [33].

2.2.3. Zeta Potential

The zeta potential of p-GNP and N-GNP suspensions in water was measured using a
Malvern Zetasizer Nano (Malvern Instruments Ltd., Malvern, UK) [34].

2.3. Production and Characterization of N-GNP/Polydimethylsiloxane (PDMS) Composites

To produce N-GNP/PDMS surfaces, the N-GNP was incorporated at 1 wt. % into SYL-
GARD™ 184 Silicone Elastomer (Dow Corning, Midland, MI, USA). The selection of N-GNP
loading was based on a previous antibiofilm screening assay, which demonstrated that the
1 wt. % N-GNP/PDMS was the most effective composite against 24 h-old biofilms of S. aureus
compared to 3 and 5 wt. % N-GNP/PDMS surfaces (Figure S1 in Supplementary Materials).

Stirring, sonication, and ultrasonic mixing steps were performed according to the
protocol detailed by Oliveira et al. [35]. Then, 30 µL of the N-GNP/PDMS mixture was
placed on top of glass (1 × 1 cm; Vidraria Lousada, Lda, Lousada, Portugal) through spin
coating (Spin150-v3.2, APT GmbH, Bienenbüttel, Germany), and the coupons were dried
overnight in the oven [35], resulting in 1 wt. % N-GNP/PDMS surfaces. Bare PDMS
surfaces were produced in a similar fashion and used as a control.

Scanning electron microscopy (SEM), optical profilometry (OP), contact angle
measurements, and leaching assays were performed to characterize PDMS and 1 wt. %
N-GNP/PDMS surfaces.

2.3.1. SEM

The synthesized surfaces were sputter-coated (ACE600, Leica Microsystems, Wetzlar,
Germany) after being mounted on aluminum stubs using carbon adhesive tabs. The surface
morphologies were then observed with a secondary electron detector at 3 kV (Zeiss Supra55,
Carl Zeiss Microscopy, Oberkochen, Germany).

2.3.2. OP

The surface roughness was analyzed using a non-contact white light profilometer
(Proscan 2000, Scantron Industrial Products Ltd., Taunton, UK) as described by Belo
et al. [36]. Quadruplicate measurements for each sample were performed (n = 4). Roughness
values and representative three-dimensional (3D) plots were obtained using a MATLAB
routine (MathWorks, Inc., Natick, MA, USA). The arithmetic mean height of the surface
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roughness (Sa) represents the mean surface roughness, whereas the root mean square height
(Sq) corresponds to the standard deviation of the heights.

2.3.3. Contact Angle Measurements

The contact angles of the synthesized surfaces were measured using the sessile drop
technique (Dataphysics OCA 15 Plus, Filderstadt, Germany) with three reference liquids
(water, α-bromonaphthalene, and formamide). A minimum of five measurements per
liquid and surface were performed in three independent assays (n = 15). The surface
free energy (∆G, mJ m−2) was then calculated from the contact angles using the van Oss
approach [37] as described by Gedas et al. [38] to evaluate the surface hydrophobicity.

2.3.4. Leaching Assays

PDMS (control surface) and 1 wt. % N-GNP/PDMS coupons were placed in 12-well
microtiter plates (VWR International, Carnaxide, Portugal), immersed in the Artificial
Urine Medium (AUM) [39] used in biofilm formation assays (Section 2.4), and incubated
for 24 h at 37 ◦C without shaking. Then, the content of N-GNP released into solution was
determined through ultraviolet–visible (UV–vis) spectral measurements recorded on a
JASCO V-560 UV–Vis spectrophotometer (JASCO, Easton, MD, USA).

2.4. Biofilm Formation Assay

S. aureus (SH1000 expressing GFP), P. aeruginosa (PAO1 expressing mCherry), and K.
pneumoniae (ATCC 13883) were used to assess the antibiofilm and antimicrobial activities
of graphene-based surfaces. These three biofilm-forming bacteria are among the most
prominent in CAUTIs [12]. Bacteria were stored at −80 ◦C in Luria-Bertani Broth (LB)
medium (Thermo Fisher Scientific, Waltham, MA, USA), and before each experiment, they
were spread on Plate Count Agar (PCA; Merck KGaA, Darmstadt, Germany) Petri dishes
and incubated at 37 ◦C. Sterile LB medium, without antibiotic and with chlorampheni-
col (10 mg L−1) or tetracycline (1.25 mg L−1), to promote the growth of K. pneumoniae,
S. aureus, and P. aeruginosa, respectively, was then inoculated with individual colonies
from the PCA plates and incubated overnight at 37 ◦C in a shaker at 160 rpm (Grant Bio™
PSU-10i, Fisher Scientific, Leicestershire, UK). After centrifugation at 2576× g for 10 min
(Eppendorf Centrifuge 5810R, Eppendorf, Hamburg, Germany), pellets were resuspended
in fresh AUM to obtain bacterial suspensions with an optical density of 0.1 at 610 nm
(approximately 1 × 107 cells mL−1).

Biofilm formation assays were performed using 12-well plates and duplicate coupons
of 1 wt. % N-GNP/PDMS and PDMS (control surface). First, the microtiter plates and
the coupons glued to the bottom of the wells were sterilized by UV light [38]. To form
single-species biofilms, 3 mL of each suspension (S. aureus, P. aeruginosa, or K. pneumoniae)
was placed into the microplate wells. For multi-species biofilms, the three bacterial inocula
were added at a 1:1:1 ratio, having a final density of 1 × 107 cells mL−1. Additionally,
3 mL of sterile AUM was added to a microwell to control sterility throughout the assay
(negative control). The plates were then incubated under static conditions for 24 h at 37 ◦C.
Six independent assays were carried out, each with two technical replicates (n = 12).

2.5. Biofilm Analysis

In single- and multi-species biofilms, the quantity of total and culturable cells was
gauged using flow cytometry and plate counts, respectively. Moreover, the biofilm ar-
rangement and population composition were studied through confocal laser scanning
microscopy (CLSM).

2.5.1. Total Cell Count

The coupons were removed from the microplate wells, submerged in 2 mL of
8.5 g L−1 NaCl sterile solution, and vortexed for 2 min at maximum speed to obtain
biofilm cell suspensions. They were analyzed in a CytoFLEX flow cytometer model V0-
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B3-R1 (Beckman Coulter, Brea, CA, USA) with the CytExpert software (version 2.4.0.28,
Beckman Coulter, Brea, CA, USA). Bacteria were gated based on their side scatter (SSC) and
forward scatter (FSC) signals. For single-species biofilms, cells were identified based on
their size and complexity in an FSC versus SSC plot. For multi-species biofilms, the three
pathogens were identified based on the fluorescent events registered at FL1 (fluorescence
detector; bandpass (BP) filter 525/40 nm), which correspond to S. aureus expressing GFP;
on the fluorescent events recorded at FL2 (BP 585/42 nm), which correspond to P. aeruginosa
expressing mCherry; and on non-fluorescent events, which correspond to K. pneumoniae,
along with the pathogens’ size and complexity features (SSC versus FSC plot). Subse-
quently, 10 µL of bacterial suspension was acquired. Sample acquisition was conducted at
a flow rate of 10 µL min−1. The results are presented as cells per cm2.

2.5.2. Culturable Cell Count

The number of culturable cells per cm2 was determined by colony-forming unit (CFU)
count. Serial dilutions of biofilm suspensions were performed and spread on PCA (for
K. pneumoniae enumeration) and PCA supplemented with tetracycline (for P. aeruginosa
colony selection) and chloramphenicol (for S. aureus colony selection). The plates were then
incubated at 37 ◦C for 24 h.

2.5.3. Confocal Laser Scanning Microscopy (CLSM) and Image Analysis

Biofilm cells were stained with 0.5 mg·L−1 of 4′,6-diamidino-2-phenylindole (DAPI;
Invitrogen Life Technologies, Alfagene, Portugal), a blue fluorescent DNA stain, for 10 min
in the dark. Biofilm samples were then inverted, mounted on a coverslip, and analyzed
using a Leica DMI6000-CS inverted microscope (Leica Microsystems, Wetzlar, Germany)
with a ×40 water immersion objective (Leica HCX PL APO CS; Leica Microsystems). GFP,
mCherry, and DAPI signals were simultaneously collected using differential excitation and
emission wavelengths. To visualize GFP expressed by S. aureus biofilm cells, a 488 nm argon
laser was used for excitation in combination with a 500–550 nm bandpass emission filter.
The mCherry protein produced by P. aeruginosa was detected using a 633 nm helium-neon
laser in combination with a 610–680 nm bandpass emission filter. DAPI-stained cells were
observed with a 405 nm diode-UV laser line and a 350–470 nm bandpass emission filter. A
minimum of five stacks of horizontal plane images (387.5 µm × 387.5 µm) with a z-step of
1 µm was acquired for each biofilm sample. In the confocal images presented, S. aureus, P.
aeruginosa, and K. pneumoniae cells are shown in green, red, and blue, respectively.

Simulated 3D projections and two-dimensional (2D) sections of the biofilms were
generated using IMARIS 9.3 (Bitplane AG, Zurich, Switzerland). Biofilm parameters,
namely biovolume (µm3 µm−2) and thickness (µm), were extracted from CLSM stacks
using COMSTAT2 [40]. In multi-species biofilms, the relative abundance of each bacterial
strain was determined from the biovolume fractions.

2.6. Evaluation of N-GNP Mechanisms of Action

The mechanisms of N-GNP against S. aureus, P. aeruginosa, and K. pneumoniae were
characterized using flow cytometry. Bacterial suspensions (1 × 107 cells mL−1) were
exposed to 1% (w/v) N-GNP for 24 h at 37 ◦C; non-treated cells were used as controls. Cells
were harvested by centrifugation and the supernatant was collected for analysis [38].

Cell membrane potential, cell membrane integrity, bacterial metabolic activity, and
ROS production were evaluated by staining the cells with bis-(1,3-dibutylbarbituric acid)
trimethine oxonol (DiBAC4(3); Sigma-Aldrich, Taufkirchen, Germany) at 0.5 µg mL−1 [41],
propidium iodide (PI, Invitrogen Life Technologies, Alfagene, Lisboa, Portugal) at
1 µg mL−1 [42], 5(6)-carboxyfluorescein diacetate (5-CFDA; Sigma-Aldrich, Taufkirchen,
Germany) at 5 µg mL−1 [42], and 2′,7′-dichlorofluorescein diacetate (DCFH-DA, Sigma-
Aldrich, Taufkirchen, Germany) at 10 µM [43], respectively.
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Bacterial suspensions were stained for 30 min in the dark and 10,000 events were
analyzed at a flow rate of 10 µL min−1. The results are presented as the mean intensity of
fluorescence (MIF) at FL1 for DiBAC4(3), 5-CFDA and DCFH-DA, and at FL2 for PI.

2.7. Statistical Analysis

Data were analyzed with IBM SPSS Statistics version 29.0 for Microsoft (IBM SPSS,
Inc., Chicago, IL, USA). Descriptive statistics were employed to compute the mean and
standard deviation (SD) for elemental analysis, surface roughness parameters, contact
angles, number of biofilm cells, and biofilm biovolume and thickness. Differences in
biofilm cell numbers according to the type of surface were evaluated through Kruskal–
Wallis and Mann-Whitney tests, given the non-normal distribution of the variables. In
turn, quantitative parameters obtained from the CLSM analysis (biofilm biovolume and
thickness) were compared using one-way analysis of variance (ANOVA). Statistically
significant differences were considered for p-values < 0.05.

3. Results and Discussion
3.1. Characterization of Pristine and Nitrogen-Functionalized Graphene

To understand whether graphene surface modification with nitrogen was successfully
achieved, elemental analysis of N-GNP was performed and compared to p-GNP (Table 1).

Table 1. Elemental composition (wt. %) of graphene samples (p-GNP and N-GNP).

Sample C H N S O

p-GNP 90.80 ± 0.80 0.44 ± 0.01 0.03 ± 0.00 0.05 ± 0.03 5.60 ± 0.07
N-GNP 88.60 ± 0.20 0.58 ± 0.03 4.17 ± 0.02 0.02 ± 0.00 3.80 ± 0.12

Data revealed that GNP consisted mostly of carbon (90.8%), followed by oxygen and
hydrogen (5.6 and 0.4%, respectively), which is supported by the literature [32]. Similarly, N-
GNP was mostly composed of carbon (88.6%) and presented low amounts of oxygen (3.8%)
and hydrogen (0.6%). In contrast to p-GNP, it was possible to detect considerable amounts
of nitrogen (4.2%) in N-GNP. This result indicated that the treatment with melamine through
a solventless method using ball milling introduced nitrogen on the surface of GNP. Previous
studies have reported that treatment with N-precursors results in the incorporation of a
considerable amount of nitrogen (between 0.2% and 4.8%) on the graphene surface [32],
and that the N-functionalities include mainly pyridinic-N (N-6), pyrrolic-N (N-5), and
quaternary nitrogen (N-Q) in lower amounts [31,32]. In addition, by incorporating nitrogen
groups into GNP structures, it is expected that some carbon atoms can be replaced [32].
Altogether, these results confirm that N incorporation on the GNP surface was achieved.

The N2 adsorption–desorption isotherms for the p-GNP and N-GNP materials are
shown in Figure 1. According to IUPAC, they can be classified as type II [44,45], which is
characteristic of carbon materials with some mesoporosity [33].

Through adsorption–desorption isotherm analysis at −196 ◦C, it was possible to
determine the textural properties of each sample. The specific surface area (SBET), the
volume of micropores (Vmicro), the surface area of mesopores (Smeso), and the total pore
volume (Vp) were determined (Table 2).

For the N-GNP sample, the amount of N2 adsorbed was lower than that for the p-GNP
sample (Figure 1). This may be a consequence of the different degrees of agglomeration of
the graphene sheets in the two materials [31].
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Table 2. Textural properties of p-GNP and N-GNP.

Property
Sample

p-GNP N-GNP

SBET (m2 g−1) 471 361
Vmicro (cm3 g−1) 0.052 0.073
Smeso (m2 g−1) 353 196

VP (p/p0 = 0.99) (cm3 g−1) 0.892 0.485

In turn, there was a decrease in the surface area (SBET) of p-GNP to N-GNP, from 471
to 361 m2 g−1. This is probably because the N-GNP underwent a mechanical treatment and
was functionalized with a nitrogen source, decreasing its surface area when exfoliating and
cutting the graphene sheets [46].

Regarding the surface area of the mesopores (Smeso), N-GNP presented a lower value
compared to p-GNP (196 versus 353). In contrast, N-GNP Vmicro slightly increased com-
pared to p-GNPs (0.073 versus 0.052). This may be because graphene sheets do not have as
much space between them due to nitrogen incorporation [31].

Altogether, these results suggest that ball milling and heat treatments (600 ◦C) applied
to the GNP material during N functionalization promoted several modifications in their
textural and chemical properties, mainly due to the exfoliation of graphene sheets [46].
In addition, it can be concluded that the N-doping of GNP with melamine results in a
decreased surface area compared to the p-GNP material, which suggests that the addition
of the N-precursor contributes to greater aggregation of the graphene sheets.

The surface charges of p-GNP and N-GNP were also evaluated by measuring the
zeta potential. N-GNP displayed a zeta potential of −4.93 ± 0.45 mV, while p-GNP of
−6.42 ± 0.34 mV. Thus, both graphene samples had a slightly negative charge and may
experience electrostatic repulsion when interacting with negatively charged bacterial cell
surfaces. This repulsion can hinder direct contact between GNP and bacterial cells, making
their interaction less favorable.

3.2. Composite Characterization
3.2.1. Surface Morphology

It is well known that the morphology of nanocomposite films has an impact on the
extent of bacterial cell adhesion [47,48]. Thus, the surface morphology of PDMS (control)
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and 1 wt. % N-GNP/PDMS was visualized by electron microscopy (Figure 2). While
PDMS displayed a homogeneous surface (Figure 2a), the 1 wt. % N-GNP/PDMS composite
exhibited protrusions scattered across the surface area under analysis (Figure 2b). These
irregularities correspond to graphene agglomerates that form small elevations on the
coating surface, as previously observed by the group for pristine GNP [35,38]. The presence
of graphene clusters on the surfaces could enhance their effectiveness as they encourage
direct interaction between the carbon nanomaterial and bacterial cells, which, in turn, can
amplify the antibacterial efficacy of these composites [27,49].
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Figure 2. SEM micrographs of (a) PDMS and (b) 1 wt. % N-GNP/PDMS composites. The images
have a magnification of 500× and the scale bars are 50 µm.

3.2.2. Surface Roughness

The roughness of both surfaces was determined by optical profilometry. Looking
at Figure 3, it is possible to observe an increase in roughness from PDMS (Figure 3a) to
1 wt. % N-GNP/PDMS (Figure 3b). Quantitative data (Table 3) confirmed this by revealing
that the incorporation of N-GNP into the PDMS matrix increased the Sa and Sq values by a
factor of approximately 1.5. These results corroborated the SEM analysis, in which PDMS
showed the smoothest surface (Figure 2), and suggest that graphene-based surfaces may
promote biofilm growth since surface roughness increases the area available for bacterial
attachment [47].
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Table 3. Roughness parameters (Sa and Sq) of PDMS and 1 wt. % N-GNP/PDMS. Results are
presented as mean ± SD.

Sample
Roughness (µm)

Sa Sq

PDMS 47.5 ± 8.4 75.3 ± 6.9
1 wt. % N-GNP/PDMS 155.8 ± 33.2 236.1 ± 73.4

Nomenclature: Sa—arithmetical mean height; Sq—root mean square height.

3.2.3. Surface Hydrophobicity

Hydrophobicity can also influence the attachment of bacteria by providing suitable
substrata for their adhesion or by hindering their ability to attach [47]. Contact angle
measurements provide a theoretical prediction of microbial adhesion on the tested surfaces
by determining the degree of hydrophobicity. Analyzing the results in Table 4, both tested
surfaces are hydrophobic, as they presented water contact angles higher than 90◦, as well
as negative values of free energy of interaction (∆G). In turn, the 1 wt. % N-GNP/PDMS
surface showed higher hydrophobicity than PDMS (i.e., lower ∆G value), meaning that the
interactions between the N-GNP nanosheets were stronger than those with water.

Table 4. Contact angles and surface hydrophobicity of PDMS and 1 wt. % N-GNP/PDMS. Results
are presented as mean ± SD. Significant differences between the contact angles on the tested surfaces
were considered for p < 0.05 (*).

Sample
Contact Angle (◦) Hydrophobicity

(mJ m−2)

θW θF θB ∆G

PDMS 114.3 ± 1.4 111.8 ± 1.6 88.3 ± 3.8 −63.1
1 wt. % N-GNP/PDMS 122.1 ± 0.6 * 111.5 ± 1.7 64.7 ± 5.8 * −81.1

Nomenclature: θW, water contact angle; θF, formamide contact angle; θB, α-bromonaphthalene contact angle; ∆G,
free energy of interaction between two entities of a given surface when immersed in water.

According to several studies, hydrophobic surfaces are more susceptible to bacterial
adhesion [50,51]. However, other studies have not found a direct link between surface hy-
drophobicity and bacterial cell adhesion [52]. These contradictory results can be explained
by other aspects, including biological (e.g., the presence of cell structures such as flagella)
and environmental factors, which alter the adhesion conditions of microorganisms [53].
Furthermore, biofilm development on the surface can trigger alterations in the hydrophobic
properties of the substrate. Hence, these findings alone do not provide sufficient evi-
dence to accurately assess the extent of biofilm formation by the tested bacteria on the
fabricated surfaces.

3.3. Antibiofilm Performance of N-GNP/Polydimethylsiloxane (PDMS) Composites

To unveil the antibiofilm and antimicrobial activities of the N-GNP/PDMS composite,
uropathogenic biofilms were formed at 37 ◦C for 24 h under static conditions. These
conditions mimic those of the colonization of the extraluminal side of UCs and the balloon
in the case of a Foley catheter, which are exposed to quasi-static urine in the bladder [54].
Biofilms were analyzed in terms of the number of total and culturable cells as well as their
architecture (biovolume and thickness).

3.3.1. Biofilm Total Cells

The total biofilm cell number determined by flow cytometry confirmed that the
uropathogenic bacteria tested were able to adhere to and form biofilms on the synthe-
sized surfaces under the tested conditions (Figure 4). The results indicated that P. aeruginosa
was the strongest biofilm-forming bacterium, whereas S. aureus was the weakest (p < 0.001).
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Figure 4. Number of total cells of (a) single- and (b) multi-species biofilms formed by P. aeruginosa, S.
aureus, and K. pneumoniae on PDMS (striped bars) and 1 wt. % N-GNP/PDMS (clear bars) surfaces.
Results are presented as mean ± SD. Differences between surfaces were considered significant at
p < 0.05 (*).

For single-species biofilms (Figure 4a), both P. aeruginosa and K. pneumoniae biofilms
formed on 1 wt. % N-GNP/PDMS surfaces showed a significantly lower number of
total biofilm cells than PDMS (5.2 × 107 versus 8.9 × 107 cell cm−2 and 3.4 × 107 versus
4.7 × 107 cell cm−2 for P. aeruginosa and K. pneumoniae, respectively). Interestingly, 1 wt. %
N-GNP/PDMS surfaces strongly reduced the number of S. aureus biofilm cells when
compared to the control surface (4.8 × 105 versus 1.3 × 106 cell cm−2; p < 0.001). Overall,
total cell reductions of 41, 64, and 29% were obtained for P. aeruginosa, S. aureus, and
K. pneumoniae, respectively, on the N-GNP/PDMS surface. For multi-species biofilms
(Figure 4b), the 1 wt. % N-GNP/PDMS surface showed a significantly lower number of
total biofilm cells than PDMS (41% reduction). Furthermore, the numbers of P. aeruginosa,
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S. aureus, and K. pneumoniae adhered to 1 wt. % N-GNP/PDMS surfaces were significantly
lower compared to PDMS (1.9 × 107 versus 3.0 × 107 cells cm−2 for P. aeruginosa, 5.0 × 105

versus 9.2 × 105 cells cm−2 for S. aureus, and 1.6 × 107 versus 3.0 × 107 cells cm−2 for K.
pneumoniae). In general, biofilm cells of P. aeruginosa were reduced by 37%, and biofilm
cells of S. aureus and K. pneumoniae were reduced by 46% on a 1 wt. % N-GNP/PDMS
surface. These results demonstrate the antibiofilm performance of nitrogen-functionalized
GNP surfaces against single- and multi-species biofilms. Although surface characterization
analysis suggested that 1 wt. % N-GNP/PDMS could be more susceptible to bacterial
adhesion and biofilm formation, factors other than surface properties, such as bacterial
surface characteristics, probably contributed to its antibiofilm performance.

Considering the bacterial population in multi-species biofilms formed on the N-
GNP/PDMS surface, P. aeruginosa was the predominant bacteria, followed by K. pneumoniae
and S. aureus (Figure S2 in Supplementary Materials). This may explain the similarity in
cell reduction between single-species biofilms of P. aeruginosa and multi-species biofilms
(both around 41%).

3.3.2. Biofilm Culturable Cells

Figure 5 shows the number of culturable cells per unit surface area determined by
CFU counting for single- and multi-species biofilms. Antibiotic-selective agar plates
were used to distinguish between the three bacterial strains chosen for the growth of
mixed biofilms.

Concerning single-species biofilms (Figure 5a), the N-GNP/PDMS surface showed a
significantly lower number of S. aureus cells than PDMS (5.8× 105 versus 1.2 × 106 cells cm−2;
p = 0.007). However, for P. aeruginosa and K. pneumoniae biofilms, the graphene-based sur-
face had a similar number of culturable cells to control (p > 0.05). Culturable cell reductions
of 7, 50, and 4% were obtained for P. aeruginosa, S. aureus, and K. pneumoniae, respectively, in-
dicating a high antimicrobial performance of the nitrogen-functionalized GNP composites
against Gram-positive cells and a lack of activity against Gram-negative bacteria.

Regarding culturable cells in multi-species biofilms (Figure 5b), the results followed
the same trend. The 1 wt. % N-GNP/PDMS surfaces showed an equal number of sessile
cells to that of PDMS (around 1.0 × 108 cells cm−2). Moreover, there were no significant
differences between the number of culturable P. aeruginosa, S. aureus, and K. pneumoniae
cells adhered to N-GNP/PDMS and PDMS surfaces. Comparing the performance of the
N-GNP/PDMS surface with PDMS, only a 15% culturable cell reduction was obtained for S.
aureus in multi-species biofilms. Altogether, these results indicate that the N-GNP/PDMS
composite only exhibited antimicrobial activity against S. aureus, and this activity decreased
when multi-species biofilms were considered.

These findings align with prior research that showed a more pronounced antibacterial
effect of graphene on Gram-positive bacteria compared to Gram-negative
bacteria [24,55–57]. Gram-positive bacteria, such as S. aureus, feature a cytoplasmic mem-
brane enveloped by a peptidoglycan layer. Conversely, Gram-negative bacteria such as P.
aeruginosa and K. pneumoniae possess a more intricate cell envelope encompassing a plasma
membrane, a peptidoglycan cell wall, and an outer membrane primarily composed of
lipopolysaccharide (LPS) [58]. It has been hypothesized that this outer membrane largely
contributes to the rigidity and resistance of Gram-negative cells [59,60]. This could poten-
tially hinder cell membrane rupture, which is considered one of the primary mechanisms
of action of graphene materials.

Concerning bacterial interactions, as the number of culturable cells for each tested
species was similar to that obtained for single-species biofilms, a neutral relationship
between the different strains likely occurred (Figure 5).
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aeruginosa, S. aureus, and K. pneumoniae on PDMS (striped bars) and 1 wt. % N-GNP/PDMS (clear
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3.3.3. CLSM Analysis

The antibiofilm performance of N-GNP composites against single- and tri-species biofilms
of P. aeruginosa, S. aureus, and K. pneumoniae was evaluated using confocal microscopy.

Figure 6 illustrates the three-dimensional (3D) arrangement of single-species biofilms
of P. aeruginosa, S. aureus, and K. pneumoniae formed on PDMS (control surface) and PDMS
incorporated with nitrogen-functionalized graphene nanoplatelets (N-GNP/PDMS). It was
observed that P. aeruginosa formed denser and thicker biofilms (shadow projections on the
right of the images; top row of Figure 6) than S. aureus and K. pneumoniae, and this was
particularly noticeable in biofilms developed on PDMS. Here, the resulting P. aeruginosa
biofilm had a heterogeneous architecture, covering the entire surface with mounds of
various heights. Among the two bacterial strains that formed less biofilm (S. aureus and
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K. pneumoniae), K. pneumoniae (bottom row of Figure 6) formed 24 h biofilms with greater
surface coverage and thickness than S. aureus (middle row of Figure 6), despite the tested
surface material.
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Figure 6. Single-species biofilms of P. aeruginosa (top row), S. aureus (middle row), and K. pneumoniae
(bottom row) developed on PDMS (left column) and 1 wt. % N-GNP/PDMS (right column) surfaces.
These representative images were obtained using the IMARIS 9.3 software and present an aerial, 3D
view of the biofilms. The black shadow on the right represents the vertical projection of biofilm. The
white scale bars are 40 µm.

Regarding the surface effect, 1 wt. % N-GNP/PDMS (Figure 6, right column) showed
the lowest biofilm amount compared to PDMS (Figure 6, left column), regardless of the
bacterial strain tested. This reduction in biofilm mass between PDMS and functionalized
PDMS was particularly evident for the Gram-positive strain. Indeed, while a loosely
packed, open biofilm architecture of S. aureus was detected on PDMS, a few heterogeneously
distributed clusters of cells were observed on the N-GNP surface, sharply decreasing the
surface area covered by biomass.

Biofilm biovolume and thickness values appraised from confocal image analysis
validated these qualitative findings (Figure 7). The N-GNP surface reduced the biovolume
of P. aeruginosa, S. aureus, and K. pneumoniae single-species biofilms by 46, 86, and 28%,
respectively, compared to the PDMS surface (p < 0.05, Figure 7a). Additionally, there
was a reduction of approximately 75% in the biofilm thickness of P. aeruginosa and S.
aureus between both surfaces (p < 0.001, Figure 7b), whereas the thickness of K. pneumoniae
biofilms decreased by only 9% on the N-GNP compared to the control (p > 0.05, Figure 7b).
These results confirmed the greater potential of N-GNP composites for the prevention of
staphylococcal biofilms in the urinary context, which was previously demonstrated by flow
cytometry data (Figure 4).
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8 and 9). The second bacterial strain that appears to be present in greater numbers in both 
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Figure 7. (a) Biovolume and (b) thickness of single-species biofilms of P. aeruginosa, S. aureus, and K.
pneumoniae formed on PDMS (striped bars) and 1 wt. % N-GNP/PDMS (clear bars) surfaces obtained
from confocal image series. The means ± SDs for three independent experiments are presented.
Significant differences were considered for p < 0.05 by (*) and < 0.001 by (**).

Three- and two-dimensional representations of tri-species biofilms of P. aeruginosa,
S. aureus, and K. pneumoniae grown on PDMS and N-GNP/PDMS are displayed in
Figures 8 and 9, respectively. This microscopic study was crucial for elucidating the in-
teractive behavior of the strains when cultured for 24 h. Regardless of the surface ma-
terial, consortium biofilms were mainly composed of P. aeruginosa cells (second row of
Figures 8 and 9). The second bacterial strain that appears to be present in greater numbers
in both biofilms is K. pneumoniae (last row of Figure 8), as several purple regions that are
due to overlapping red and blue fluorescent signals were visible in 2D confocal images
(Figure 9). In turn, residual amounts of S. aureus cells (marked in green) were randomly
detected within the tri-species biofilms (third row of Figures 8 and 9). These results are sup-
ported by the analysis of the biofilm total and culturable cells (Figures 4 and 5, respectively).
With regard to the differences between surfaces, in general, the biofilm formed on PDMS
had a higher cell density and thickness than that developed on PDMS with N-GNP, similar
to what was observed for single-species biofilms (Figure 6). Moreover, the biofilms formed
on PDMS exhibited structures characterized by a more consistent thickness compared to
those developed on the N-GNP/PDMS surface, where several cell agglomerates stand out
(first row of Figures 8 and 9). The CLSM study also indicated that there was no noticeable
preference for spatial localization of the three bacterial strains along the biofilm thickness
(Figure 9).

The average values extracted for the total biovolume and thickness of these multi-
species biofilms (Figure 10) reinforced the visual observation (Figures 8 and 9). There were
significant reductions of approximately 30% and 70% in biofilm biovolume and thickness,
respectively, in the tri-species biofilms formed on modified PDMS compared to PDMS
(p < 0.001).
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Figure 8. Multi-species biofilms of P. aeruginosa, S. aureus, and K. pneumoniae formed on PDMS (left
column) and 1 wt. % N-GNP/PDMS (right column) surfaces. P. aeruginosa was labeled in red, S.
aureus was labeled in green, and K. pneumoniae was counterstained in blue with DAPI. The first row
corresponds to the overlap of red, green, and blue channels (P. aeruginosa + S. aureus + K. pneumoniae),
while the other rows are the individual channel compositions. Each image is an aerial, 3D view of the
biofilms obtained as in Figure 6. The white scale bars represent 40 µm.

Regarding the presence of each bacterial strain within the tri-species biofilms, the
quantitative data (Figure 11) confirmed that P. aeruginosa was the dominant strain on both
surfaces (making up, on average, 62% of the total biovolume), followed by K. pneumoniae
(up to 35% of the total biovolume), and finally S. aureus (only 3% of the total biovolume).
Looking at the influence of the surface material on the species proportion, the decrease
in P. aeruginosa and K. pneumoniae biomass in the functionalized graphene composite was
on average 29% compared to bare PDMS (p < 0.05), which is in line with the reduction
percentage of the total biovolume. However, the surface seemed to have had a greater
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effect on the S. aureus population within the multi-species biofilms (49% reduction on
N-GNP/PDMS compared to PDMS).

Nanomaterials 2023, 13, x FOR PEER REVIEW 16 of 25 
 

 

 
Figure 9. Bacterial distribution in multi-species biofilms formed on (a) PDMS and (b) 1 wt. % N-
GNP/PDMS surfaces. P. aeruginosa was labeled in red, S. aureus was labeled in green, and K. 
pneumoniae was counterstained in blue with DAPI. These are top and vertical 2D sectional views of 
the CLSM images presented in Figure 8. The top micrographs correspond to the top view of the 
biofilm, while the micrographs shown on the right side are vertical sections of the biofilm collected 
at the positions indicated by the white dots. Purple regions appear because the red and blue colors 
superimpose. The white scale bars represent 100 µm. 

The average values extracted for the total biovolume and thickness of these multi-
species biofilms (Figure 10) reinforced the visual observation (Figures 8 and 9). There were 
significant reductions of approximately 30% and 70% in biofilm biovolume and thickness, 
respectively, in the tri-species biofilms formed on modified PDMS compared to PDMS (p 
< 0.001). 

 
Figure 10. (a) Biovolume and (b) thickness of tri-species biofilms formed on PDMS and 1 wt. % N-
GNP/PDMS obtained from confocal image series. The means ± SDs for three independent 
experiments are presented. Significant differences were considered for p < 0.001 (**). 

Figure 9. Bacterial distribution in multi-species biofilms formed on (a) PDMS and (b) 1 wt. %
N-GNP/PDMS surfaces. P. aeruginosa was labeled in red, S. aureus was labeled in green, and K.
pneumoniae was counterstained in blue with DAPI. These are top and vertical 2D sectional views
of the CLSM images presented in Figure 8. The top micrographs correspond to the top view of the
biofilm, while the micrographs shown on the right side are vertical sections of the biofilm collected
at the positions indicated by the white dots. Purple regions appear because the red and blue colors
superimpose. The white scale bars represent 100 µm.
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Overall, the antibiofilm effectiveness of N-GNP-based surfaces was confirmed through
both the analysis of biofilm cell composition and the assessment of biofilm structure.
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Figure 11. Total biovolume and biovolume of P. aeruginosa, S. aureus, and K. pneumoniae in tri-species
biofilms formed on PDMS (striped bars) and 1 wt. % N-GNP/PDMS (clear bars) surfaces obtained
from confocal image series. The means ± SDs for three independent experiments are presented.
Significant differences were considered for p < 0.05 by (*) and < 0.001 by (**).

The short-term stability of the composites was also evaluated under in vitro conditions,
and no leaching of the functionalized graphene was detected (Figure S3 in Supplementary
Materials), reinforcing the potential of this type of coating for urinary applications.

3.4. N-GNP Mechanisms of Action

Numerous research studies have documented the promising antibacterial potential of
graphene and its derivatives [18,24,27]. However, their mechanisms of action are poorly
documented and require further investigation [61]. In order to characterize the antibacterial
mechanisms of N-functionalized graphene, S. aureus, P. aeruginosa, and K. pneumoniae
were treated with 1% (w/v) N-GNP for 24 h and stained with DiBAC4(3) (a membrane
depolarization marker), PI (a membrane integrity marker), 5-CFDA (a metabolic activity
marker), and DCFH-DA (a ROS production indicator), and analyzed by flow cytometry
(Figures 12–14). Non-treated bacteria stained with the aforementioned dyes were used
as controls.

Flow cytometry data indicated that S. aureus treated with N-GNP exhibited changes in
the cell membrane, as demonstrated by DiBAC4(3) and PI staining (Figure 12a–d). Cells
stained with these two dyes displayed a higher mean intensity of fluorescence (MIF) than
non-treated cells (approximately 20-fold higher). This finding is aligned with the proposed
GNP mechanism of action, which hypothesizes that the sharp edges of GNP nanosheets
physically damage bacterial membranes [35,62]. It was also observed that N-GNP increased
S. aureus metabolic activity compared to non-treated cells, as demonstrated by the increase
in MIF of cells stained with 5-CFDA (approximately 20-fold higher; Figure 12e,f). This
suggests that bacteria reprogrammed their metabolism to counteract the stress imposed by
graphene. Moreover, S. aureus treated with N-GNP and stained with DCFH-DA presented
higher MIF than non-treated cells (8-fold higher, Figure 12g,h), indicating ROS production.
Indeed, some studies have demonstrated that exposure to graphene-based materials in-
creases ROS production in bacteria, which, in turn, contributes to cell membrane damage
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and, ultimately, bacterial death [63]. Altogether, these data indicate that GNP targets the S.
aureus cell membrane and induces ROS production.

Nanomaterials 2023, 13, x FOR PEER REVIEW 19 of 25 
 

 

 
Figure 12. Representative flow cytometric histograms obtained for S. aureus non-treated and treated 
with 1% (w/v) N-GNP, stained with (a,b) DiBAC4(3), (c,d) PI, (e,f) 5-CFDA, and (g,h) DCFH-DA, 
respectively. Results were presented as the mean intensity of fluorescence (MIF). 

Figure 12. Representative flow cytometric histograms obtained for S. aureus non-treated and treated
with 1% (w/v) N-GNP, stained with (a,b) DiBAC4(3), (c,d) PI, (e,f) 5-CFDA, and (g,h) DCFH-DA,
respectively. Results were presented as the mean intensity of fluorescence (MIF).



Nanomaterials 2023, 13, 2604 19 of 24Nanomaterials 2023, 13, x FOR PEER REVIEW 20 of 25 
 

 

 
Figure 13. Representative flow cytometric histograms obtained for P. aeruginosa non-treated and 
treated with 1% (w/v) N-GNP, stained with (a,b) DiBAC4(3), (c,d) PI, (e,f) 5-CFDA, and (g,h) DCFH-
DA, respectively. Results were presented as the mean intensity of fluorescence (MIF). 

Figure 13. Representative flow cytometric histograms obtained for P. aeruginosa non-treated and
treated with 1% (w/v) N-GNP, stained with (a,b) DiBAC4(3), (c,d) PI, (e,f) 5-CFDA, and (g,h) DCFH-
DA, respectively. Results were presented as the mean intensity of fluorescence (MIF).
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treated with 1% (w/v) N-GNP, stained with (a,b) DiBAC4(3), (c,d) PI, (e,f) 5-CFDA, and (g,h) DCFH-
DA, respectively. Results were presented as the mean intensity of fluorescence (MIF).
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Concerning Gram-negative bacteria (P. aeruginosa and K. pneumoniae), N-GNP did not cause
substantial changes in cell membrane integrity, as demonstrated by DiBAC4(3) and PI staining
(similar MIF values between treated and non-treated cells were found; Figures 13a–d and 14a–d).
Moreover, since there were no differences in MIF of N-GNP-treated and non-treated cells stained
with DCFH-DA, it can be assumed that, under the tested conditions, this carbon material did
not induce ROS production (Figures 13g,h and 14g,h). However, when exposed to N-GNP,
both P. aeruginosa and K. pneumoniae suffered changes in their metabolic activities, as revealed
by 5-CFDA staining (2.5- and 1.5-fold higher MIF for P. aeruginosa and K. pneumoniae treated
cells, respectively; Figures 13e,f and 14e,f), suggesting that the bacteria are trying to adapt to
the hostile environment imposed by N-GNP. A schematic representation of the N-GNP action
mechanisms against Gram-positive and Gram-negative bacteria is presented in Figure 15.
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Figure 15. Schematic representation of the N-GNP antibacterial mechanisms against Gram-negative
and Gram-positive bacteria. In Gram-negative bacteria, N-GNP increases cell metabolism as response
to oxidative stress; whereas, in Gram-positive bacteria, this carbon material causes loss of membrane
integrity, induces changes in cell metabolism and triggers ROS production.

Overall, these data corroborate the antimicrobial performance of the 1 wt. % N-
GNP/PDMS surface against S. aureus to the detriment of P. aeruginosa and K. pneumoniae. A
variety of experimental conditions can influence the antimicrobial activity of graphene mate-
rials, including the bacteria type (rod or spherical), since microorganisms have different mor-
phological structures and abilities for growth under certain physiological conditions [27].

4. Conclusions

This study demonstrated that biofilm formation processes were influenced not solely
by surface characteristics (e.g., roughness and hydrophobicity) but also by the tested bac-
teria’s properties. The 1 wt. % N-GNP/PDMS composite showed a high potential to be
used as a coating for UCs since this surface significantly inhibited single- and multi-species
biofilms formed by different uropathogenic organisms when compared to bare PDMS. The
antibiofilm and antimicrobial activities of this graphene-based surface were particularly
noticeable against the Gram-positive S. aureus strain. Hence, this composite could signif-
icantly contribute to diminishing the occurrence of CAUTIs and the therapeutic failure
of UCs. However, while the potential of N-GNP/PDMS surfaces for biofilm prevention
is promising, there are still challenges to overcome, such as scalability, cost-effectiveness,
long-term stability, and biocompatibility, which must be addressed before real-life appli-
cations. Additionally, the coating must be further optimized (by introducing additional
functionalization in the graphene or by the inclusion of other compounds) so that its efficacy
against Gram-negative bacteria can be improved.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano13182604/s1, Figure S1. Number of total cells of S. aureus biofilms
formed on PDMS, 5 wt. % GNP/PDMS and 1, 3 and 5 wt. % N-GNP/PDMS surfaces. Results are
presented as mean ± SD. Significant differences between GNP-based surfaces and the control (PDMS)
were considered for p-values < 0.05 (*). Figure S2. Proportion of P. aeruginosa (in red), S. aureus (in
green), and K. pneumoniae (in blue) cells in multi-species biofilms formed on PDMS (left) and 1 wt. %
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N-GNP/PDMS (right) surfaces. Figure S3. UV–vis spectra of AUM medium after contact with PDMS
(green line) and 1 wt. % N-GNP/PDMS (blue line) surfaces.
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