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Abstract: The cooperative transition of sulfur-containing pollutants of H2S/CO/H2 to the high-value
chemical methyl mercaptan (CH3SH) is catalyzed by Mo-based catalysts and has good application
prospects. Herein, a series of Al2O3-supported molybdenum carbide catalysts with K doping (denoted
herein as K-Mo2C/Al2O3) are fabricated by the impregnation method, with the carbonization process
occurring under different atmospheres and different temperatures between 400 and 600 ◦C. The
CH4-K-Mo2C/Al2O3 catalyst carbonized by CH4/H2 at 500 ◦C displays unprecedented performance
in the synthesis of CH3SH from CO/H2S/H2, with 66.1% selectivity and a 0.2990 g·gcat

−1·h−1 forma-
tion rate of CH3SH at 325 ◦C. H2 temperature-programmed reduction, temperature-programmed
desorption, X-ray diffraction and Raman and BET analyses reveal that the CH4-K-Mo2C/Al2O3

catalyst contains more Mo coordinatively unsaturated surface sites that are responsible for promoting
the adsorption of reactants and the desorption of intermediate products, thereby improving the
selectivity towards and production of CH3SH. This study systematically investigates the effects of
catalyst carbonization and passivation conditions on catalyst activity, conclusively demonstrating
that Mo2C-based catalyst systems can be highly selective for producing CH3SH from CO/H2S/H2.

Keywords: methyl mercaptan; CO/H2S/H2; molybdenum carbide; effect of carbonization conditions

1. Introduction

Coal is the main energy source in China. This produces large quantities of sulfur-
containing pollutants emitted by coal combustion, which has resulted in serious atmo-
spheric environmental pollution [1–3]. Therefore, the removal and utilization of hydrogen
sulfide resources have become research hotspots in the coal chemical industry [4,5]. In
this industry, the Claus method and the improved Claus method are generally used to
recover H2S to produce sulfur or sulfuric acid, and the added value of the products is low.
The preparation of the high-value chemical methyl mercaptan (CH3SH) from H2S, along
with CO and H2 in the process of coal gasification, has become a valuable development
direction [6–9]. This technology can not only effectively remove H2S but also provide a new
route for downstream product development. The key to realizing the efficient utilization of
raw materials and the high yield of products is to build a high-performance catalyst system.
Until now, molybdenum sulfide based catalysts have been widely preferred because of
their excellent sulfur resistance, but the reactant conversion and product selectivity are
poor [10,11], which greatly restricts the development and application of molybdenum
sulfide based catalysts.

In the industry, CH3SH is mainly synthesized from the thiolation of methanol over
alkali-promoted transition metal catalysts [12,13], but methanol needs to be prepared with
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syngas (CO + H2), which leads to complex processes, massive energy consumption and
high economic costs. Olin et al. [14] developed a one-step synthesis method of CH3SH using
syngas raw materials and reduced sulfur species (hydrogen sulfide) generated during coal
gasification that will greatly reduce the production cost of CH3SH. Therefore, the prepara-
tion of CH3SH from CO/H2/H2S has received widespread attention in recent years [15–17],
and most research has focused on tungsten-based and molybdenum-based catalysts.

Among these, sulfurized K-Mo-based materials have received widespread attention
due to their good catalytic activity and excellent sulfur resistance [18–21]. Many studies
have been focused on the reactive phase, the reaction path and improving the performance
of the catalysts by regulating catalyst carriers, additives, preparation methods and so on.
Liu et al. [7] found that the addition of alkali metals (Na, K, Cs) can lead to different
sulfidation degrees of Mo oxidized species owing to the different electric effects of alkali
metals, which result in the formation of different concentrations of alkali-metal-promoted
Mo containing coordinatively unsaturated sites, dramatically improving the CH3SH selec-
tivity and CO conversion. Lu et al. [22] synthesized mesoporous silica (SBA-15)-supported,
2–4 layered, ordered and K-promoted MoS2 nanosheets. K promotion played an important
role by stabilizing the C-S bond during the adsorption of the intermediate, COS, to avoid
its conversion to side products in the gas phase, so the CO conversion and the selectivity
towards CH3SH were obviously improved. Yu et al. [23] also found not only that K can
enhance the MoS2-catalyzed synthesis of methanethiol, whereby synergy increases with
alkali cation size, but also that alkali sulfides themselves were the active sites. However,
there are still obstacles in CO/H2/H2S synthesis of CH3SH using a molybdenum sulfide
based catalyst, such as low reactant conversion and low selectivity towards the product,
CH3SH. Therefore, it is still of great significance to explore high-performance catalysts.

The transition metal carbide (TMC) molybdenum carbide (Mo2C), which acts as an
electron donor, exhibits high catalytic activity and selectivity due to the redistribution of
electrons after carbon introduction. It has been widely applied for selective C-C, C-O and
C-H bond cleavage and for producing fuel molecules from oxygenated biomass [24–27].
Moreover, it has good sulfur resistance and is expected to replace noble metal catalysts,
which are limited by their low abundance and high cost [28,29]. The current synthesis
methods of Mo2C including solid–gas reactions [30,31], solid–liquid reactions [32–34] and
solid–solid reactions [35–37], among which solid–gas reactions are the most commonly
used and involve the carbonization reaction of molybdenum oxide (MoO3 or MoO2) with
hydrogen and alkane/aromatics. During the carbonization process, different carbonization
atmospheres can lead to the formation of different crystal forms of Mo2C [27]. At present,
there are no reports of the synthesis of CH3SH from CO/H2/H2S over molybdenum carbide
based catalysts. Due to their unique structures, molybdenum carbide based materials are
expected to become emerging catalysts for the synthesis of CH3SH from CO/H2/H2S.

Here, K-Mo/Al2O3 catalysts are prepared by the impregnation method, and a series of
characterizations, including H2 temperature-programmed reduction (H2-TPR), Brunauer–
Emmett–Teller (BET) analysis, temperature-programmed desorption (TPD), powder X-ray
diffraction (XRD) and Raman spectroscopy, are conducted to investigate the effects of
catalyst carbonization and passivation conditions on catalyst activity. We show that the
regulation of carbonization and passivation conditions dramatically impacts the active sites
and surface chemistry of the catalysts, and we explain how this can be exploited to greatly
propel the production of CH3SH from CO/H2/H2S.

2. Experimental Section
2.1. Catalyst Preparation

K-Mo/Al2O3 catalysts with a Mo loading of 10 wt% were prepared by the impreg-
nation method, wherein γ-Al2O3 was used as the support and ammonium molybdate
tetrahydrate ((NH4)6Mo7O24·4H2O) and potassium carbonate (K2CO3) were used as the
precursors of Mo and K, respectively. Firstly, a certain amount of (NH4)6Mo7O24·4H2O
was fully dissolved in 3.5 mL deionized water, and then K2CO3 was added to the solution
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at a K:Mo molar ratio of 2:1. Next, 2 g support was added to the mixed solution and stirred.
The mixture was allowed to stand overnight for aging and was then placed in an oven and
dried at 110 ◦C for 6 h. Finally, the samples were transferred to a muffle furnace and heated
from room temperature to 550 ◦C at 5 ◦C/min, with calcination in air for 5 h. The resulting
catalyst was labelled as K-Mo/Al2O3.

2.2. Catalyst Characterization

Powder X-ray diffraction (XRD) of catalysts was performed on a Bruker Germany
D8 ADVANCE instrument with Cu Kα-radiation (λ = 0.15418 nm) operating at 40 kV and
30 Ma. Raman spectroscopy (Jobin-Yvon France LabRam HR 800) was performed under
532 nm laser excitation, and the collection range was 200–1200 cm−1. BET surface areas
and pore structures of catalysts were determined by N2 physisorption at 77 K using an
America Quantachrome NOVA4200e analyzer. The temperature-programmed reduction
of the sulfided sample (0.05 g) by hydrogen (H2-TPR) was performed using a thermal
conductivity detector (TCD) at a heating rate of 10 ◦C/min until reaching 800 ◦C. The
reduction atmosphere comprised a 10% H2/Ar (v/v) gas at a flow rate of 30 mL/min. The
temperature-programmed desorption of carbon monoxide/hydrogen/hydrogen sulfide
(CO/H2/H2S-TPD) was conducted in a fixed-bed flow reactor equipped with a thermal
conductivity detector (TCD) as the detector. Taking CO-TPD as an example, prior to the
analysis, the sample (0.05 g, 40–60 mesh) was first heated to 300 ◦C at a rate of 5 ◦C/min
and kept at 300 ◦C for 0.5 h to remove adsorbed matter from the catalyst surface. After the
sample was cooled down to room temperature, the gas stream was switched to 10% CO/He
(30 mL/min). The adsorption was carried out at room temperature for 1 h, and then the
sample was purged with Ar to remove the physically adsorbed CO. The reactor was heated
from room temperature to 900 ◦C at a rate of 10 ◦C/min for temperature-programmed
desorption. With other conditions remaining unchanged, H2-TPD and H2S-TPD were
performed by replacing 10% CO/He with 10% H2/Ar and 10% H2S/He, respectively.

2.3. Catalyst Activity Test
2.3.1. Catalytic Performance Tests

Before the performance test, 0.8 g K-Mo/Al2O3 (40–60 mesh) was placed in a quartz
tube and a pre-treatment gas (carbonization gas: CH4/H2, C2H6/H2, C3H8/H2) was
introduced. Taking CH4/H2 as an example, the ratio of CH4:H2 was 1:9 (v/v, 40 mL/min);
the sample was first heated from room temperature to 300 ◦C under a carbonization
atmosphere at a rate of 1 ◦C/min and was maintained for 2 h; the sample was then further
heated to the carbonization temperature stage (400 ◦C, 500 ◦C, 600 ◦C) at a rate of 1 ◦C/min
and held for 2 h. K-Mo/Al2O3 samples were carbonized in CH4/H2, C2H6/H2 or C3H8/H2
atmospheres and named as CH4-K-Mo2C/Al2O3 or K-Mo2C/Al2O3, C2H6-K-Mo2C/Al2O3
and C3H8-K-Mo2C/Al2O3, respectively.

The activity evaluation of the catalysts (0.4 g) was carried out on a fixed-bed reactor. A
gas mixture of CO/H2/H2S (gas volume concentration: CO = 10%, H2 = 40%, H2S = 50%)
was used. N2 was used as the equilibrium component and was introduced to the quartz
tube with a pressure of 0.2 MPa and a flow rate of 40 mL/min. The catalytic activity was
measured in the range of 275–400 ◦C. After reaching a steady state at each temperature,
the products were analyzed online using three gas chromatographs (GC9790, China FULI
INSTRUMENTS) equipped with FPD, TCD and FID.
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2.3.2. Analysis of the Products

The CO conversion rate and product selectivity were calculated using the following
equation:

ConCO =
CCO,in − CCO,out

Cin
× 100%

SelX = Xi/
n

∑
i=1

Xi × 100% =
Ci

C(CH3SH) + C(COS) + C(CO2) + C(CH4) + C(CS2)
×100%

where CCO,in denotes the concentration of CO in the feed gas and CCO,out denotes the
concentration of CO in the product; the product selectivity is calculated based on carbon
balance, where i is the target product (CH3SH, COS, CO2, CH4, CS2). Ci is the product
concentration.

The CO consumption rate and CH3SH formation rate were calculated using the
following equation:

r(CO) =
MCO ×CCO,in × conCO×Q

Vm ×mcat

r(CH3SH) =
MCH3SH ×CCH3SH ×Q

Vm ×mcat

where MCO is CO molar mass (g/mol); MCH3SH is the molar mass of CH3SH (g/mol). Q is
the flow rate (L/h), Vm is the molar volume of gas under standard condition (L/mol) and
mcat is the catalyst amount (g).

3. Results
3.1. Performance of Catalysts Prepared at Different Carbonization Temperatures

Figure 1 shows the effect of different carbonization temperatures on the catalytic
performance of the K-Mo/Al2O3 catalyst for the synthesis of CH3SH from a CO/H2/H2S
mixture. From Figure 1A,B, it can be seen that the CO consumption rate first increased
and then decreased with increasing temperature over 325 ◦C. Our former studies showed
that the equilibrium constant of the CO consumption reaction (CO + H2S→ COS + H2)
decreases with increasing temperature, which indicates that rising temperature is adverse
to the occurrence of the CO consumption reaction. Therefore, the decrease in CO conversion
at high temperatures is due to equilibrium limitations [7]. The CH3SH formation rate also
showed a similar tendency to that of CO consumption. It can be obviously seen from the
tendency that when the oxidation state material was carbonized at 500 ◦C, the catalyst was
found to have the optimum catalytic activity, and the CO conversion (35.5%) and selectivity
towards CH3SH (66.1%) reached maximum values when the reaction temperature was
325 ◦C. At this temperature, the CO consumption rate reached 0.2660 g·gcat

−1·h−1 and the
CH3SH formation rate reached 0.2990 g·gcat

−1·h−1. Recently, Lu et al. investigated the
synthesis of CH3SH using CO/H2/H2S as reactants over K-Mo-type catalysts. COS was
demonstrated to be generated first via the reaction between CO and H2S (as shown by
Equation (1)), and then CH3SH was formed via two reaction pathways, which were the
hydrogenation of COS and CS2 (as shown in Equations (3) and (4)).

CO + H2S→ COS + H2 (1)

COS + 3H2 → CH3SH + H2O (2)

2COS→ CO2 + CS2 (3)

CS2 + 3H2 → CH3SH + H2S (4)
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CH3SH + H2 → CH4 + H2S (5)

From Figure 1C, it can be seen that there was no significant difference in the main
products formed over K-Mo/Al2O3 after being carbonized at different temperatures for
the preparation of CH3SH from CO/H2/H2S; CH3SH, COS, CO2, CH4 and CS2 were the
main products in this reaction system.

The H2-TPR curves of K-Mo/Al2O3 catalysts treated at different carbonization tem-
peratures are shown in Figure 1D. The three materials with different carbonization temper-
atures exhibited similar reduction peak characteristics, with a low temperature reduction
peak at 200–350 ◦C and a moderate temperature reduction peak at 450–600 ◦C. Moreover,
the catalyst carbonized at 500 ◦C exhibited a reduction peak at a high temperature (above
700 ◦C), which was attributed to the reduction of Mo4+ to Mo0, and the hydrogen con-
sumption peaks were obviously lower than those of the other two materials at the same
reduction temperature. These results indicated that K-Mo/Al2O3 carbonized at 500 ◦C
was more easily reduced under the same reduction conditions, resulting in more Mo with
coordinatively unsaturated surface sites that were conducive to the adsorption of reactants
and the desorption of intermediate products such as COS and CH3SH. Thus, the catalyst
obtained by carbonization at 500 ◦C delivered the best catalytic performance, and the
catalysts were carbonized at 500 ◦C in subsequent experiments.
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Figure 1. K-Mo/Al2O3 catalysts prepared with different carbonization temperatures were used
to synthesize CH3SH from CO/H2/H2S; (a) K-Mo/Al2O3-600 ◦C; (b) K-Mo/Al2O3-500 ◦C; (c) K-
Mo/Al2O3-400 ◦C. Rate of CO consumption (A); Rate of CH3SH formation (B); Distribution of CO
conversion and main product selectivity (C); Curves of H2-TPR (D).

3.2. The Role of Passivation

According to the literature, fresh molybdenum carbide materials are prone to violent
reactions with air to form molybdenum oxide [38–40]. Therefore, fresh molybdenum car-
bide materials need to be passivated. After passivation, a passivation layer is formed on the
surface of the material, which makes it more stable (passivation treatment with O2/inert
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gas). To reveal the role of passivation in the catalytic performance of K-Mo/Al2O3 for the
synthesis of CH3SH from CO/H2/H2S, the catalytic activity of the catalysts before/after
passivation was conducted. As shown in Figure 2, there was a significant change in the CO
consumption rate within the reaction temperature range of 275–400 ◦C after passivation
that decreased with increasing temperature. However, the formation rate trend of CH3SH
remained almost unchanged, first increasing and then decreasing with increasing tempera-
ture. After comparing with the product analysis diagram, it was found that the formation
of main products before/after passivation did not change (CH3SH, COS, CO2, CH4, and
CS2), but the selectivity towards CH3SH was significantly reduced and the selectivity of
by-product COS was increased after passivation. These changes were likely due to the
passivation layer on the passivated catalyst surface, which covered the active site for direct
hydrogenation of some COS to CH3SH, resulting in the reduction of selectivity towards
CH3SH. The result revealed that passivation treatment was not effective for the synthesis
of CH3SH from CO/H2/H2S, as the existing of the passivation layer would inhibit the
formation of CH3SH.
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3.3. Performance of Catalysts Carbonized under Different Atmospheres

Different carbonization atmospheres can lead to the formation of different crystal forms
of molybdenum carbide. For example, MoO3 will be converted into cubic molybdenum
carbide with H2/toluene as the reaction gas at 673 K [41]; using H2/butane as the reaction
gas, MoO3 is initially converted into face-centered cubic (fcc) molybdenum carbide, then
the face-centered cubic molybdenum carbide gradually transforms into a hexagonal closely
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packed structure (fcp) with an increase in carbonization temperature [42]. Using alkanes
with different carbon atomic numbers as a carbonization gas will generally lead to different
carbonation degrees and then generate different numbers of active sites [27]. K-Mo/Al2O3
was carbonized by different atmospheres (CH4/H2, C2H6/H2, C3H8/H2), and the catalytic
performance of different catalysts in the synthesis of CH3SH from CO/H2/H2S is shown
in Figure 3. Remarkably, K-Mo/Al2O3 samples treated with different atmospheres all
showed similar tendencies of catalytic performance, whereby the CO consumption rate
first increased and then decreased. Catalysts treated with C3H8/H2 had the highest CO
consumption rate, followed by catalysts treated with C2H6/H2, and catalysts treated with
CH4/H2 had the worst CO consumption rate. From Figure 3B, it can be seen that the
CH3SH generation rate of the catalyst treated with C3H8/H2, which had the highest CO
consumption rate, was not optimum. Combined with the product analysis (Figure 3E),
the selectivity towards by-product CO2 of this catalyst was high, which might have been
caused by the hydrolysis of COS or the water–gas shift reaction of CO. Compared with
that of the K-Mo2C/Al2O3 catalyst treated with C3H8/H2, the CO consumption rate of the
K-Mo2C/Al2O3 catalyst treated with C2H6/H2 was slightly lower. It can be seen intuitively
in Figure 3B that the CH3SH generation rate decreased sharply at high temperatures.
And it was found that the selectivity of by-products of the catalyst was higher at high
temperatures (COS, CH4) and the CH3SH selectivity was lower, which might be due to
easy carbon deposition on the catalyst surface at high temperatures, further leading to a
decrease in COS hydrogenation to generate CH3SH and excessive hydrogenation of CH3SH
to generate CH4; thus, CH3SH selectivity decreased. Although the K-Mo2C/Al2O3 catalyst
treated with CH4/H2 exhibited a poor CO consumption rate, it had a relatively stable
CH3SH generation rate and high CH3SH selectivity. To reveal the role of carbonization
atmospheres in catalytic performance, the characterization of catalysts was conducted.
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Figure 3. Effect of different carbonization atmospheres on the catalytic performance of K-
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3.4. Characterization of Catalysts Carbonized under Different Atmospheres

The N2 adsorption–desorption isotherms and physical properties of the catalysts as-
sessed using N2 physisorption are displayed in Figure 4 and Table 1. As shown in Figure 4,
the oxidation state sample was a typical mesoporous structure with an IV curve and an
H1 hysteresis ring, and the surface area and pore volume were 116.1 m2/g and 0.269 cc/g,
respectively. After carbonization, the specific surface area of all samples decreased slightly,
with CH4-K-Mo2C/Al2O3 decreasing to 103.9 m2/g, C2H6-K-Mo2C/Al2O3 decreasing to
101.3 m2/g and C3H8-K-Mo2C/Al2O3 decreasing to 113.4 m2/g. However, the average
pore volume of CH4-K-Mo2C/Al2O3, C2H6-K-Mo2C/Al2O3 and C3H8-K-Mo2C/Al2O3
increased to 0.321 cc/g, 0.290 cc/g and 0.390 cc/g, respectively. It can be therefore be
concluded that the small decrease in specific surface area and the increase in pore volume
after carbonization were caused by the collapse of some small pores during the carboniza-
tion process.
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Table 1. Textural characteristics of oxidation K-Mo/Al2O3 and Mo2C/Al2O3 samples treated in
different carbonization atmospheres.

Sample Surface Area (m2/g) Pore Volume (cc/g) Pore Diameter Dv (d) (nm)

K-Mo/Al2O3 116.1 0.269 7.853
CH4-K-Mo2C/Al2O3 103.9 0.321 9.618
C2H6-K-Mo2C/Al2O3 101.3 0.290 8.598
C3H8-K-Mo2C/Al2O3 113.4 0.390 11.159

The phase compositions of the catalysts of different carbonization atmospheres were
characterized by XRD and Raman spectroscopy. As shown in Figure 5A, the diffrac-
tion peaks at 2θ = 38.1◦, 39.4◦, 61.7◦ and 75.7◦ were attributed to β-Mo2C (JCPDS card
No.65-8766) and correspond to the (002), (101), (110) and (201) crystal planes, respectively.
Small diffraction peaks of K2MoO4 species (JCPDS card No.29-1021) were also detected. In
the Raman spectrum (Figure 5B), diffraction peaks were detected at 325 cm−1, 896 cm−1

and 917 cm−1, which were attributed to monomolybdate MoO4
2− species and K2MoO4 on

the sample surface [43,44], indicating an interaction between the precursor potassium and
molybdenum. The diffraction peak was detected at 215 cm−1, assigned to well-dispersed
AlMo6O24H6

3+ anderson heteropolymetalate anions (AlMo6) formed by an alumina carrier
and molybdenum-based aqueous solution [45–47]. The diffraction peaks at 661 cm−1,
818 cm−1 and 990 cm−1 were also assigned to β-Mo2C [48,49]; among these, the peaks
at 818 cm−1 and 990 cm−1 correspond to the stretching vibrations of Mo-C-Mo and Mo-
C, respectively. The results of XRD and Raman spectroscopy showed that there was no
significant difference in the phase structure of the catalysts under different carbonization
atmospheres.
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H2-TPR was carried out on the catalysts under different carbonization atmospheres to
investigate redox properties; the results for the catalysts are displayed in Figure 6. It can be
seen that all K-Mo2C/Al2O3 catalysts had three obvious hydrogen consumption peaks, two
of which appeared at 200–400 ◦C and 400–600 ◦C, with larger hydrogen consumption peaks
at >600 ◦C. Generally, the hydrogen consumption peak at low temperatures (200–400 ◦C)
was the reduction of the passivation layer on the surface of the molybdenum carbide [50].
The moderate temperature reduction peak (400–600 ◦C) can be attributed to the reduction
of Mo6+ to Mo4+ or other high-valent Mo species [51]. The high-temperature reduction
peak (>600 ◦C) can be attributed to the reduction of Mo4+ or Mo2+ to Mo atoms [52].
However, the sample was not subjected to passivation treatment, and the presence of Mo6+

was not detected in the XRD spectrum. According to the literature [39,52], the hydrogen
consumption peak at low temperatures (200–400 ◦C) is the reduction of surface high-valent
molybdenum oxides, while the consumption peak at 650–800 ◦C is the reduction of Mo4+

or Mo2+ to Mo atoms. Therefore, in this work, the three hydrogen consumption peaks of
200–400 ◦C, 400–600 ◦C and >600 ◦C can attributed to the reduction of Mo4+, the reduction
of potassium carbide species and the reduction of Mo2+ to Mo atoms, respectively. K-
Mo2C/Al2O3 catalysts synthesized under different carbonization atmospheres exhibited
similar H2-TPR reduction peaks, but the CH4-K-Mo2C/Al2O3 catalyst showed larger
hydrogen consumption peaks at low and medium temperatures, indicating that more
Mo coordinatively unsaturated surface sites were formed on the catalyst, which is more
conducive to the adsorption of reactants and the desorption of products, consistent with
the above catalytic performances.
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The TPD technique is commonly used to characterize the surface properties and chem-
ical reactions of a material. As an important step in a catalytic reaction, the adsorption of
reactant molecules by the catalyst plays a crucial role in the catalytic performance [53,54].
To investigate the adsorption and activation abilities of K-Mo2C/Al2O3 catalysts under
different carbonization atmospheres for reactants, the catalysts were characterized by car-
bon monoxide, hydrogen and hydrogen sulfide adsorption and desorption; the results of
CO-TPD, H2-TPD and H2S-TPD of the catalysts are displayed in Figure 7. As shown in
Figure 7A, the CH4-K-Mo2C/Al2O3 catalyst exhibited three CO desorption peaks, indi-
cating three different CO adsorption sites and on the catalyst with different adsorption
strengths. According to the literature, CH4-K-Mo2C/Al2O3 has a low-temperature des-
orption peak at around 120 ◦C, which was assigned to the desorption of CO and physical
adsorption of Mo2C. In the high-temperature region, the desorption peak was the dissocia-
tion adsorption peak formed by the strong chemical adsorption between the catalyst and
CO [52]. C2H6-K-Mo2C/Al2O3 and C3H8-K-Mo2C/Al2O3 showed one and two CO desorp-
tion peaks, respectively, which were obviously lower than those of CH4-K-Mo2C/Al2O3.
According to the related research, the Mo coordinatively unsaturated sites serve as the
adsorption sites for the activation of CO [6,7,55]. Therefore, the CH4/H2 atmosphere pro-
motes the generation of more Mo coordinatively unsaturated sites on the catalyst and thus
facilitates CO adsorption and activation, which also enhances the selectivity of CH3SH.
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In H2-TPD, the CH4-K-Mo2C/Al2O3 catalyst exhibited slightly strong hydrogen ac-
tivation ability, producing a large amount of desorbed H at medium temperature, and
there was an obvious H2 negative peak, indicating that hydrogen might be dissociated into
adsorbed H* at this temperature. Moreover, as shown in the H2S-TPD results (Figure 7C),
the CH4-K-Mo2C/Al2O3 catalyst showed that it had strong H2S adsorption and dissoci-
ation abilities, very similar to the other two catalysts in the low temperature range but
slightly stronger above 500 ◦C. In short, the use of CH4/H2 as a carbonization atmosphere
facilitates the adsorption and activation of reactants of K-Mo2C/Al2O3, thus delivering a
high activity and selectivity towards CH3SH.

4. Conclusions

In conclusion, a series of K-Mo2C/Al2O3 catalysts were successfully obtained through the
impregnation method with a carbonization process at temperatures of 400–600 ◦C. Through
careful control of the carbonization temperature, passivation process and carbonization atmo-
sphere (500 ◦C, unpassivated and CH4/H2 being optimal), a CH4-K-Mo2C/Al2O3 catalyst
with unusually high activity and selectivity towards CH3SH produced from CO/H2/H2S at
325 ◦C could be obtained (e.g., 66.1% selectivity and 0.2990 g·gcat

−1·h−1 formation rate to
CH3SH). Structural characterization studies revealed that passivation of the catalysts would
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lead to a layer formed on the surface of the material, covering the active sites of the reaction
and reducing the activity of the catalyst. Under different carbonization temperatures and
atmospheres (CH4/H2, C2H6/H2, C3H8/H2), the catalyst carbonized by CH4/H2 at 500 ◦C
exhibited higher catalytic activity because it was more easily reduced under the same
reduction conditions and resulted in more Mo coordinatively unsaturated sites, which was
conducive to the adsorption of reactants and the desorption of intermediate products, thus
showing the best overall performance. This work identifies K-Mo2C/Al2O3 as a promising
new Mo-based catalyst for the production of CH3SH from CO/H2/H2S.
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