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Abstract: Nanotechnology has provided a new insight into cancer treatment by enabling the devel-
opment of nanocarriers for the encapsulation, transport, and controlled release of antitumor drugs
at the target site. Among these nanocarriers, magnetic nanosystems have gained prominence. This
work presents the design, development, and characterization of magnetoliposomes (MLs), wherein
superparamagnetic nanoparticles are coupled to the lipid surface. For this purpose, dimercap-
tosuccinic acid (DMSA)-functionalized Ca0.25Mg0.75Fe2O4 superparamagnetic nanoparticles were
prepared for the first time. The magnetic nanoparticles demonstrated a cubic shape with an average
size of 13.36 nm. Furthermore, their potential for photothermal hyperthermia was evaluated using
4 mg/mL, 2 mg/mL, and 1 mg/mL concentrations of NPs@DMSA, which demonstrated a maximum
temperature variation of 20.4 ◦C, 11.4 ◦C, and 7.3 ◦C, respectively, during a 30 min NIR-laser irradia-
tion. Subsequently, these nanoparticles were coupled to the lipid surface of DPPC/DSPC/CHEMS
and DPPC/DSPC/CHEMS/DSPE-PEG-based MLs using a new synthesis methodology, exhibiting
average sizes of 153 ± 8 nm and 136 ± 2 nm, respectively. Doxorubicin (DOX) was encapsulated with
high efficiency, achieving 96% ± 2% encapsulation in non-PEGylated MLs and 98.0% ± 0.6% in stealth
MLs. Finally, drug release assays of the DOX-loaded DPPC/DSPC/CHEMS MLs were performed
under different conditions of temperature (37 ◦C and 42 ◦C) and pH (5.5 and 7.4), simulating physio-
logical and therapeutic conditions. The results revealed a higher release rate at 42 ◦C and acidic pH.
Release rates significantly increased when introducing the stimulus of laser-induced photothermal
hyperthermia at 808 nm (1 W/cm2) for 5 min. After 48 h of testing, at pH 5.5, 67.5% ± 0.5% of DOX
was released, while at pH 7.4, only a modest release of 27.0% ± 0.1% was achieved. The results
demonstrate the potential of the MLs developed in this work to the controlled release of DOX under
NIR-laser stimulation and acidic environments and to maintain a sustained and reduced release
profile in physiological environments with pH 7.4.

Keywords: stimuli-responsive magnetoliposomes; magnetic nanoparticles; cubic shape; doxorubicin;
hyperthermia; controlled drug release

1. Introduction

Cancer consists of a group of diseases (more than 100) characterized by the uncon-
trolled growth and spread of abnormal cells [1,2]. Despite significant advancements in
the field, the current options for cancer treatment have remained largely unchanged over
recent decades, encompassing surgery, radiotherapy, chemotherapy, and their combina-
tions [1,3]. In turn, chemotherapy is indicated as the treatment modality with the most
significant therapeutic effectiveness, being employed as a primary induction or adjuvant
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treatment [4,5]. Antineoplastic drugs—such as doxorubicin (DOX)—that target rapidly
dividing cells are usually used in this type of therapy [6–8]. This mechanism of action is
associated with a lack of selectivity of the agents, resulting in reduced bioavailability at the
target site and, consequently, the unspecific distribution of the drug in the healthy tissues,
causing severe side effects [9].

Anticancer drug delivery using lipid-based systems has been explored as a promis-
ing cancer treatment for improving drug bioavailability and selectivity [10,11]. In turn,
liposomes are one of the best-investigated drug nanocarriers due to their structural and com-
positional versatility, biocompatibility, morphological similarity with cell membranes, and
ability to incorporate hydrophilic compounds (aqueous core) and/or lipophilic compounds
(in the bilayers) [12–15]. Furthermore, these lipid vesicles can enhance the selectivity of
drug accumulation in solid tumors due to a passive targeting via enhanced permeability
and retention (EPR) effect [16–18]. The EPR effect is promoted by the pathophysiologi-
cal characteristics inherent to solid tumors, such as (i) irregular neovascularization and
structural and functional abnormalities in tumor blood vessels [19–21] and (ii) the lack of
efficient drainage of tumors’ lymphatic systems [16,22,23]. Considering that the EPR effect
is highly dependent on the circulation time of liposomes in the bloodstream, modifications
to the surface of liposomes have been proposed to enhance their circulation time [24].
The covalent linking of polyethylene glycol (PEG) chains to liposomes’ surface, known as
PEGylation, is the most used approach to obtain sterically stabilized liposomes (stealth
liposomes) [25–28].

Despite the advantages of these approaches, conventional liposomes have limitations
in terms of controlling drug release in both time and space and exhibit constraints with
drug–target interaction and drug-release efficacy at the target site [29,30]. Combining mag-
netic nanoparticles with liposomes, forming a supramolecular hybrid lipid structure called
a magnetoliposome, is a promising proposal to address some limitations [31–33]. Magnetic
nanoparticles, particularly superparamagnetic iron oxide nanoparticles (SPIONS), are espe-
cially appealing for cancer treatment because they can be manipulated with a high-gradient
external magnetic field, allow magnetic resonance imaging, and have heat generation
ability when subjected to external energy sources [34–38]. The most commonly used energy
sources are alternating magnetic fields (AMF) [39–42]—magnetic hyperthermia—and near-
infrared (NIR) laser light irradiation [43–45]—photothermal therapy. One of the advantages
of using NIR-induced photothermal hyperthermia over AMF-induced hyperthermia is
related to its higher tissue-penetrating capabilities, being minimally invasive and more
targeted to a specific part of the body [46,47]. In turn, hyperthermia is an adjuvant therapy
proposed for the treatment of cancer, where tumor cells are affected by the rise of the local
temperature to values between 43 ◦C and 46 ◦C [47,48]. The increase in temperature en-
hances the chemotherapy therapeutic effect by inducing greater perfusion within the tumor,
which leads to a larger internalization of chemotherapy drugs [49–51]. It also promotes an
increase in blood circulation and, consequently, greater oxygenation, making tumors more
sensitive to the action of radiotherapy [52–55].

Ca-doped magnesium nanoparticles (Ca0.25Mg0.75Fe2O4) are of particular interest
because, in addition to their excellent biocompatibility and high magnetization, have
been reported as hyperthermia agents [56]. Furthermore, due to their high near-infrared
(NIR) absorption and strong PT conversion efficiency, these ferrite nanoparticles have
demonstrated potential as PTT agents, making them promising for more efficient and
safe heating treatment approaches [57]. The present work is devoted to developing MLs
with DMSA-coated calcium-doped magnesium ferrite nanoparticles with shape anisotropy
(NPs@DMSA) coupled to the lipidic surface and a novel method to produce them. It aims
to elucidate the implications of this spatial distribution through a comparative analysis
with previously investigated architectures and methodologies (namely solid and aqueous
magnetoliposomes). By assessing its effects on critical parameters such as colloidal stability,
nanoparticle encapsulation efficiency, drug encapsulation efficiency, and photothermal
capability, this study provides insight into the advantages and limitations of this type of
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magnetoliposomes’ architecture. Furthermore, the effects of different lipid compositions on
the variation of physicochemical, structural, and stability properties of MLs were studied
to ensure that the synthesis of MLs follows the needs of biomedical applications. The
main aim of studying several different lipid combinations is to obtain MLs responsive to
multiple stimuli (thermal and/or pH sensitivity) and, with this, to increase the control of
drug release under the acidic microenvironment of tumors and hyperthermia conditions.

2. Materials and Methods

All the synthesis procedures used ultrapure water Milli-Q grade (MilliporeSigma,
St. Louis, MO, USA) and spectroscopic grade solvents.

pH buffer stock solutions in the pH range between 2 and 11 were prepared from a
sodium phosphate (Na3PO4, from Sigma-Aldrich, St. Louis, MO, USA) 0.1 M solution, ad-
justing the pH by mixing properly a solution containing citric acid (HOC(COOH)(CH2COOH)2,
from Sigma-Aldrich, St. Louis, MO, USA) at 0.05 M and boric acid (H3BO3, from Sigma-
Aldrich, St. Louis, MO, USA) at 0.2 M in ultrapure water, following [58]. The pH values
were measured with a pH meter NiCd-1 (ORION, SA250 PH Meter Digital), and each
solution pH was correctly adjusted using HCl or NaOH solutions (1 M).

For ML preparation, the lipids dipalmitoylphosphatidylcholine (DPPC) (from Sigma-
Aldrich, St. Louis, MO, USA), distearoylphosphatidylcholine (DSPC) (from Sigma-Aldrich,
St. Louis, MO, USA), cholesteryl hemisuccinate (CHEMS) (from Sigma-Aldrich, St. Louis,
MO, USA), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene
glycol)-2000] (ammonium salt) (DSPE-PEG2000, from Avanti Polar Lipids, Birmingham,
AL, USA) were used.

Fluorescence spectra were measured on a Fluorolog 3 spectrofluorimeter (HORIBA
Jobin Yvon IBH Ltd., Glasgow, UK) equipped with Glan–Thompson polarizers and dual
monochromators in excitation and emission. The fluorescence spectra were corrected for
the instrumental response of the system.

Images of the magnetic nanoparticles were obtained by transmission electron mi-
croscopy, in a JEOL JEM1010 (100 kV) at the Center for Scientific and Technological Re-
search Support (CACTI), of the University of Vigo, Spain. The images were processed using
ImageJ software (version 1.53t, National Institutes of Health (NIH), Bethesda, MD, USA).

The electron microscopy images of the magnetoliposomes were obtained with a scan-
ning electron microscope (SEM) model FEI Nova 200 NanoSEM, operating in transmission
mode (STEM), from the Materials Characterization Services Laboratory at the University of
Minho (SEMAT/UM).

2.1. Magnetic Nanoparticles Preparation

Shape-anisotropic Ca0.25Mg0.75Fe2O4 nanoparticles with shape anisotropy coated with
DMSA were synthesized for the first time. The nanoparticles were initially synthesized with
a previously established protocol [59,60]. In turn, the functionalization of the nanoparticles
was carried out by replacing oleic acid with DMSA, following the methodology described
by Roca et al. [61].

The procedure was started by heating 15 mL of octadecene to 120 ◦C under continuous
magnetic stirring. Then, 160 mg of magnesium acetate tetrahydrate (0.75 mmol), 39.5 mg
of calcium acetate hydrate (0.25 mmol), 526 mg of tribasic iron (III) citrate monohydrate
(2 mmol), and 879 mg of oleic acid (3.1 mmol) were added to the octadecene solution. The
solution was kept at 120 ◦C for 60 min, and after this period, the reflux condenser was
connected. After that, the solution was heated to 200 ◦C with a heating rate of 5 ◦C/min,
which was maintained at 200 ◦C for 10 min. Then it was heated to 290 ◦C at a heating rate
of 1 ◦C/min and refluxed for 60 min. Subsequently, washings were carried out with ethanol
through several cycles of centrifugation and magnetic decantation to obtain nanoparticles
covered by oleic acid. Finally, to replace oleic acid with DMSA and thus obtain hydrophilic
nanoparticles, a mixture of 50 mL of toluene and a solution of 45 mg of DMSA in 5 mL of
DMSO (dimethyl sulfoxide) was added to the particles, which were sonicated for 5 min
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and mechanically shaken for 24 h. Subsequently, toluene was added to the reaction mixture,
which was centrifuged again, and the supernatant, still containing particles coated with
oleic acid, was discarded. Furthermore, multiple washing cycles with ethanol and acetone
were carried out by centrifugation and magnetic decantation to remove the oleic acid
molecules. Finally, the purified Ca0.25Mg0.75Fe2O4 nanoparticles coated with DMSA were
dispersed in water and stored in a glass vial, at room temperature, for future use.

2.2. Structural Characterization of Magnetic Nanoparticles

X-ray diffraction (XRD) analyses were performed in a conventional Philips PW 1710
(Royal Philips, Amsterdam, The Netherlands) diffractometer, operating with CuKα ra-
diation, in a Bragg–Brentano configuration, from the University of Trás-os-Montes and
Alto Douro.

Absorption spectra of magnetic nanoparticle dispersions were acquired using a Shi-
madzu UV-3101PC UV-Vis-NIR (Shimadzu Corporation, Kyoto, Japan) spectrophotometer
with a 1 cm optical path length. The photothermal potential was evaluated, analyzing
thermal energy dissipation under NIR radiation in a home-made setup. The experiment
operation includes a sample holder connected to an adjustable temperature bath, a laser
light source with a wavelength of 808 nm and 1 W/cm2 power density, and a T-type ther-
mocouple connected to a digital multimeter Agilent U1242A (Agilent Technologies, Santa
Clara, CA, USA) for temperature measurement. Before each measurement, the temperature
was stabilized at body temperature (around 37 ◦C), and the samples were irradiated. The
heating curve was recorded under laser irradiation for 30 min, and afterward, the laser
was turned off, and the cooling temperature was measured for an additional 30 min. The
heating ability was quantified by assessing the specific absorption rate (SAR) using the
initial slope method by Equation (1) [62]:

SAR = C
∆T
∆t

ms

mm
(1)

in which C is the specific heat capacity of the aqueous medium (4.186 J·g−1·◦C−1); ∆T/∆t
is the initial slope of the heating curve as a function of time; and ms and mm the masses of
the solvent and the magnetic material, respectively.

The magnetic characterization was performed at room temperature in a Supercon-
ducting Quantum Interference Device (SQUID) Magnetometer, MPMS3 SQUID (Quantum
Design Inc., San Diego, CA, USA), at the Department of Physics and CICECO, University
of Aveiro.

2.3. Preparation of (Magneto)liposomes with Surface-Coupled Magnetic Nanoparticles

DPPC-based liposomes were prepared by the ethanol injection method [63]. First,
1 mM of DPPC was dissolved in absolute ethanol. Then, the lipid ethanolic solution
was added, drop by drop, to 3 mL of phosphate buffer solution (pH 7.4) pre-heated at
55 ◦C (above the transition temperature) under stirring in a vortex. To prepare DOX-
loaded liposomes, 10 µM of DOX ethanolic solution was co-injected into the pre-heated
buffer solution.

The synthesis of MLs with surface-coupled magnetic nanoparticle preparation fol-
lowed the lipid compositions and the corresponding ratios presented in Table 1.

First, thin films of the lipid formulations (based on DPPC, DPPC/DSPC/CHEMS, and
DPPC/DSPC/CHEMS/DSPE-PEG) at the corresponding ratios and a final concentration of
1 mM were prepared by solvent evaporation under an ultrapure nitrogen flow. After that,
3 mL of heptane (99%) was added to the thin film and ultrasonically processed (Misonix,
Farmingdale, NY, USA, Touch-screen S-4000) at 190 W for 15 min to create reverse micelles
of a uniform size. Then, the heptane was evaporated under an ultrapure nitrogen flow
to obtain a thin film with inverted micelles. Next, 3 mL of a phosphate buffer solution
(pH 7.4) was heated to 55 ◦C (above the lipid transition temperature) containing 2 mg of
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the prepared magnetic nanoparticles, which was then added to the lipid film. Finally, the
mixture was sonicated at 60 ◦C for 1 h to produce MLs of suitable sizes.

Table 1. Lipid composition and molar ratio of lipids used in the synthesis of nanosystems.

Lipid Composition Ratio Type of Lipid Nanosystem

DPPC 1 Thermosensitive

DPPC/DSPC/CHEMS 7:2:1 Medium/long circulation, fusogenic,
thermosensitive, and pH-sensitive

DPPC/DSPC/CHEMS/DSPE-PEG 60:20:15:5 Long circulation, fusogenic,
thermosensitive, and pH-sensitive

The preparation of DOX-loaded MLs (based on DPPC, DPPC/DSPC/CHEMS, and
DPPC/DSPC/CHEMS/DSPE-PEG) follows the methodology described above, in which
10 µM of an ethanolic DOX solution was added to the micelle film and followed by the ad-
dition of the phosphate buffer solution (pH 7.4) containing 2 mg of magnetic nanoparticles
to the mixture.

The morphology of the MLs was visualized using a scanning electron microscope
model NanoSEM FEI Nova 200 in transmission mode (STEM).

2.4. Dynamic Light Scattering Measurements

The average hydrodynamic diameter (DH), polydispersity index (PDI), MLs’ long-
term colloidal stability, and zeta-potential (ζ-potential) dependence on the pH of the several
MLs was investigated by dynamic light scattering (DLS). The DLS measurements were
obtained using a Litesizer 500 DLS equipment, having three detection angles (15◦, 90◦, 175◦)
from Anton Paar (Anton Paar GmbH, Graz, Austria), using a diode laser of λ = 658 nm and
40 mW. Polystyrene cells were washed with ethanol and filtered deionized water before
and after all the measurements.

For the DH and PDI determination, liposomes and MLs were prepared as described
in Section 2.3, and filtered five times through a 0.2 µm filter before all the measurements
for removal of dust particles. In turn, the ζ-potential dependence on the pH value was
determined by the resuspension of 500 µL of the previously prepared MLs or liposomes
to 500 µL of the buffer stock solution at the corresponding pH (between 2 and 11). Next,
the solutions were filtered five times through a 0.2 µm filter, and the final pH value was
measured and adjusted adequately with HCl or NaOH solutions (at 1 M) using a mini-pH
meter NiCd-1. The results are presented as mean and corresponding standard deviation
from triplicate assays.

The long-term colloidal stability of MLs based on DPPC/DSPC/CHEMS and DPPC/
DSPC/CHEMS/DSPC-PEG solutions was investigated. For that, the MLs (following the
Section 2.3 procedure) were stored at 4 ◦C for 10 days, and the DH and PDI of the samples
were monitored during this period.

2.5. Quantification of DOX Encapsulation Efficiency

The quantification of the encapsulation efficiency of DOX (EE%) in liposomes and MLs
was performed using fluorescence spectroscopy. The fluorescence emission spectra were
measured on a Fluorolog 3 spectrofluorometer (HORIBA Jobin Yvon IBH Ltd., Glasgow,
UK) equipped with double monochromators in excitation and emission. The prepared DOX-
loaded lipid nanosystems (following the procedures described in Section 2.3) were placed
in an Amicon® Ultra-0.5 mL with filters with a pore size of 0.1 µm, centrifuged at 3000 rpm
for 10 min, and the supernatant collected. The concentration of the non-encapsulated DOX
(supernatant) was quantified by fluorescence spectroscopy, using λexc = 480 nm, slits of
4 nm, and the emission spectrum collected in the 490–750 nm range. Three independent
measurements were performed for each system, and standard deviations (s.d.) were calcu-
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lated. The drug concentration in the sample was calculated using a previously obtained
calibration curve [59], and the EE(%) of DOX was calculated according to Equation (2).

EE(%) =
Initial DOX concentration − DOX concentration in the supernatant

Initial DOX concentration
× 100 (2)

2.6. Quantification of Magnetic Nanoparticles’ Lipid Surface-Coupling Efficiency

The quantification of the Ca0.25Mg0.75Fe2O4 nanoparticles’ coupling efficiency to the
lipid surface was determined by quantifying iron(III) chloride complexes in the samples.
This assay was based on the addition of concentrated hydrochloric acid (HCl) to the
magnetic NPs to promote the formation of iron(III) chloride complexes with a strong signal
in the UV-Vis range [64]. First, the previously synthesized MLs (following the procedure
described in Section 2.3) were dried under an ultrapure nitrogen flow until a lipid film
was formed. Then, to promote the digestion of the NPs, 1.2 mL of hydrochloric acid (HCl,
37%) was added to the lipid film, sonicated for 5 min, and left to digest for 1 h. Next, the
acid concentration was diluted to 4 M using 1.8 mL Milli-Q grade water. The absorption
spectrum of the samples was then obtained. Finally, the calibration curve was obtained
by digesting known masses of the same NPs following a linear fitting of at least seven
points. Three independent measurements were performed for each sample, and standard
deviations (s.d.) were calculated.

2.7. Interaction with Human Serum Albumin (HSA)

An aqueous solution of HSA with a fixed concentration of 0.2 mM (similar to the
concentration of HSA in blood plasma) was titrated with DOX-loaded liposomes (DPPC),
DOX-loaded MLs (DPPC, DPPC/DSPC/CHEMS, DPPC/DSPC/CHEMS/DSPE-PEG), and
NPs@DMSA, following the same procedure described in a previous work [59]. For each
assay, 1 µL of the sample was added between each increment, and the sample was allowed
to stabilize at room temperature for 10 min. Then, the fluorescent emission of tryptophan
residues was measured by fluorescence spectroscopy in each increment (λexc = 280 nm,
integration time of 1 s, and the slit width set to 2 nm). Then, the changes in tryptophan
residues’ maximum fluorescence emission intensity (λem = 344 nm) were calculated, and the
results were expressed by plotting fluorescence quenching of HSA emission as a function
of ligand concentration. The HSA quenching is described by Equation (3):

%quenching =
y n

max

1 + kd
[ligand]

(3)

where ymax corresponds to the maximum fluorescence quenching registered, n is the
number of binding sites, and kd is the dissociation constant. The affinity between protein
and ligand is inversely proportional to kd and can be expressed as 1/kd.

2.8. Doxorubicin Release Kinetics

The kinetics of DOX release from MLs was firstly quantified in different pH envi-
ronments and temperature conditions to understand the effect of each stimulus in the
controlled release profile of DOX. The assays were performed in phosphate buffer at pH 5.5
and pH 7.4 to simulate the drug release profile in the acidic tumor extracellular microen-
vironment and physiological fluids [65,66], respectively, at 37 ◦C and 42 ◦C, representing
the physiological temperature and simulating the hyperthermia treatments [67]. A high-
efficiency reusable 96-well Micro Dialysis Device, HTD 96b from HTDialysis, LLC (Wales
Ferry, CT, USA), with regenerated cellulose dialysis membranes, was used. The assays
followed the procedure described in [59,60]. The DOX release from MLs was quantified
by measuring DOX (collected from the acceptor compartments at different time points)
fluorescence at λem =590 nm (λexc =480 nm). The experimental DOX release profiles were
fitted to different kinetics models (Weibull) using Prism 8 software (GraphPad Software, La
Jolla, CA, USA).
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For DOX release under NIR-laser irradiation, this methodology was adapted, in which
each sample was irradiated by a laser at 808 nm (1 W/cm2) for 5 min after each aliquot.
Then, the fluorescence intensity was measured (λexc = 480 nm) and the corresponding
DOX concentration at each time point was measured. These assays were performed
in quadruplicate.

3. Results and Discussion
3.1. Characterization of Magnetic Nanoparticles
3.1.1. X-ray Diffraction and TEM Analysis

In this work, Ca0.25Mg0.75Fe2O4 nanoparticles coated with DMSA were synthesized.
X-ray diffraction analysis gives information on the crystallinity and purity of the obtained
magnetic NPs. The XRD diffractogram shown in Figure 1 was interpreted using Profex
software (version 4.3.6) [68] which implements BGMN Rietveld [69]. Upon importation
and adaptation of CIF file number 1,011,245 (space group Fd-3m:1) for MgFe2O4, it was
necessary to change the unit cell composition, in order to be in accordance with the expected
synthesized mixed ferrite; the position occupied by magnesium ions was considered to be
25% calcium and 75% magnesium. Further, a varying degree of inversion was taken into
account, considering that the distribution of those two cations between tetrahedral and
octahedral occurs so that the mixed ferrite stoichiometry is valid in both type of sites. All
the peaks in the XRD diffractogram were accounted for, which proves the crystallographic
purity of the prepared sample. The Ca0.25Mg0.75Fe2O4 diffraction peaks appeared at 18.4◦

(1 1 1), 30.2◦ (2 2 0), 35.6◦ (3 1 1), 37.2◦ (2 2 2), 43.3◦ (4 0 0), 47.4◦ (3 3 1), 53.7◦ (4 2 2),
57.2◦ (5 1 1), 57.2◦ (3 3 3), 62.9◦ (4 4 0), 66.1◦ (5 3 1), 71.3◦ (6 2 0), 74.4◦ (5 3 3), 75.4◦ (6 2 2),
79.4◦ (4 4 4), 82.4◦ (7 1 1), 82.4◦ (5 5 1), 87.2◦ (6 4 2), 90.2◦ (7 3 1), 90.2◦ (5 5 3), 95.1◦ (8 0
0), and 98.0◦ (7 3 3). The corresponding fit was obtained with χ2 = 1.16, GoF = 1.08, and
RP = 8.3, with an inversion degree of 0.67 ± 0.06, which was lower than the value obtained
for magnesioferrite in a previous study [70]. The obtained lattice parameter was 8.354 Å,
which is slightly lower than the value reported in the magnesioferrite CIF file (8.360 Å).
The relative intensity and shape of the various diffraction peaks could be modeled using
BGMN [69], considering only size-broadening effects and Debye–Waller factors (TDS).
Using the full XRD pattern and the size-broadening effects implemented on BGMN [69],
a crystallite size of 7.3 nm was obtained. The specific characteristics of the used XRD
equipment were taken into account for calculating the instrument peak broadening through
Profex software (version 4.3.6) [68].
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To assess the shape and size distribution of the Ca0.25Mg0.75Fe2O4 nanoparticles
functionalized with dimercaptosuccinic acid, an electron microscopy characterization was
performed. TEM images obtained are displayed in Figure 2.
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and (D) size histogram of image B and fitting to a Lorentzian distribution (R2 = 0.95).

The magnetic nanoparticles are shown to have a cubic shape, with an aspect ratio
(height/width) between 0.85 and 1.3. These values were obtained from the measured
mean length of the major and minor axes of the particles, followed by calculation of the
corresponding aspect ratio (height/width). For the analysis of size distribution, the height
values were considered and fitted to a Lorentzian distribution, centered at 13.36 nm with a
width of 1.28 nm, comparing well with the crystallite sizes obtained by XRD.

3.1.2. Photothermal Capability

Figure 3 displays the UV-Visible-NIR absorption spectra of the aqueous dispersions
of Ca0.25Mg0.75Fe2O4 nanoparticles (NPs) both before and after functionalization with
DMSA. Both spectra demonstrate a large absorption and light scattering at shorter wave-
lengths, which are characteristic features of this type of ferrite nanoparticles [59,71]. An
increase in absorption was observed for NPs@DMSA, due to larger light scattering from
covered nanoparticles. These variations confirm the binding of DMSA to the surface of the
magnetic nanoparticles.
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The photothermal potential of iron oxide magnetic nanoparticles has been recently
demonstrated [72]. In these assays, laser irradiation at 808 nm is widely used due to
the first near-infrared (NIR-I) biological window (700–900 nm). For assessment of the
photothermal hyperthermia potential of DMSA-functionalized magnetic nanoparticles
(NPs@DMSA) under near-infrared light, aqueous dispersions of NPs@DMSA at various
concentrations (1 mg/mL, 2 mg/mL, and 4 mg/mL) were examined, with the heating
and cooling curves of water measured as a benchmark (Figure 4). The NPs@DMSA con-
centrations of 4 mg/mL, 2 mg/mL, and 1 mg/mL demonstrated maximum temperature
variations of 20.4 ◦C, 11.4 ◦C, and 7.3 ◦C, respectively, during a 30 min irradiation period.
Subsequently, upon laser interruption, all samples returned to their initial temperatures
within approximately 20 min. The heating effect increased with higher particle concen-
tration; however, the specific absorption rate (SAR) values displayed an inverse trend.
This can be due to enhanced nanoparticles’ aggregation and particle–particle interactions
at higher concentrations, compromising the dispersion stability, resulting also in larger
measurement uncertainty (Figure 4).
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Figure 4. Heating and cooling profile of aqueous solutions of mixed ferrite NPs@DMSA, at different
concentrations, under NIR light source with 808 nm wavelength and 1 W/cm2 power density.
Inset: photographs of aqueous dispersions at different concentrations (from left to right: 1 mg/mL,
2 mg/mL, and 4 mg/mL).

Espinosa et al. [73] prepared iron oxide nanocubes with SAR values of 1200 W/gFe
when subjected to laser irradiation with 808 nm wavelength and power density of 1 W/cm2 [73].
Thus, the higher SAR value obtained for the prepared mixed ferrite NPs@DMSA in the
same irradiation conditions corroborates the potential of the prepared nanoparticles as
PTT agents.
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3.1.3. Magnetic Properties

Magnetization measurements of nanoparticles, both before and after DMSA function-
alization, were conducted at 300 K by SQUID. Corrections were made to the results for the
geometric effects, and additional measurements were taken to correct the remaining field
of the superconducting coil.

The magnetization curves, shown in Figure 5, exhibit a noticeable distinction be-
tween the nanoparticles that were not functionalized with DMSA (black curve) and those
that underwent DMSA functionalization (red curve), when considering the saturation
magnetization and coercive fields of the samples, as summarized in Table 2. The sam-
ple without DMSA functionalization displays a saturation magnetization approximately
9 times higher than that of NPs@DMSA. Furthermore, the NPs’ coercive field approaches
the minimum detectable value of the equipment and is smaller than the estimated error
range (between 0 and 2 Oe), indicating a significantly low value. The magnetic property
differences between NPs and NPs@DMSA represent the successful functionalization of
magnetic NPs with an organic layer of DMSA, whose diamagnetic contribution results in
the obtained behavior.
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Table 2. Saturation magnetization (Ms), Coercive field (HC), remnant magnetization (Mr), and Mr/Ms

ratio for nanoparticles functionalized and non-functionalized with DMSA.

Sample Ms (emu/g) Hc (Oe) Mr (emu/g) Mr/Ms

NPs 50.13 1.85 0.07 0.001
NPs@DMSA 5.66 33.92 0.28 0.049

The obtained hysteresis loop, characterized by its nearly closed shape, along with the
reduced coercivity values, is consistent with the superparamagnetic behavior exhibited
by the magnetic nanoparticles. According to Jung et al. [74], the remanence to saturation
magnetization ratio (Mr/Ms) serves as a measure of the squareness of the hysteresis loops,
where values below 0.1 indicate that 90% of the magnetization is lost after the removal of
the magnetic field. Table 2 shows values significantly lower than this limit, proving that
the nanoparticles synthesized here show superparamagnetic behavior. This behavior is
associated with reduced remaining magnetizations, which benefits this type of application
since it reduces the possibility of aggregation in vivo, representing an advantage over other
types of nanoparticles [75].
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3.2. Characterization of Magnetoliposomes
3.2.1. Validation of Magnetoliposomes Synthesis with Surface-Coupled
Magnetic Nanoparticles

This work focuses on the development and investigation of a novel magnetoliposome
variant in which NPs@DMSA are coupled to the lipid surface, rather than occupying a solid
inner core [59,60]. The main aim is to improve the drug-loading capacity of MLs by making
the aqueous compartment available for DOX loading, while preserving (even increasing)
the mass of magnetic particles per lipid vesicle [59]. To our knowledge, the ML preparation
method scrutinized herein was described for the first time.

The initial stage of magnetoliposome development focused on monitoring the coupling
of magnetic nanoparticles around the lipid bilayer through DLS measurements. For that, the
ζ-potential-pH profiles (pH ranging from 2 to 11) of DPPC liposomes (used as a reference),
NPs@DMSA, and MLs composed of three different lipid compositions were investigated
(Figure 6). Liposomes (without magnetic nanoparticles) based on the zwitterionic lipid
DPPC were found to have a near-neutral zeta-potential in all the pH ranges. On the other
hand, the magnetic nanoparticles always showed a ζ-potential profile having negative
values, varying only slightly between −20 mV (pH = 3) and −25 mV (pH = 9). The
same type of assay was performed for MLs based on DPPC, DPPC/DSPC/CHEMS, and
DPPC/DSPC/CHEMS/DSPE-PEG, the latter two being the lipid formulations of interest
as a result of a pre-selection from previous work [60]. Similar to liposomes, DPPC-based
MLs were investigated, since DPPC is the primary lipid of the MLs composition.
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Figure 6. ζ-potential-pH profiles of NPs@DMSA, DPPC-based liposomes, and MLs based on several
lipid compositions (DPPC, DPPC/DSPC/CHEMS, and DPPC/DSPC/CHEMS/DSPE-PEG) in pH
range 2 to 11.

The MLs exhibited a distinct ζ-potential-pH profile, showcasing a hybrid system
characterized by a combination of features from both liposomes and magnetic nanoparticles.
In comparison to liposomes, MLs displayed a negative surface charge, indicating successful
coupling of negatively charged nanoparticles onto the lipid vesicles’ surface. Notably, the
negative surface charge was more prominent in DPPC and DPPC/DSPC/CHEMS-based
MLs, than in stealth MLs formulated with DPPC/DSPC/CHEMS/DSPE-PEG. This result
may arise from a reduced number of magnetic nanoparticles coupled in the latter system
due to potential competition between DSPE-PEG molecules and the binding of magnetic
nanoparticles to the lipid bilayer.

Following the pre-validation, the morphology of DPPC/DSPC/CHEMS-based MLs
was observed by SEM. Figure 7A exhibits several high contrasting round-shaped MLs
with an irregular surface that indicates nanoparticles’ coupling, while in Figure 7B a single
magnetoliposome is represented. Moreover, the displayed MLs present an average size of
289 ± 25 nm. These results serve as a preliminary validation, confirming the suitability of
the newly developed method for synthesizing MLs with NPs@DMSA coupled to the lipid
surface. A TEM image of neat liposomes is shown in Figure 7C.
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3.2.2. Effect of Lipid Formulation on Structural and Colloidal Parameters of
DOX-Loaded Magnetoliposomes

Understanding the impact of lipid composition on the structural and colloidal parame-
ters of DOX-loaded magnetoliposomes is crucial to determine if the developed nanosystems
meet the requirements for effective drug delivery. The lipid composition directly influences
the lipid vesicles’ stability, electrical charge, rigidity, and size [76,77]. In turn, the hydrody-
namic diameter (DH) of MLs and the corresponding polydispersity index (PDI) are primary
factors in the initial characterization of lipid-based nanosystems. These factors control drug
encapsulation efficiency, circulation half-life time, tissue diffusion, kidney excretion, and
passive accumulation in the desired sites [78,79]. It is generally accepted that the size of
these systems must vary between 50 and 200 nm [80] and that the PDI values must be equal
to or less than 0.3, indicating a homogeneous population of the systems.

Similarly to the previous section, DPPC-based liposomes and MLs were characterized
as a reference to assess the effects of incorporating DSPC/CHEMS and DSPC/CHEMS/DSPE-
PEG into the lipid base. The obtained results are summarized in Table 3. The size of the
DPPC-based magnetoliposomes (166 ± 3 nm) was found to be larger than that of the
DPPC-based liposome counterparts (118 ± 5 nm), indicating the successful coupling
of nanoparticles to the lipid vesicles and their impact on the system size. Addition-
ally, the MLs based on the lipid formulations of interest (DPPC/DSPC/CHEMS and
DPPC/DSPC/CHEMS/DSPE-PEG) exhibited sizes of 153 ± 8 nm and 136 ± 2 nm, respec-
tively, which are suitable for various biomedical applications. The size reduction observed
in PEGylated lipid formulations is typically attributed to the heightened lateral repulsion
generated by PEG molecules [81]. This heightened repulsion leads to increased curvature
in the lipid bilayer, ultimately decreasing vesicle size [81]. These MLs also demonstrated
adequate PDI values, further confirming their homogeneous nature.

Table 3. Hydrodynamic size, polydispersity index, and encapsulation efficiency of DOX and magnetic
nanoparticles in liposomes and magnetoliposomes of different lipid compositions.

Nanosystem Lipid Compositions DH (nm) PDI EEDOX (%) EENPs@DMSA (%)

Liposomes DPPC 118 ± 5 0.26 ± 0.01 98.3 ± 0.8 ---
MLs DPPC/DSPC/CHEMS 153 ± 8 0.22 ± 0.03 96 ± 2 61 ± 3
MLs DPPC/DSPC/CHEMS/DSPE-PEG 136 ± 2 0.24 ± 0.01 98.0 ± 0.6 17 ± 1

EEDOX was calculated as the percentage of DOX encapsulated into MLs compared to
the initially added concentration. The results are also summarized in Table 3. High EEDO
values were found in all systems, meeting the required criteria. In addition, one of the objec-
tives of this investigation concerned the improvement of the EEDOX in the MLs compared to
the previously developed synthesis method [59]. The DPPC/DSPC/CHEMS-based magne-
toliposomes showed a 4% increase in EEDOX, while the DPPC/DSPC/CHEMS/DSPE-PEG-



Nanomaterials 2023, 13, 2597 13 of 21

based magnetoliposomes demonstrated a 6% increase in DOX encapsulation compared to
the previous systems [60]. These improvements and the high EEDOX evidence the suitability
of the herein presented new method for the encapsulation of DOX and that the variation in
lipid composition does not significantly impact DOX encapsulation.

The amount of NPs@DMSA coupled to the lipid surface (EENPs@DMSA) is another
crucial factor in the practical application of MLs. Therefore, the binding efficiency of
NPs@DMSA to the MLs based on the lipid compositions of interest was determined by
spectrophotometric determination of iron(III), and the results are summarized in Table 3.
DPPC/DSPC/CHEMS-based MLs exhibited a higher EENPs@DMSA of (61 ± 3)% (equivalent
to 0.52 mg of NPs@DMSA per 1 mM of total lipid). In contrast, the stealth MLs showed
a lower EENPs@DMSA of 17% (equivalent to 0.15 mg of NPs@DMSA per 1 mM total lipid).
These findings indicate a reduced ability of the NPs@DMSA to bind to the stealth MLs,
possibly due to the competition between the DSPE-PEG molecules and the binding of the
NPs@DMSA to the lipid bilayer. This behavior is consistent with the results obtained in
Section 3.2.1, where the DPPC/DSPC/CHEMS-based MLs exhibited a more negative sur-
face charge compared to the DPPC/DSPC/CHEMS/DSPE-PEG-based MLs. Additionally,
the smaller hydrodynamic diameter observed in the latter can also be attributed to a lower
number of NPs@DMSA present on the surface of the MLs.

3.2.3. Interaction with Human Serum Albumin

The binding of proteins to drugs or nanocarriers plays a crucial role in the pharma-
cokinetics of a drug and, thus, is a key factor when assessing its therapeutic efficacy [82,83].
HSA is the most abundant protein in blood plasma and is known for its prominent role in
drug binding [84,85]. HSA exhibits intrinsic fluorescence originating from tryptophan (Trp),
tyrosine, and phenylalanine residues [86]. Among these residues, Trp214, located in the
hydrophobic cavity of HSA, is responsible for its strong fluorescence emission [86]. There-
fore, the interaction and binding of small molecules to HSA induce protein conformation
changes, resulting in a fluorescence quenching of Trp fluorescence emission. Consequently,
it allows the study of the drug/protein interaction by fluorescence spectroscopy [87–89].
Thus, more significant fluorescence quenching is associated with greater interaction and, as
such, a reduced drug bioavailability.

The results of the interaction between free DOX, NPs@DMSA, and DOX-loaded MLs
based on different lipid compositions (DPPC, DPPC/DSPC/CHEMS, and DPPC/DSPC/
CHEMS/DSPE-PEG) are summarized in Figure 8. As anticipated, the titration of HSA with
each corresponding treatment condition resulted in gradual fluorescence quenching as the
concentration increased. However, the extent of quenching varied considerably between
the different conditions.
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To assess the contribution of NPs@DMSA to HSA quenching, the interaction of the
latter with HSA was evaluated. A slight quenching effect was observed, although the
behavior appeared to be irregular. Notably, a more pronounced increase in quenching
was observed from a concentration of 5 × 10−6 M (indicated by a vertical dashed line
in the Figure 8). The same behavior was verified for DPPC/DSPC/CHEMS-based MLs
and DPPC/DSPC/CHEMS/DSPE-PEG-based MLs. Furthermore, DPPC/DSPC/CHEMS-
based MLs demonstrated a higher quenching effect than previously developed DPPC/DSPC/
CHEMS-based SMLs [60], whose maximum quenching values did not exceed 50%. More-
over, a typical behavior was found on DPPC-based liposomes. These results indicate that
magnetic nanoparticles are coupled on the surface of liposomes, resulting in more erratic
behavior. As previously described [60], PEGylated MLs have been shown to effectively re-
duce the interaction rate of MLs with HSA, playing an active role in the adequate protection
of DOX that may enhance its bioavailability at the target site.

The obtained results were fitted according to a non-linear regression given by Equation (3),
allowing the calculation of the dissociation constant (kd), the binding constant (kb), and the
number of specific binding sites (n). The results are summarized in Table 4.

Table 4. The dissociation constant (kd), binding constant (kb = 1/kd), and the number of binding
sites (n) of DOX-loaded liposomes and MLs.

kd (M) kb (M−1) n R2

Free DOX 8.24 × 10−7 1.21 × 106 1.80 0.96
DPPC-based liposomes 4.41 × 10−7 2.27 × 106 0.90 0.99

DPPC/DSPC/CHEMS-based MLs 2.44 × 10−7 4.10 × 106 1.10 0.93
DPPC/DSPC/CHEMS/DSPE-PEG-based MLs 5.87 × 10−6 1.70 × 105 1.16 0.97

NPs@DMSA 2.79 × 10−7 3.58 × 106 0.62 0.13

DPPC/DSPC/CHEMS-based MLs exhibited a higher binding constant and specific
binding sites than DPPC-based liposomes. These findings can be attributed, in part, to the
presence of magnetic nanoparticles on the lipid surface of MLs, which alone contribute to
the binding constant (kb = 3.58× 106 M−1). Additionally, the inclusion of DSPC in the lipid
composition of MLs may further contribute to the enhanced binding properties observed.
It is reported that DSPC liposomes bind more to serum proteins than DPPC liposomes [90].
In turn, the DPPC/DSPC/CHEMS/DSPE-PEG-based MLs present a kb = 1.70 × 105 M−1,
substantially lower than all other conditions, namely free DOX and non-PEGylated coun-
terparts. In the same way, the PEGylated formulation contributes to the reduction in
specific binding sites to HSA, which is fundamental to providing cargo protection under
physiological conditions.

3.2.4. Stability of Magnetoliposomes upon Storage at 4 ◦C

Evaluating the stability of liposomes during storage at 4 ◦C is of utmost importance as
its shelf-life is crucial for the commercial and clinical use of the formulations, and because
it directly affects the drug release kinetics and efficacy. A stability assay was conducted to
evaluate the size variations of DPPC/DSPC/CHEMs and DPPC/DSPC/CHEMs/DSPE-
PEG-based MLs over a period of 10 days. Nanosystems were stored at 4 ◦C, the most
commonly used storage method for lipid vesicles in aqueous media. The findings are
summarized in Figure 9. A slight trend of increasing average size was observed for the MLs
over the days. The upper limit of 200 nm was chosen as a stability criterion for liposomal
systems, as it is generally accepted that liposomes size should fall within 50 to 200 nm
to be considered stable [91,92]. In this size range, nanosystems can avoid rapid clearance
by the mononuclear phagocytic system (MPS), rapid uptake by the liver and spleen, and
consequent elimination from the circulation and reduced aggregation and fusion [93–96].
In particular, in the non-stealth MLs the size variation become more pronounced from day
6 onwards, while keeping reasonable sizes below 300 nm. In turn, the stealth MLs exhibited
a generally higher storage stability, approaching the size of non-PEGylated MLs at day 10.
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3.2.5. Release Kinetics of Doxorubicin under Physiological and Therapeutic Conditions

The DPPC/DSPC/CHEMS-based MLs were selected as optimal nanosystems for the
proposed application, as they best respond to the physicochemical requirements for the
application, displaying also the ability to encapsulate a greater amount of NPs@DMSA on
the surface. As a result, they were subjected to further analysis to explore their capabilities
for DOX release in detail.

A quantitative analysis of the release of DOX from DPPC/DSPC/CHEMS-based
MLs, under mimetic therapeutic and physiological conditions, was carried out. These
assays indicate the ability of MLs to act as an effective controlled drug delivery system
under specific conditions. Moreover, it allows an understanding of the influence of lipid
formulations on the release profile, and the partial prediction of the in vivo behavior and
the ability to sustain therapeutic levels over an extended period. Thus, the ability of
nanosystems to respond in a controlled manner was evaluated in four combinations of
therapeutically (42 ◦C and pH 5.5) and physiologically (37 ◦C and pH 7.4) relevant stimuli.
Figure 10 summarizes DOX release kinetics.
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Figure 10. Profile of the in vitro release kinetics of DOX from DPPC/DSPC/CHEMS-based MLs
under different temperature and pH conditions. Triplicate mean fitted to the Weibull kinetic model.

The results revealed a temperature-dependent drug release rate, with a notable in-
crease in release at 42 ◦C (red lines), simulating hyperthermia conditions, compared to the
release observed at physiological temperature (black lines). Previous studies have demon-
strated that the lipid combination investigated in this work has a transition temperature
of 39.7 ± 0.1 ◦C [60]. DOX release at 42 ◦C was found to be highest at pH 5.5, reaching
(23 ± 1)% at 26 h, whereas at pH 7.4 this value was (16 ± 3)%. These values result from the
increased hydrophilicity of DOX in acidic environments, already demonstrated in previous
works [58]. In contrast, experiments conducted at 37 ◦C did not show significant differences
between releases at pH 5.5 and 7.4, with both exhibiting similar values of (10.4 ± 0.3)% and
(10 ± 1)% of release at 26 h, respectively. Moreover, the experiments at 37 ◦C demonstrated
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a desirable delayed release of DOX. These results highlight a synergistic effect between
acidic pH and hyperthermia, making this combination ideal for the application proposed in
this work. This temperature-dependent control allows for the effective shielding of drugs
under non-therapeutic conditions, reducing off-target effects and enhancing therapeutic
concentrations specifically at the target sites.

To investigate the combined effect of photothermal hyperthermia on the drug release
behavior of MLs, a series of tests were conducted under repetitive laser irradiation, both at
room temperature and at different pH levels (pH 7.4 and 5.5). The findings are displayed in
Figure 11, revealing a compelling synergistic effect of temperature, especially in conjunction
with pH 5.5.
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Figure 11. Release profile of DOX from DPPC/DSPC/CHEMS-based MLs at room temperature
under different pH conditions by repeated laser irradiation.

The results demonstrated that laser irradiation destabilized the MLs’ membrane,
leading to significantly greater drug release compared to tests simulating hyperthermia at
42 ◦C. For instance, at 6 h, the sample subjected to 42 ◦C and pH 5.5 exhibited (17 ± 2)%
DOX release, while under laser irradiation, the release escalated to (46.7 ± 0.6)%. The
MLs’ capacity to retain DOX during periods without laser irradiation was also assessed.
Only a residual release of DOX was observed during this laser-off period between 6 and
22 h, indicating the effective drug containment within the MLs. To further validate the
MLs’ ability to retain DOX, the test was extended to 48 h with the laser off. Once again,
under both conditions, the release of DOX remained minimal. At the end of the assay, at
pH 5.5, (67.5 ± 0.5)% of DOX was released, whereas at pH 7.4, only (27.0 ± 0.1)% was
released. These results evidence that the MLs synthesized in this study not only effectively
control the release of DOX under NIR-laser stimulation, but also potentiate this release in
the presence of a tumor microenvironment, characterized by a more acidic pH. In contrast,
the MLs maintain a sustained and reduced release profile in physiological environments
with pH 7.4.

4. Conclusions

The comprehensive analysis presented in this work provides compelling evidence for
the successful functionalization of shape-anisotropic Ca0.25Mg0.75Fe2O4 nanoparticles with
dimercaptosuccinic acid (NPs@DMSA), resulting in the formation of hydrophilic nanostruc-
tured nanoparticles. Absorption spectroscopy demonstrated the DMSA functionalization
by revealing increased absorption and light scattering for NPs@DMSA compared to the
non-functionalized nanoparticles. The photothermal hyperthermia assays conducted under
laser irradiation at 808 nm for 30 min revealed significant temperature variations: 20.4 ◦C,
11.4 ◦C, and 7.3 ◦C for NPs@DMSA concentrations of 4 mg/mL, 2 mg/mL, and 1 mg/mL,
respectively. These results highlight the photothermal properties of NPs@DMSA, as demon-
strated by the high specific absorption rate (SAR) values ranging from 3338.34 W/g to
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4897.62 W/g. Furthermore, the superparamagnetic behavior of NPs@DMSA was observed,
although their saturation magnetization was approximately nine times lower compared to
the non-functionalized nanoparticles.

A novel synthesis method was developed to couple the prepared NPs@DMSA onto the
liposomal lipid bilayer’s surface. Based on the group’s previous results, the lipid formula-
tions of DPPC/DSPC/CHEMS and DPPC/DSPC/CHEMS/DSPE-PEG were chosen as the
lipid components for the preparation of the MLs. To confirm the coupling of NPs@DMSA to
the lipid surface of the MLs, ζ-potential-pH profile assays were conducted on NPs@DMSA,
liposomes, and the prepared MLs. The observed MLs’ mixed profile of liposomes and
magnetic nanoparticles confirmed the formation of hybrid complexes.

The morphology and size of the MLs were further confirmed using scanning elec-
tron microscopy (SEM), which revealed the presence of rounded-shaped MLs with an
irregular surface and high contrast. The DPPC/DSPC/CHEMS-based MLs exhibited a
size of 153 ± 8 nm, while the DPPC/DSPC/CHEMS/DSPE-PEG-based MLs had a size of
136 ± 2 nm. These sizes are well suited for various biomedical applications. Additionally,
the DPPC/DSPC/CHEMS-based MLs demonstrated a higher encapsulation efficiency of
NPs@DMSA onto the lipid surface (EENPs@DMSA = 61 ± 3%) compared to the stealth MLs
(EENPs@DMSA = 17 ± 1%). Based on these findings, the DPPC/DSPC/CHEMS-based MLs
were selected as the optimal nanosystems for further investigations. DOX release kinetics
assays were conducted under physiological and therapeutically relevant conditions. The
results indicated a higher release rate at 42 ◦C, suggesting the potential of the MLs for
controlled drug release in response to temperature changes. Moreover, the introduction
of laser-induced photothermal hyperthermia at 808 nm (1 W/cm2) exhibited a remark-
able synergistic effect on the DOX release profile, exceeding the release observed with a
mimetic effect of hyperthermia (42 ◦C) at both pH 5.5 and 7.4. The findings suggest that the
produced MLs can release DOX selectively in response to NIR-laser stimulation, making
them suitable candidates for targeted drug delivery in cancer therapy. Furthermore, the
ability to explore the tumor’s acidic milieu to increase drug release while preserving control
under normal physiological conditions has enormous potential for improving therapeutic
outcomes and lowering systemic adverse effects.

Overall, the results indicate that using NPs@DMSA coupled with thermosensitive
lipid bilayers is a promising approach for dual cancer therapy, combining chemotherapy
and photothermal hyperthermia in oncology treatments.
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