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Abstract: Alkaline phosphatase (ALP) is a phosphomonoester hydrolase and serves as a biomarker in
various diseases. However, current detection methods for ALP rely on bulky instruments, extended
time, and complex operations, which are particularly challenging in resource-limited regions. Herein,
we synthesized a MOF-derived Fe-N-C nanozyme to create biosensors for the coulometric and
visual detection of ALP. Specifically, we found the Fe-N-C nanozyme can efficiently oxidize 3,3′,5,5′-
tetramethylbenzidine (TMB) to generate blue-colored tetramethyl benzidine (TMBox) without the
need for H2O2. To construct the biosensor, we incorporated the ALP enzymatic catalytic reaction to
inhibit the oxidation of TMB by Fe-N-C oxidase nanozyme. This biosensor showed rapid and highly
sensitive detection of ALP in both buffer and clinical samples. The limit of detection (LOD) of our
approach could be achieved at 3.38 U L−1, and the linear range was from 5 to 60 U L−1. Moreover,
we also developed a visual detection for ALP by using a smartphone-based assay and facilitated
practical and accessible point-and-care testing (POCT) in resource-limited areas. The visual detection
method also achieved a similar LOD of 2.12 U L−1 and a linear range of 5–60 U L−1. Our approach
presents potential applications for other biomarker detections by using ALP-based ELISA methods.

Keywords: metal-organic framework; nanozyme; oxidase-like enzyme; alkaline phosphatase; visual
detection

1. Introduction

Alkaline phosphatase (ALP) is a kind of phosphomonoester hydrolase that is ubiqui-
tously present in the human body and closely reflects the health state of patients. It has
proven valuable in the clinical diagnosis of a variety of diseases, including liver disease,
secondary liver cancer, rickets, and prostate cancer [1,2]. At present, several methods,
such as electrochemistry, fluorescence, or chromatography, have been utilized for ALP
detection [3–7]. However, these analytical methods usually rely on bulky precision in-
struments, extended detection times, and complex operation steps. Meanwhile, in some
resource-limited regions, a more practical and visually accessible point-of-care testing
(POCT) method for ALP detection was preferred. Therefore, it is urgent to develop simple,
rapid, and sensitive methods for ALP detection to address the aforementioned challenges.

Recently, researchers have demonstrated the feasibility of the construction of a POCT
method for ALP detection by using a real-time colorimetric change caused by enzyme catal-
ysis [8–12]. However, the natural enzymes were difficult to obtain and store at a high cost.
To solve the problems, nanozymes were developed to mimic nature’s enzymes and perform
these functions. Nanozymes were a kind of artificial nanomaterial that could simulate
the catalytic activity of natural enzymes [13,14]. Due to their advantages of high stability,
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easy synthesis, tunable catalytic activity, and minimal requirement for special enzyme
catalytic environments, they have attracted intensive attention from scientists [15–18]. Up
to now, various nanomaterials, such as inorganic materials, metal oxides, and metal-organic
frameworks (MOFs), have been exploited to simulate one or more enzyme activities and
have been successfully applied in many fields, such as biosensing, chemical synthesis,
pollutant removal, and disease treatment [19–23]. However, the heterogeneous catalytic
nature of most nanozymes and the morphologies, sizes, and surfaces of the materials
could have significant impacts on catalytic activity, resulting in unpredictable catalytic out-
comes [24,25]. As a kind of nanomaterial with a uniform porous structure, MOF possessed
the possibility of design and modification at the molecule level, enabling the construction
of diverse nanozymes. For example, researchers have reported the synthesis of MOF-
derived nanozymes for detecting prostate-specific antigens or engineering MOF structures
to achieve catalytic synergistic antibacterial therapy [24,26]. Taking advantage of MOF, this
study endeavored to synthesize MOF-derived nanozymes with a straightforward process,
controllable enzyme activity, and exceptional catalytic activity for ALP detection.

Based on our previous reports, the bipyridine ligand of UIO-67 exhibited the capability
to chelate metal ions onto the MOFs and evenly distribute them within the skeleton
structure [27,28]. As shown in Scheme 1a, we first achieved uniform modification of
Fe3+ ions within the Zr4+-NMOFs structure through the chelation of Fe3+ ions with a
bipyridine ligand. Subsequently, the Fe3+-NMOFs nanomaterials were calcined in a N2
atmosphere, resulting in the formation of Fe-N-C nanozymes with a secondary structure.
The interaction between the tiny nanoparticles and the appropriate surface-active sites
facilitated the enzyme activity, making it exert better nanozyme properties. Moreover,
unlike nanozymes with peroxidase (POD) activity, we found that the MOF-derived Fe-N-C
nanozyme exhibited high oxidase (OXD)-mimic catalytic activity, enabling the oxidation
of O2 to generate an abundance of reactive oxygen species (ROS, O2

•−) without requiring
H2O2. Due to the good OXD-like activity of the Fe-N-C nanozyme, we are supposed to
construct a biosensor to detect the ALP with the enzymatic catalytic reaction, such as
inhibiting the oxidation of the TMB.
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Scheme 1. Schematic of the detection process of ALP. (a) the preparation of Fe-N-C. (b) the colorimet-
ric and naked-eye detection principle of ALP.

In previous reports [29,30], the ALP could hydrolyze the phosphate substrate,
2-phospho-L-ascorbic acid (AAP), to produce ascorbic acid (AA). Then the AA reduced
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the Ag+ in the AuNPs solution or the Cu2+ ions in a polyT-DNA solution, resulting in the
formation of AuNPs@Ag or fluorescence Cu clusters. These systems allowed for colori-
metric or fluorescence-based detection of nucleic acids and proteins. Inspired by these, we
designed a biosensor for ALP detection by using the produced AA to inhibit the oxidation
of TMB by Fe-N-C oxidase nanozyme. This feature allowed the system to be utilized for
the rapid and sensitive detection of ALP, as depicted in Scheme 1b. In this detection system,
the level of ALP activity is reflected by measuring the extent of the oxidation reaction (e.g.,
the oxidation degree of TMB). In addition, in order to meet the POCT requirement, we
performed the visual detection by measuring the RGB values of the solution. The images
were taken by a smartphone and processed through an imaging APP, achieving the purpose
of colorimetric quantitative detection of ALP.

In summary, we have successfully synthesized a MOF-derived nanozyme, Fe-N-C
nanozyme, which exhibits exceptional OXD-mimic activity. By incorporating the ALP en-
zyme catalytic reaction, we constructed a biosensor for rapid and highly sensitive detection
of ALP by inhibiting the oxidation of TMB by Fe-N-C nanozyme. Notably, our method
offered the advantage of not requiring the addition of H2O2 in the detection system, making
our approach simple and stable. Meanwhile, the visual detection of our method facilitated
the POCT detection of ALP in resource-limited areas. In the future, this strategy might be
extended to detect other biomarkers with ALP-based ELISA methods.

2. Materials and Methods
2.1. Chemicals and Regents

Ethanol, tetrahydrofuran (THF), N,N-dimethylformamide (DMF), ZrCl4, dimethyl sulfox-
ide (DMSO), methylene blue (MB), FeCl3·6H2O, benzoic acid (TA), NaCl, Na2HPO4·12H2O,
NaH2PO4·2H2O, H2O2 and ascorbate magnesium phosphate (AAP) were purchased from
Sino Chemical Reagent Co., Ltd. (Shanghai, China). 2,2′-bipyridine-5,5′ dicarboxylic acid
(H2BPY), dihydroethidium (DHE), and TMB were obtained from Aladdin Reagent Co., Ltd.
(Shanghai, China). ALP was purchased from Thermo Fisher Technology Co., Ltd. (Suzhou,
China). Amylase (AMY), lignin peroxidase (LIP), choline oxidase (CHOx), catalase (CAT),
glucose oxidase (GOX), trypsin (TRY), and cholesterol oxidase (CHOL) were purchased
from McLean Biochemical Technology Co., Ltd. (Shanghai, China).

2.2. Apparatus

The field emission scanning electron microscope (SEM) (MIRA 3, TESCAN Brno,
s.r.o., Brno-Kohoutovice, Czech Republic) was used to observe the morphology of Fe-N-C.
Transmission electron microscope (TEM) images were obtained by the Talos F200S G2 field
emission microscope (Thermo Fischer, Waltham, MA, USA). The surface area was measured
by nitrogen adsorption on a TriStar II surface area analyzer (Micromeritics, Norcross,
GA, USA). The chemical compositions of Fe-N-C nanoparticles were verified by XPS
(Thermo Fischer, Waltham, MA, USA). Fluorescence spectra were taken by a fluorescence
spectrophotometer (F-4600, Hitachi, Tokyo, Japan). The information on crystallization was
inspected by X-ray diffraction spectra (Ultima IV, Rigaku, Tokyo, Japan).

2.3. Synthesis of Fe-N-C Nanozyme

A total of 244 mg ZrCl4 and 233 mg H2BPY were dispersed in 100 mL of DMF,
respectively. After 5 min of ultrasonic treatment, these two solutions were mixed into
250 mL glass bottles with the addition of 4650 µL of acetic acid. The mixture was heated
at 120 ◦C for 18 h. After cooling to room temperature, the white solids were collected by
centrifugation at 9500 rpm, washed with DMF once, THF once, ethanol three times, and
deionized water three times, respectively, giving the purified Zr4+-NMOFs, which were
finally dispersed in ethanol. Next, the FeCl3 ethanol solution (0.1 M) was added to the
Zr4+-NMOFs ethanol solution with 20 µmol of FeCl3 per mg of MOF, and the mixture was
incubated overnight on a rotary vibrator at room temperature. The product was washed
with ethanol and dried at 60 ◦C to obtain a yellow powder material, i.e., Fe3+-NMOFs.
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Then, Fe3+-NMOFs were calcinated in a N2 atmosphere at 800 ◦C for 2 h, and the Fe-N-C
nanozyme was thus obtained.

2.4. Catalytic Kinetic Experiment of TMB

Fe-N-C nanozyme was incubated with TMB at different concentrations, and the UV ab-
sorption value was continuously monitored at a wavelength of 652 nm. The Km and Vm con-
stants were obtained by fitting the Michaelis-Menten equation, i.e., V = Vm × C/(Km + C).
Where V is the initial catalytic reaction rate; C is the initial concentration of TMB; Vm
represents the maximum catalytic reaction rate; and Km stands for Michaelis constant.

2.5. Identification of ROS in the Fe-N-C Nanozyme Catalyzed System

The DHE assay was used to detect O2
•− in reaction systems. H2O as a control

group and different Fe-N-C nanozyme concentrations were added to an aqueous solution
containing 100 µM DHE and reacted for 2 h under dark conditions. The fluorescence
emission spectra of the reaction solution were recorded at λex = 370 nm.

The presence of •OH in the Fe-N-C nanozyme reaction system was verified by MB
and TA experiments. The MB water solution (10 µg mL−1), H2O2 (10 mM), and Fe-N-
C nanozyme were mixed. After incubating for 24 h, the supernatant was collected by
centrifugation and subjected to UV absorption spectrum measurement. Similarly, TA
aqueous solution (0.5 mM), H2O2 (100 mM), and Fe-N-C nanozyme (40 ug mL−1) were
mixed and incubated for 24 h. After centrifugation, the supernatant of the solution was
collected, and the fluorescence emission spectrum was recorded at λex = 315 nm.

2.6. Detection of ALP with the Fe-N-C Nanozyme-Based Method

AAP (500 µM) was added to a Tris-HCl (pH = 9, 50 mM) buffer solution containing ALP
as the ALP reaction solution. After the reaction was incubated at 37 ◦C for 40 min, 100 µL
of this solution was added to the HAc-NaAc (pH = 3500 mM) buffer solution containing
TMB (0.05 mg mL−1, 100 µL), followed by the addition of 2 µL Fe-N-C (1 mg mL−1)
aqueous dispersion solution. The absorbance value at 652 nm was measured using a UV-vis
spectrometer after 10 min. Meanwhile, the visual detection was performed with a smart
phone (Redmi K30, Xiaomi Corporation, Beijing, China) and a commercially available APP
(Color Collect, WX Color Tech Inc., Fuzhou, China). The operation procedure and the
relative details were described in the supporting information (Figure S9).

2.7. Evaluation of the Fe-N-C Nanozyme-Based Method for the Detection of ALP

ALP of different concentrations (5, 10, 20, 30, 40, and 60 U L−1) was added to the
ALP reaction for determining the linear relationship. The limit of detection (LOD) was
calculated by the standard deviation of the response in the absence of ALP (SD) and the
slope of the linearity (S), i.e., LOD = 3.3 × SD/S. The recoveries were obtained by dividing
the percent of the assay value of the Fe-N-C nanozyme system by the added amount of ALP.
0.01 mM of Zn2+, Cu2+, Fe3+, Ca2+, K+, Mg2+, BSA, GSH, or Lys were added to the ALP
reaction solution, respectively, and reacted at 37 ◦C for 40 min. The 100 µL solution was
mixed with TMB (0.05 mg mL−1, 100 µL) HAc-NaAc buffer solution (pH = 3100 mM), and
then 2 µL Fe-N-C (1 mg mL−1) aqueous dispersion solution was added. The absorbance
value at 652 nm was measured using a UV-vis spectrometer. AMY, LIP, CHOx, CAT, GOX,
TRY, or CHOL were used to replace ALP for specific detection.

2.8. Detection of ALP in Clinical Samples

Human serum samples were obtained from Renming Hospital of Wuhan University
and diluted 10 times with Tris-HCl (pH = 9, 50 mM) buffer solution for reducing matrix
interference and further testing. The protocol was approved by the Ethics Committee of
Renmin Hospital of Wuhan University (approval number: WDRY2020-K061). The serum
sample without AAP was taken as a blank sample and compared with the experimental
sample after adding AAP for calculating the ALP concentration in clinical samples. Then,
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the testing procedure followed that in Section 2.6: P-nitrophenyl phosphate (P-NPP) sub-
strate with a 2-amino-2-methyl-1-propanol (AMP) buffer as the standard method to detect
the activity of ALP. In this design, ALP catalyzes the conversion of p-NPP to p-nitrophenol
(p-NP) within the AMP buffer. The introduction of Mg2+ and Zn2+ ions enhanced the
absorbance of p-NP at 410 nm. The change in absorbance correlates with the activity
of ALP.

3. Results and Discussion
3.1. Characterization of Fe-N-C Nanozyme

The synthesis of Fe-N-C nanozymes involved three processes, as follows: Firstly, ZrCl4
reacted with the bipyridine ligand, H2BPY, at 120 ◦C for 18 h to obtain the Zr4+-NMOFs
according to the procedures of our previous reports [27,28]. As shown in Figure 1a, the
SEM (MIRA 3, TESCAN Brno, s.r.o., Brno-Kohoutovice, Czech Republic) image revealed
the distinctive dodecahedral and octahedron structures of the Zr4+-NMOFs. Subsequently,
the bipyridine structure in Zr4+-NMOFs facilitated chelation with Fe3+ ions. To achieve this,
FeCl3 was added to the Zr4+-NMOFs solution, leading to the formation of the Fe3+-NMOFs
with a uniform distribution of Fe3+ ions. Notably, this modification was accompanied
by a color change from white to yellow, as visually observed in Figure S1, indicating the
successful chelation of Fe3+ ions. Next, Fe-N-C nanozymes were obtained by calcinating
Fe3+-NMOFs under a N2 atmosphere. After calcination, despite a certain degree of agglom-
eration occurring in the calcined material, the majority of the material still retained the
original three-dimensional structure of Fe3+-NMOFs (Figure 1b). The calcination process
resulted in a smooth edge of the polyhedron, an obviously rough surface, and the forma-
tion of numerous tiny nanoparticles, possibly due to metal nanoparticle growth during
calcination. The TEM (Talos F200S G2, Waltham, MA, USA) image of Fe-N-C nanozyme
in Figure 1c further verified the roughness of the skeleton structure. In the magnified
view, the material exhibited dense ~4.3 nm (calculation of 100 particles, pointed by the
arrow in Figure 1d) tiny nanoparticles scattered throughout (Figure 1d). The presence of
these closely distributed nanoparticles is believed to increase the surface-active sites of the
nanozyme, potentially enhancing enzyme activity. Furthermore, a high-resolution TEM of
Fe-N-C (Figure 1e) clearly shows a well-defined lattice, indicating the material possesses a
good crystalline structure. In addition, the element mapping images of Fe-N-C obtained
from high-resolution TEM exhibit a uniform distribution of Fe, O, C, N, and Zr elements
on the material (Figure 1f), indicating the successful preparation of the Fe-N-C nanozyme.
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Figure 1. (a,b) SEM images of Zr4+-MOFs and Fe-N-C nanozymes, respectively. (c–e) TEM image
and in the magnified view of Fe-N-C nanozyme. (f) High-resolution TEM image of Fe-N-C nanozyme
and the corresponding element mapping images of Fe, O, N, C, and Zr, respectively.

The crystallization and phase structure information of Fe-N-C nanozymes were further
investigated by XRD (Ultima IV, Rigaku, Japan). As Figure 2a depicts, the crystal spectrum
of Fe-N-C nanozyme exhibited a high similarity with the standard Fe3C (PDF # 35-0772,
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lattice parameters, a = 5.091 Å, b = 6.7434 Å, c = 4.526 Å, a = b = c = 90◦) with the peaks
at 30.1◦, 35.2◦, 50.4◦, and 59.8◦ corresponding to the lattice fringes of (111), (200), (220),
and (311), respectively, and ZrO2 (PDF # 49-1642, a = b = c = 5.128 Å, a = b = c = 90◦)
with the peaks at 37.6◦, 42.8◦, 44.6◦, and 44.9◦ corresponding to the lattice fringes of (112),
(121), (102) and (103), respectively. These results provided evidence of the presence of FexC
and ZrO2 in the Fe-N-C nanozyme. Figure 2b provides the N2 adsorption and desorption
curves of Fe-N-C nanozymes. The specific surface area of Fe-N-C nanozyme was calculated
to be 300.04 m2 g−1. Indeed, the appropriate specific surface area enables the Fe-N-C
nanozyme not only to possess highly reactive sites but also to facilitate the interaction of
reactants with its structure. In addition, the presence of C, N, O, Fe, and Zr elements in the
Fe-N-C nanozyme was further confirmed through XPS analysis (Thermo Fischer, Waltham,
MA, USA) (Figure 2c). As shown in Figure 2d, the high-resolution XPS spectra of Fe 2p
orbits revealed a pair of bimodal signals corresponding to Fe3+ (726.3 eV and 712.2 eV)
and Fe2+ (723.8 eV and 710.0 eV), which were attributed to the Fe 2p1/2 and Fe 2p3/2,
respectively. This finding indicated the coexistence of both Fe3+ and Fe2+ in the Fe-N-C
nanozyme [31]. The signals at 733.1 eV and 719.5 eV might be the metallic vibration satellite
signals. Simultaneously, the high-resolution XPS spectra of Fe 2p revealed the absence of Fe
(0) [31–33]. Meanwhile, the high-resolution N 1s spectra showed the presence of pyridine
N, pyrrolidine N, and graphite N in the Fe-N-C nanozyme (Figure 2e). Previous studies
have shown that pyridine N could enhance O2 reduction by increasing the π state density,
current density, and spin density of C atoms near the Fermi level [31–35]. Moreover, the
presence of a pair of lone electrons in the pyridine N structure facilitated the adsorption
of reduced O2. Therefore, the substantial proportion of pyridine N (~41.6%) in Fe-N-C
significantly accelerated the redox reaction, thereby improving the enzyme-like activity
of the nanomaterial [33–35]. Furthermore, the high-resolution C 1s spectrum (Figure 3f)
revealed three characteristic peaks at 287.4, 285.3, and 283.7 eV, corresponding to the C=O,
C-O/C-O-C/C-N, and C-C/C=C bonds, respectively [36].
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3.2. Verification and Optimization of the Enzymatic Activity of Fe-N-C Nanozyme

In previous studies, the Fe-N-C nanomaterials often displayed POD-like activity [24,26].
Thus, in our preliminary experiment, we used the TMB oxidation experiments to test the
POD-like enzymatic activity of the Fe-N-C nanoparticles. These experiments involved the
oxidation of TMB to a blue-colored product, TMBox (λ = 652 nm), in the presence or absence
of H2O2 and Fe-N-C nanozymes. Surprisingly, we found that the Fe-N-C nanozyme could
catalyze the oxidation of the TMB in the absence of H2O2 (Figure 3a). This finding indicated
that the Fe-N-C nanozyme exhibited OXD-like activity. Meanwhile, Figure 3a demonstrated
that the addition of H2O2 had no significant effect on the catalyzed oxidation of TMB by
Fe-N-C nanozyme, indicating that the nanomaterial did not have POD-like activity. In
addition, our attempts to eliminate ZrCl4 from the Fe-N-C nanozyme through immersion in
a sulfuric acid/ammonium sulfate solution were successful. However, the results showed
a substantial decline in the catalytic oxidase activity of the treated substances (Figure S2).
This decline could possibly be attributed to sulfuric acid’s capacity to also extract a portion
of the Fe element. Therefore, Zr content remained in the Fe-N-C nanozyme. To confirm the
enzymatic activity, we measured the free radicals produced within the systems. Particularly,
the probes DHE, MB, and TA were employed to detect O2

•− and OH, respectively. The O2
•−

can dehydrogenate the DHE to form the red product, ethidium bromide (Figure S3), leading
to a decrease in the fluorescence signals of the DHE [28,37]. Thus, Fe-N-C nanozymes of
different concentrations were added to the DHE solution while monitoring the fluorescence
variation. Figure 3b showed a significant change in the fluorescence of DHE at 417 nm
in the presence of Fe-N-C nanozyme, with the fluorescence intensity decreasing as the
material concentration increased. These results demonstrate the generation of the O2

•− in
the catalyzed system, and the Fe-N-C nanozyme exhibited OXD-like activity. In contrast, in
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the presence of H2O2, the Fe-N-C nanozyme demonstrated no capability to degrade MB
(no change in the color of the solution) or oxidize TA to produce the fluorescent product,
2-hydroxyterephthalic acid (Figures 3c and S4). This observation suggested that •OH was
not generated in the reaction system, indicating that the Fe-N-C nanozyme did not exhibit
POD-like activity.

Since we have verified that our MOF-derived Fe-N-C nanozyme possesses OXD-
mimic activity, we studied the optimum synthesis conditions for the preparation of Fe-N-C
nanozyme, including the doping amount of Fe3+ ions, calcination temperature, and calcina-
tion time. Firstly, a series of Fe3+ ions ranging from 0 to 40 µmol mg−1 were chelated to the
Zr4+-NMOFs for the synthesis of the Fe-N-C nanozyme. Despite using different Fe3+ ions in
Fe-N-C no obvious differences were observed in the resulting Fe-N-C nanoparticle’s three-
dimensional structures as characterized by SEM (Figure S5I–VI). However, the catalyzed
oxidation experiment using TMB revealed that Fe-N-C nanoparticles without Fe3+ ion mod-
ification (donated as Fe0-N-C) displayed almost no OXD-mimic activity (Figure 3d). As the
content of Fe3+ ions increased, the TMB oxidation reaction catalyzed by Fex-N-C gradually
enhanced, indicating that the OXD-mimic activity sites were primarily provided by Fe
elements. Upon reaching a modified concentration of 20 µmol mg−1 Fe3+ ions, the OXD-
mimic activity of prepared Fe-N-C nanozymes showed no further enhancement, suggesting
that Fe modification reached saturation at 20 µmol mg−1. Next, the calcination temper-
ature and calcination time were investigated, respectively. The results manifested that
the OXD-mimic activity of the Fe-N-C nanozyme was comparable at 700 ◦C, 800 ◦C, and
900 ◦C (donated as Fe-N-C700, Fe-N-C800, and Fe-N-C900), with the Fe-N-C800 nanozyme
exerting relatively slightly better performance (Figure 3e). However, when the calcination
temperature reached 1000 ◦C, the OXD-mimic activity of the Fe-N-C1000 decreased sharply.
The morphologies of Fe-N-C nanozyme calcination at different temperatures are shown in
Figure S6I–IV. At a calcination temperature of 700 ◦C, the Fe-N-C700 nanoparticles were not
fully calcined, and some nanoparticles still exhibited smooth surfaces. Fe-N-C800 nanozyme
and Fe-N-C900 nanozyme exhibited well-defined structures. However, at a calcination tem-
perature of 1000 ◦C, the material experienced obvious agglomeration, which might be
the main reason for the deterioration of oxidase performance. Consequently, 800 ◦C was
selected as the final calcination temperature. Next, calcination time was also optimized
(Figures 3f and S7I–III), and 2 h showed the best performance. Thus, the Fe-N-C nanozyme
was obtained by calcinating at 800 ◦C for 2 h. In addition, the OXD-mimic activity of
Fe-N-C nanozymes was systematically investigated through the TMB OXD experiment.
As the concentration of Fe-N-C nanozyme increased, the efficiency of TMB oxidation was
gradually enhanced (Figure 3g), leading to a deepening of the blue color of the oxidized
product (Figure 3h). In order to determine the reaction rate values, catalytic experiments
of Fe-N-C nanozyme on TMB with varying concentrations were performed. By fitting the
Michaelis–Menten equation, we obtained the Km and Vm constants of 2.1 × 10−4 M and
1.4 × 10−6 M s−1, respectively (Figure 3i).

3.3. Detection of ALP by the Fe-N-C Nanozyme Based System

The principle for ALP detection is depicted in Scheme 1b. Initially, the ALP catalyzed
the dephosphorylation of the substrate, AAP, leading to the generation of the reductive
product, AA. The presence of AA significantly inhibited the OXD-mimic activity of Fe-N-C
nanozyme and weakened the catalytic oxidation of TMB to produce the TMBox (Figure 4a).
Thus, in the presence of the ALP, the oxidation of the TMB by the Fe-N-C nanozyme was
suppressed, causing the solution to become colorless. Conversely, in the absence of the ALP,
the enzymatic dephosphorylation process could not happen, leading to the absence of AA
formation. Under this condition, the Fe-N-C nanozyme could oxidize the TMB, generating
the blue-colored product, TMBox. In order to make the visualization clear, rhodamine was
introduced into the detection system as a reference substance.
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and concentration of AAP, respectively.

In order to verify the potential of Fe-N-C nanozymes for detecting ALP, a feasibility
analysis of the method was performed. As shown in Figure 4a,b, in the absence of TMB or
Fe-N-C, no blue TMBox was generated in the reaction system. However, in the presence
of both TMB and Fe-N-C nanozymes, they coexisted without ALP or AAP in the solution,
leading to the catalysis of TMB into TMBox. Conversely, when TMB, Fe-N-C, ALP, and AAP
were present together, the OXD property of Fe-N-C was inhibited, resulting in a colorless
solution. Therefore, the difference in the absorbance value of the reaction system with or
without ALP and the dependence of ALP concentration allowed for the rapid detection of
ALP by using the Fe-N-C nanozyme.

In the detection system, we defined the absorbance value of the Fe-N-C nanozyme-
catalyzed oxidation of TMB in the absence of ALP as A0, while the value in the presence of
ALP was regarded as A. Thus, the A0 − A (∆A) value could reflect the detection signal of
ALP. In order to obtain the optimal experiment conditions, the temperature, pH value, and
reaction time of ALP for detection were investigated. As shown in Figure 4c, ∆A values for
the ALP detection remained consistent in the range of temperatures from 25 ◦C to 37 ◦C.
However, when the temperature surpassed 40 ◦C, the ∆A decreased sharply, indicating
a significant reduction in the enzymatic activity of ALP (Figure 4c). In order to obtain
excellent performance, 37 ◦C was selected for the subsequent experiments. In addition, as
for pHs, the detection sensitivity of ALP gradually increased within the range of pH 6~9,
and the optimal pH condition was achieved at pH 9. Further increasing the pH from 10~12,
the ∆A values dropped sharply, indicating the inhibition of ALP enzymatic activity under
strong alkali conditions (Figure 4d).

Next, the optimal reaction time of ALP and the concentration of AAP were investigated.
It was observed that the catalytic reaction rate increased rapidly within 20 min and reached
its highest value at 40 min (Figure 4e). Moreover, the result revealed that the substrate
concentration for ALP detection showed a similar trend, and 500 µM of AAP was selected
for the subsequent experiments (Figure 4f). In summary, the optimum conditions for ALP
detection were 500 µM AAP in Tris-HCl buffer (pH 9) at 37 ◦C with an incubation time of
40 min. In addition, we optimized the volume ratio of the ALP mixture and TMB solution
(Figure S8). When the volume ratio was lower than 5:5, the ∆A was low due to the limited
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content of AA in the system. Conversely, when the volume ratio was higher than 5:5,
the TMB catalytic system under an acidic pH environment was disrupted, leading to the
inhibition of the oxidization reaction and a significant reduction in ∆A. As a result, the
volume ratio of 5:5 was chosen for further experiments.

Finally, we performed the ALP detection under optimal conditions. Particularly, the
absorbance value of mixed solutions of ALP and TMB was continuously monitored at
652 nm (Figure 5a). The results showed that as the concentration of ALP increased, the
inhibition time and effect of TMB oxidation by AA also increased. The inhibition effect
reached a stable state at 10 min. Therefore, we chose 10 min as the catalytic duration for
TMB oxidation. Next, the ∆A at 652 nm for ALP concentrations in the range of 5 to 60 U L−1

was recorded, and the linear fitting was performed in Figure 5b. The linear regression
equation was ∆A652 nm = 3.74 × 10−3 CALP + 0.11 (U L−1, R2 = 0.98), and the LOD was
calculated to be 3.38 U L−1. In addition, the calculated recoveries of ALP (5, 30, 40 U L−1)
were 99.23 ± 12.12%, 100.52 ± 6.17%, and 101.46 ± 2.91%, exhibiting the well-practicability
of the Fe-N-C nanozyme for ALP detection (Table S1).
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Figure 5. (a) Dynamic monitoring of ALP at different concentrations treated with Fe-N-C nanozyme.
(b) Linear relationship between concentrations of ALP and ∆A at 652 nm. (c) Evaluation of the anti-
interference capability of Fe-N-C-based system for ALP detection. (d) Verification of the specificity of
our method for ALP detection.

In addition, to evaluate the anti-interference performance of our method in ALP
detection, 0.01 mM of Fe3+, Zn2+, Mg2+, K+, Ca2+, BSA, and L-cys were individually added
to the ALP detection system. The results showed that ∆A values of all samples remained
stable (Figure 5c), indicating the good anti-interference performance of this method. Next,
we used AMY, LIP, CHOx, CAT, GOX, TRY, and CHOL as control groups to verify the
specificity of the system. As depicted in Figure 5d, the hydrolysis impacts of these seven
control enzymes on AAP were minimal, resulting in small ∆A values. Therefore, the Fe-N-C
nanozyme-based system showed good anti-interference properties and selectivity for ALP
detection.

3.4. Detection of ALP in Clinical Samples

In order to evaluate its practical application, we used our Fe-N-C nanozyme-based
method to detect ALP in clinical samples. A total of 10 serum samples were obtained
from Renming Hospital of Wuhan University, including 5 from healthy donors and 5
from patients with abnormal conditions. The results for the ALP detection were shown
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in Figure 6a,b. As shown in Figure 6a,b, there was no significant difference between the
measured values obtained by using the Fe-N-C nanozyme-based system and those obtained
by the AAP-AMP assay kits, which were provided by the hospital. In addition, the value
of negative samples measured by the Fe-N-C nanozyme-based system showed significant
differences from positive samples. These findings confirmed the successful application of
the Fe-N-C-based ALP detection method for rapid quantitative analysis of ALP in clinical
samples. Although our Fe-N-C-based method demonstrated outstanding potential for real-
sample testing, extensive statistical cohorts should be recruited, and further experiments
are required for validation.
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3.5. Visual Detection of ALP

Considering the color change during TMB catalytic oxidation, we introduced rho-
damine to the solution as a reference substance, enabling the development of a visual
detection method by using a smartphone APP. This method could achieve POCT for ALP,
offering the advantages of low cost, rapid operation, and simplicity. Figure 7 shows the
color changes of the solution under different concentrations of ALP (Color Collect APP,
72 dpi). The operation procedure is shown in Figure S9. As the concentration of ALP
increased, the color of the solution gradually changed from blue to purple, eventually
turning pink for visual detection. By reading the RGB value of the image using a smart-
phone, we used the R/B values as the ordinate to fit the linear regression equation as IR/B =
7.82 × 10−3 CALP + 0.70 (U L−1, R2 = 0.95, LOD = 2.12 U L−1). Compared with literature
reports (Table 1), our method showed comparable sensitivity and a similar linear range.
The results confirmed that the colorimetric analysis of our method also displayed a similar
linear range and a satisfactory LOD when compared with the ∆A system.

Table 1. Comparison of detection method of ALP.

Material Method
Liner
Range

(U L−1)

LOD
(U L−1)

Detection
Time Ref.

TPE-CN-pho a Fluorescence 25~175 14.2 60 min [36]
P/DS/EDC-NHS/Anti-ALP biosensor b Visual detection 104~106 870 13 min [6]
HRP-TMB-H2O2 with the Cu2+ system UV spectrum 0–120 5.4 60 min [38]

CsPbBr3 NC Photocurrent responses 50~1000 42.1 30 min [39]
CsPbBr3@PMMA Fluorescence 10~100 4.8 70 min [40]
CuNPs-Cr3+-PPi Fluorescence 0~62.5 3.3 30 min [41]

Fe-N-C UV spectrum/Visual detection 5~60 3.38/2.12 50 min This work
a: tetraphenylenthene-cyano-phosphate group; b: Whatman filter paper/4-carboxybenzene diazonium/EDC-
NHS/Anti-ALP biosensor.
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4. Conclusions

In conclusion, we successfully synthesized the UiO-67 MOF-derived Fe-N-C nanozyme,
which exhibited exceptional oxidase-mimic catalytic activity, enabling efficient oxidation
of TMB without the requirement of H2O2. By incorporating the ALP enzymatic catalytic
reaction to inhibit the oxidation of TMB by Fe-N-C nanozyme, we developed a rapid and
highly sensitive approach for the detection of ALP under optimal conditions. The approach
successfully realized sensitive detection of ALP in both buffer and clinical samples by using
the colorimetric assay. Moreover, we introduced a visual detection method by using a
smartphone-based colorimetric assay, facilitating practical and accessible POCT for ALP,
even in resource-limited settings. Overall, we constructed a new UiO-67 MOF-derived
Fe-N-C nanozyme, and the utilization of the Fe-N-C oxidase nanozyme and the visual
detection method holds significant implications for advancing point-of-care diagnostics in
diverse healthcare settings, contributing to the progress of rapid and accurate diagnostic
technologies for improved patient care.
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Figure S4: Fluorescence spectra of TA incubated with different systems; Figure S5: The SEM images
of Fe-N-C with different content of Fe elements; Figure S6: The SEM images of Fe-N-C obtained
at different calcination temperatures; Figure S7: The SEM images of Fe-N-C obtained by different
calcination times; Figure S8: The ∆A of the Fe-N-C system treated with different volume ratios of
ALP and TMB solutions. Figure S9: Procedure for the Color Collect APP to read the RGB value of the
images. Table S1: Recovery of ALP activity determined by Fe-N-C nanozyme.
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