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Abstract: This work reports on the photocatalytic activity of tin oxide (SnO2)-doped magnesium
(Mg) and fluorine (F) nanoparticles for methyl orange and safranin dye degradation under sunlight
irradiation. Nanocatalysis-induced dye degradation was examined using UV–visible spectroscopy
and a pseudo-first-order kinetics model. The results indicate that the prepared nanoparticles exhibit
superior photocatalytic activity, and the degradation of methyl orange (MO) dye is approximately
82%. In contrast, the degradation of safranin dye is 96% in the same time interval of 105 min. The
calculated crystallite size of the SnO2–Mg–F nanocomposite is 29.5 nm, which respects the particle
size found in the DLS analysis with a tetragonal structure and spherical morphology affirmed. The
optical characteristics were assessed, and their respective bandgap energies were determined to be
3.6 eV. The influence of F in Mg and SnO2 is recognized with the XRD and FT-IR spectra of the
prepared particles.

Keywords: SnO2–Mg–F nanoparticles; sol-gel method; methyl orange dye; safranin dye; photocatalysis

1. Introduction

The lack of access to purified water for a large population is only one of the problems
that environmental contamination on a global scale is causing [1]. Materials science has
become more interested in advancing environmental remedial technologies for environ-
mentally friendly energy resources, focusing on water [2]. These worldwide issues may
be mitigated using conventional treatments, including ion exchange, carbon filtering, bi-
ological processes, and reverse osmosis [3]. These techniques have several drawbacks,
including high costs, complexity, and energy use. One of the most effective, innovative,
environmentally friendly technologies for purifying water is photocatalytic degradation. In
the presence of a photocatalyst, the organic contaminants are quickly and efficiently broken
down through photocatalytic oxidation–reduction processes. Uncontaminated water is
environmentally hazardous because of the organic dyes used in many sectors [4].

Researchers have shown great interest in semiconductor nanoparticles over the last sev-
eral decades, owing to their exclusive physicochemical properties, such as their non-toxicity
and environmental sustainability [5]. Therefore, SnO2 has attracted recognition as a potent
photocatalyst. While SnO2 shows promising photocatalytic activity, its performance is
limited by the rapid recombination of photogenerated electron-hole pairs [6]. It is desirable
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for catalysis because of its transparency, electrical conductivity, and chemical stability [7].
Poor quantum yields due to the quick recombination rate and inadequate exploitation
of light-produced electron-hole pairs remain a constraint in the photocatalytic efficacy of
tin oxide nanocatalysts required to satisfy the needs of practical applications [8]. Nanos-
tructure, composition, and surface modification of semiconducting materials have been
demonstrated in recent years to impact their photocatalytic capabilities significantly [9].
The photocatalytic performance of tin oxide nanocatalysts may be enhanced in two ways.
One method involves controlling the particle size and morphology of SnO2 to obtain a
sizeable adequate quantum size and a high specific surface area [10]. Another method
is to dope SnO2 with additional elements, like noble metals, metal ions, or semiconduc-
tors, to function as traps for photo-induced holes and electrons, enhancing the material’s
photocatalytic efficacy [11].

The seventh furthermost prevalent element on Earth, magnesium (Mg), consumes
many desirable characteristics [12]. It is safe to handle, inexpensive compared to other
metals, recyclable, and simple to work with regarding metallurgy [13]. As a result, there
has been much focus on materials made from magnesium. Biochemical sensing, nanoscale
electronics, photocatalytic activity, and optoelectronics are the only possible uses of Mg-
doped n-type semiconducting oxide materials [14]. Since the ionic radius of Mg is similar to
that of Sn, it follows that Mg doping may be predicted to replace the Sn host lattice, lowering
the energy of the band gap and, in turn, boosting the photocatalytic performance [15].

Concerning other dopants, fluorine is among the most advantageous anionic impu-
rities for SnO2. Since the ionic radius of F− is equivalent to that of O2

−, the Sn–F bond
corresponds to the Sn–O bond. SnO2 surface adsorption characteristics are drastically
altered by the adsorption of fluoride ions, which also dramatically enhance surface hole
transfer and the preferred creation of hydroxyl radicals (OH*) with higher reactivity [16].
Tuning the band structure and modifying localized electronic structures are two more
effective methods for enhancing photo-reactivity via doping [17].

Metal oxides, such as zinc oxide [18], titanium oxide [19], and nickel [20], are efficient
in photocatalysis as a single element. Still, many attempts have been conducted for the
doping of various metal oxides, such as iron [21], cobalt [22], and vanadium [23], aiming to
extend the photo response from the SnO2 from ultraviolet to the visible region. Among the
metal oxide composites, tin-doped magnesium has a better photocatalytic performance. On
the other hand, doping non-metal elements with metal nanoparticles could be a possible
approach to improve the photocatalytic activity of the nanocomposite or nanoparticles [24].

Beyond that, ion doping could be another effective means to enhance the electrochem-
ical performance of SnO2 nanoparticles. In this respect, it is worthwhile to note that the
conductivity and electrochemical reversibility of SnO2 can be significantly improved by
doping with nonmetal ions, such as Cl, S, P, or F atoms [25]. Due to the similar ionic size
of F− and O2−, F has been regarded as the most efficient doping agent for SnO2 among
these dopants. Hence, F-doped nanoparticles have gained increased interest and have been
extensively investigated for their diverse applications, such as gas sensors, transparent
conductors, and photocatalysts [26]. However, the performance of the F-doped SnO2–Mg
composite has not been well studied for photocatalytic activity. Therefore, we expect to
combine the advantages of F doping and metal ion (Mg) incorporation so that the composite
material could exhibit outstanding photocatalytic dye degradation performance.

Thus, in our work, SnO2 was doped with magnesium (Mg) and fluorine (F) through
a simple sol-gel technique [27]. Doping with metals has improved the separation rate
of photogenerated electron-hole pairs. The efficiency of the doped SnO2 is assessed on
commercially available dyes like methyl orange and safranin dyes [28]. The physico-
chemical properties of the synthesized samples are investigated. This is the first preliminary
study of the structural, optical, and photocatalytic properties of SnO2–Mg–F nanoparticles.
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2. Experimental Procedure
2.1. Materials

Stannous chloride (SnCl4), ammonium fluoride, and magnesium chloride were em-
ployed to create a title nanocomposite as an organic pollutant for photodegradation. Saf-
franine and methyl orange dyes were utilized. All of the compounds described here were
reagent grade and purchased from Aldrich. All solutions were prepared using distilled wa-
ter. For the metal precursor, a homogeneous solution combination of 1 mole reagent-grade
stannous (IV) chloride (SnCl4, >99.9% purity, molecular weight 189.68), 1 mole ammonium
fluoride, and 1 mole magnesium chloride (Sigma-Aldrich, St. Louis, MO, USA) was made.

2.2. Preparation of SnO2–Mg–F Nanocomposites

To make the SnO2–Mg–F nanocomposite, 1 M of tin chloride, magnesium chloride,
and ammonium fluoride was placed in 150 mL of distilled water. Then, the solution was
stirred vigorously until complete dissolution of the precursor. After that, until the pH of the
mixture was 10, sodium hydroxide solution was introduced and stirred for 3 h. The white
precipitate was washed using water and ethanol. Then, the cleaned samples were dried
using a hot air oven. The product was then calcined for five hours in an air atmosphere
in a muffle furnace at 550◦. Schematic representation for the synthesis of the SnO2–Mg–F
nanocomposite is shown in Figure 1.
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Figure 1. Schematic representation for the synthesis of the SnO2–Mg–F nanocomposite.

2.3. Sample Preparation for Decolorisation

The photocatalytic performance of the SnO2–Mg–F nanocomposite was carried out
in cationic (safranin) and anionic (methyl orange) dyes under sunlight. Then, 100 mg
of the prepared nanocomposite was added to 1000 mL of the prepared dye solutions.
The nanocomposite-suspended dye was irradiated under sunlight for 105 min with an
interval of 15 min, where the appropriate amount of dye solution was subjected to UV-Vis
spectrophotometer analysis. Then, the UV-visible spectrum was recorded, and the dye
degradation depended on the optical absorption level. The efficiency of dye degradation
was calculated using the equation [29],

Dye degradation efficiency =

(
1− Ct

C0

)
× 100%

where Ct and C0 indicate the final and initial absorbance of safranine and methyl orange.
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2.4. Characterization Techniques

XRD (X’Pert PRO; PANalytical, Almelo, the Netherlands) was used at 40 kV and
30 mA with a Cu anode to seek the phases of NPs. The study was performed in the 2θ
range of 20–80 with a step size of 0.0170. To analyze the functional groups, present in the
proximity of wavelengths of 4000 to 400 cm−1, Fourier transform infrared spectroscopy
(FT-IR) (Spectrum 100; PerkinElmer, Waltham, MA, USA) investigation was executed with
KBr as the carrier in a ratio of 1:200. With the dynamic lighting effect method, the average
particle size was studied using a particle size analyzer (Nanophox; Sympatec, Clausthal-
Zellerfeld, Germany) with a laser beam at a wavelength of 633 nm. The process was
repeated several times in the 1–1000 nm range to obtain an average size of the particles.
The absorbance of the material was measured using UV-Vis spectroscopy (Shimadzu UV-
Visible spectrophotometer, model UV 1800, Shimadzu, Tokyo, Japan) at a wavelength of
approximately 180–800 nm with double-distilled water as a background. The material’s
bandgap was calculated using the UV-Vis spectroscopy results. The emission properties of
the prepared material were studied using photoluminescence spectroscopy (Cary Eclipse,
Agilent Technologies, Singapore). The scanning electron microscopy (SEM) photographs
were taken with a JEOL (Tokyo, Japan) device with a Gatan Quantum ER 965 imaging filter.

3. Results and Discussion
3.1. X-ray Diffraction Spectroscopy

The crystalline properties of the nanocomposite are shown in Figure 2. The results
reveal the tetragonal structural phase of SnO2 by P42nmn space groups with the 2θ values
of 26.71, 33.96, 38.06, 45.54, 51.9, 54.86, 66.17, and 72.32◦, which corresponds to the JCPDS
No 77-0452 [30]. Likewise, MgO shows the cubic structure by the space group of Fm3m with
the 2θ values of 42.88, 62.04, and 78.77◦, corresponding to the JCPDS No. 75-0447 [31]. Thus,
the nanocomposite shows the mixed crystalline phase of both tin and magnesium without
any other impurities. Initially, Sn2+ was first bonded with Mg ions through electrostatic
force and then nucleated and grew into SnO2–Mg nanoparticles during the synthesis
process. Finally, these nanoparticles were uniformly anchored by F ions on the surfaces
of the SnO2–Mg nanoparticles to form the SnO2–Mg–F nanocomposites. As follows, to
determine the crystallite size, the Debye–Scherrer equation was used [32],

D =
Kλ

βCOSθ

where k is constant (0.9), is the Cu Kα source’s wavelength with a value of 1.540, is the
Bragg angle, and is the full width of the half maximum. The calculated crystallite size of
the SnO2–Mg–F nanocomposite is 29.5 nm, which respects the particle size found in the
DLS analysis. The length of the dislocation lines per unit volume or the dislocation density
(δ) was calculated using the equation [33],

δ = 1/D2

where δ is the calculation of the number of defects in the crystal. The calculated dislo-
cation density of the nanocomposite is 11.49 × 10−3, and the computed micro-strain is
0.0032%. The fluorine forms more bonds with the surface of other elements due to its high
electronegativity and makes the composite highly crystalline [34].

The calculated structural parameters are slightly varied from the pure SnO2 nanopar-
ticles. The variation in the structural parameter is highly based on the type of dopant
incorporated with pure SnO2 nanoparticles. In most conditions, the dopants are sup-
posed to increase the structural parameters, like crystal size, lattice parameters, volume,
density, etc. [35].
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3.2. Scanning Electron Microscope

The surface morphology of the SnO2–Mg–F nanocomposite is shown in Figure 3. The
result confirms the formation of monodispersed spherical morphology, where the particles
are slightly agglomerated due to the high surface energy [36]. The morphology possesses a
uniform shape dense and porous nature. The results correspond to the DLS measurement,
where the average particle size is approximately 132 nm, which satisfactorily matches the
crystal size of the composite. The mono dispersion may be due to the addition of fluorine
at the surface of the nanocomposite [37].
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3.3. Functional Group Analysis

Figure 4 shows the SnO2–Mg–F nanoparticle FT-IR spectra in the 4000–400 cm−1

wavenumber. Several spectral bands were created by the physical adsorption of water by
the nanoparticles; these bands correspond to O-H stretching at approximately 3438 cm−1

and H-OH bending at approximately 1632 cm−1 [38]. Both a C-H stretching band at
approximately 2922 cm−1 and a C-H bending band at approximately 2852 cm−1 occur.
The band between 400 and 600 cm−1 appears to be the stretch vibrations in tin oxide
(Sn–O). An F–F bond is responsible for the appearance of the peak at 901 cm−1 [39].
The Sn–O and O–Sn–O stretching vibrations are responsible for the prominent peaks at
approximately 600–650 cm−1 [40]. Carboxylic acid’s OH bending is responsible for the
1438 cm−1 frequency. The vibration of Mg–O is responsible for the strong and wide band
at 477 cm−1 [41].
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3.4. Particle Size Analysis

The dynamic light scattering technique for SnO2–Mg–F is shown in Figure 5. The
average particle (d50) is 122 nm, also seen in the SEM images. The broadened peak indicates
that the maximum particles have the same particle size at d50 [42]. The size of the particle
at its maximum (d90) and minimum (d10) is 14 and 1447 nm, respectively. The increased
particle size at d90 is due to forming a composite of three components. Meanwhile, fluorine
at the material’s surface maintains the constant d50 value and shows broad peaks.

3.5. UV-Visible Spectroscopy

The optical absorption spectrum of SnO2–Mg–F is displayed in Figure 6a. It is iden-
tified that the prepared nanocomposite maintained an absorption band at 235 nm in the
UV region. The charge transfer shift between the O (2p) and Sn (4d) states in O2

− and
Sn4+ is responsible for the UV absorption band of SnO2 [43]. Meanwhile, MgO does not
show any sharp peak, indicating that nanoparticles with different sizes are produced in
this method [44], which is evidenced. The doping level is the main factor responsible for
the prepared catalyst’s optical absorption. The F-doped SnO2–Mg nanoparticles exhibited
stronger absorption in the UV-Vis range than pure SnO2 with a red shift in the bandgap
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transition [45]. The F dopants mainly exist and stick on the nanoparticles surface, which
enhances the light absorption and improves the photocatalytic performance. The band gap
of the SnO2–Mg–F nanoparticles was calculated using Tauc’s equation [46];

(α hν) = A (hν− Eg)n

where A is constant and has varied with transitions, hν is the incident photon energy, Eg is
the energy gap, α is the absorption coefficient, and h is the Planck constant. The exponent
value n represents the nature of the electronic transition as direct or indirect. The calculated
band gap was 3.6 eV, as shown in Figure 6b, improving the photocatalytic performance
efficiency. The nanocomposite has a transmittance of 62%.
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3.6. Photoluminescence Spectroscopy

The luminescence properties of the SnO2–Mg–F nanocomposite between 200 and
600 nm are depicted in Figure 7. The nanocomposite exhibits an excitation at 257 nm,
showing multiple peaks at the emission spectra. The 361 and 484 nm peaks correspond
to SnO2, whereas the 424 and 459 nm peaks are attributed to MgO. The initial peak at
361 nm (UV emission) is due to the interband radiation combination of photo-generated
electrons and holes [47]. The emission at 484 nm intimates the blue-green emission, which
occurs due to the transition mediated by defect levels in the band gap and corresponds
to oxygen vacancies on the surface [48]. The peak at 424 nm is reveling the band-to-band
shift in MgO. The 481 emission is due to the recombination of electrons with oxygen
vacancies [49]. Finally, the intense peak at 528 nm is due to the addition of fluorine, which
shifts the emission toward blue [50]. Multiple peaks indicate the polycrystalline nature of
the material [51].
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3.7. XPS Analysis

X-ray photon spectroscopy determines the synthesized sample’s surface composite
elements, purity, and chemical state. The peaks found on the survey spectrum in Figure 8 of
the SnO2–Mg–F nanocomposite show mainly Mg, Sn, F, and O, confirming the high purity
of the SnO2–Mg–F nanocomposite. Figure 8b shows that the Mg 1s peak deconvoluted at
1304.06 eV is assigned to MgO with Mg2+ valence state in the SnO2–Mg–F nanocomposite,
and it is found to be matching with the literature value for MgO nanoparticles, and the
1305.98 eV peak corresponds to the Mg–OH. The O 1s peak for the SnO2–Mg–F nanocom-
posite can be deconvoluted into three peaks, as shown in Figure 8c. The lower binding
energy peak at 530.08 eV and 531.9 eV is due to the lattice oxygen of the SnO2–Mg–F
nanocomposite, whereas the higher binding energy peak at 534.49 eV is due to absorbed
oxygen molecules on the surface of the nanocomposite [52].

The F 1s spectrum was fitted at 685.6 eV and 687.5 eV. Correspondingly, the component
at 685.6 eV is related to the fluorine of the Sn–F bond in the SnO2–Mg–F nanocomposite;
finally, the component at 687.5 eV is related to the F ions that form hydrogen bonds with the
surface hydroxyl groups [53]. Figure 8e shows the Sn 3d spectrum from which the peaks for
Sn are seen at 486.4 eV and 494.91 eV, which is due to Sn 3d5/2 and 3d3/2 corresponding
to the standard data for SnO2, and the satellite peaks at 488.46 eV and 496.9 eV correspond
to Sn 3d5/2 and Sn 3d3/2. The spin-orbit splitting of 8.51 eV shows the presence of Sn4+ in
SnO2. Sn+2 or Sn+0 is not seen in the spectrum [54].
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3.8. Photocatalytic Activity

UV-visible spectroscopy was used to examine a blank dye (methyl orange and safranin)
control experiment to assess whether a reaction occurred [55]. After measuring the UV-
visible of the blank dye, the organic dye solution was applied to the developed NPs, and
spectra were obtained. The optical absorption values of the pure anionic dye (methyl
orange) and cationic dye (safranin dye) are initially measured at 464 and 519 nm using
UV-Vis spectra without a nanocatalyst. The time-dependent photocatalytic activity of the
SnO2–Mg–F nanoparticles was analyzed for dye degradation at 15 min intervals for up to
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105 min. When the irradiation duration increases from 0 to 105 min, the suspended dye
solutions’ vigorous absorption/peak intensity decreases with time.

Further, it is evident that the nanocatalyst influences the gradual decolorization of the
dye solution and varies with irradiation time. The results in Figures 9 and 10 clearly show
that, under sunlight irradiation, the photocatalytic performance of pure SnO2 is greatly
improved with the doping of Mg and co-doping of F ions. The improved absorption could
be attributed to the narrowing of the SnO2 bandgap, which enhances the light absorbance.
On the other hand, the significant enhancement could also be due to the synergistic effect
between Mg and F atoms with SnO2. Co-doping with magnesium and fluorine could
prevent the recombination of electron-hole pairs, thereby improving the photocatalytic
performance [56].
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In the presence of the SnO2–Mg–F nanoparticles as photocatalysts, the absorption
spectra of safranin dye and methyl orange modify, as shown in Figures 8 and 9. Also,
the photodegradation rates (C/Co) of safranin dye and methyl orange in the presence of
catalysts when exposed to sunlight are shown in Figures 9 and 10c. Figures 9 and 10b sum-
marize the time-dependent efficiency of pure dye degradation with and without catalysts
using SnO2–Mg–F NPs exposed to sunlight. After 105 min of irradiation, the degrada-
tion effectiveness of the SnO2–Mg–F nanoparticles is 82% for methyl orange and 96% for
safranin dye, respectively. Therefore, the photocatalytic efficiency is more significant for
the cationic safranin dye than the anionic methyl orange dye. The higher degradation
efficiency could be due to the surface charge of the nanocatalyst, which is negative as per
previous reports [57]. Introducing fluorine increases the nanocatalyst’s negative surface
charge due to high electronegativity. The negatively charged nanocatalyst attracts the
positively charged saffranine dye and shows maximum degradation [58].

The reactive kinetic performance of the obtained samples was carefully investigated
to study their photocatalytic characteristics. The safranin dye and methyl orange pho-
todegradation rates were calculated using the equation below, which was modified using
the pseudo-first-order kinetic process [59].

Kt = ln
C
Co



Nanomaterials 2023, 13, 2494 12 of 17

The reaction concentration is augmented as C/Co, where Co is the initial concentration,
and C is the methyl orange and safranin dye concentrations after the degradation time.

The kinetic degradation rate constant is shown in Figures 8 and 9d, and the obtained
ideals are 0.01474 min−1 for methyl orange and 0.03133 min−1 for safranin dyes, and
0.00017 and 0.00015 min−1 for methyl orange and safranin dyes, individually, without
a catalyst.

The detailed photocatalytic mechanism of the prepared photocatalyst is shown in
Figure 11. The photoexcitation of the nanoparticles, which forms electron-hole pairs on
the catalyst’s surface, initiates the breakdown of the methyl orange and safranin dyes
in aqueous solutions. Furthermore, due to oxygen vacancies, our study boosted the
photocatalytic activity of the synthesized nanoparticles [60]. According to the results, the
synthesized SnO2–Mg–F NPs outperform the cationic and anionic dyes as a photocatalyst
when exposed to sunlight. Because the light intensity produced by solar energy is much
higher, energy absorption and electron migration from the valence band to the conduction
band occur, boosting nanoparticle photocatalytic activity [61]. Photoexcited holes (h+) may
react with oxygen molecules to generate H2O and hydroxyl (*OH), whereas photoexcited
electrons (e−) can be trapped via oxygen molecules to form (*O2) radicals. SnO2 quickly
absorbs these photoexcited (e−) molecules [62]. The released (e) from SnO2’s surface is
attracted by the partially attenuated oxygen molecules in water, where they react to form
superoxide radical anions (*O2) and hydroxyl radicals (*OH) [63].

SnO2-Mg-F nanoparticles + Dye + Visible light→ h+ (VB) + e− (CB)

Dye molecule + OH→ *OH− + Degradation Products

Dye molecule + O2 → *O−2 + Degradation Products

Nanomaterials 2023, 13, x FOR PEER REVIEW 14 of 19 
 

 

SnO2–Mg–F nanoparticles + Dye + Visible light → h+ (VB) + e− 
(CB) 

Dye molecule + OH → *OH− + Degradation Products 

Dye molecule + O2 → *O−2 + Degradation Products 

 
Figure 11. Mechanism of photocatalytic activity of the SnO2–Mg–F nanocomposite. 

The synergistic effects of co-doping with Mg and F are the main reasons for the en-
hanced activity of the doped SnO2. Introducing F dopants into Mg-doped SnO2 further 
narrows the SnO2 bandgap, promoting visible light absorption [64]. The promoted light 
absorption enhances the production of photoelectrons and holes, the primary carriers for 
photocatalytic activity. On the other hand, the doped F2+ is located on the surface of SnO2, 
where the reconstruction enhances the photocatalytic activity of the Mg-doped SnO2 un-
der the irradiation of visible light. The fluorine dopant does not contribute to the visible 
light absorption of SnO2 [65]. However, F dopant promotes the creation of oxygen vacan-
cies, promoting light absorption in the visible-light region and producing oxidizing spe-
cies that enhance the photocatalytic activity [66,67]. The co-doping with Mg and F im-
proved the photocatalytic efficiency of SnO2 through narrowed bandgap, promoted the 
separation of photo-generated electrons and holes, and enhanced photocatalytic oxidizing 
species. From the earlier reports, the comparison assessment of the photocatalytic activity 
of pure SnO2 and doped SnO2 nanoparticles is listed in Table 1. 

Table 1. Comparison of the photocatalytic activity of pure SnO2 and doped SnO2 nanoparticles 
against various dyes. 

Photocatalyst Synthesis Method Crystal 
Size (nm) 

Bandgap 
(eV) 

Dye Reaction Time 
(min) 

Degradation 
Efficiency (%) 

Ref. 

SnO2 Green synthesis 21 3.75 Methylene blue 120 89 [68] 
SnO2 Green synthesis 7.6 3.8 Rhodamine B 150 92 [69] 

Figure 11. Mechanism of photocatalytic activity of the SnO2–Mg–F nanocomposite.

The synergistic effects of co-doping with Mg and F are the main reasons for the
enhanced activity of the doped SnO2. Introducing F dopants into Mg-doped SnO2 further
narrows the SnO2 bandgap, promoting visible light absorption [64]. The promoted light
absorption enhances the production of photoelectrons and holes, the primary carriers for
photocatalytic activity. On the other hand, the doped F2+ is located on the surface of SnO2,
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where the reconstruction enhances the photocatalytic activity of the Mg-doped SnO2 under
the irradiation of visible light. The fluorine dopant does not contribute to the visible light
absorption of SnO2 [65]. However, F dopant promotes the creation of oxygen vacancies,
promoting light absorption in the visible-light region and producing oxidizing species that
enhance the photocatalytic activity [66,67]. The co-doping with Mg and F improved the
photocatalytic efficiency of SnO2 through narrowed bandgap, promoted the separation of
photo-generated electrons and holes, and enhanced photocatalytic oxidizing species. From
the earlier reports, the comparison assessment of the photocatalytic activity of pure SnO2
and doped SnO2 nanoparticles is listed in Table 1.

Table 1. Comparison of the photocatalytic activity of pure SnO2 and doped SnO2 nanoparticles
against various dyes.

Photocatalyst Synthesis Method Crystal Size
(nm)

Bandgap
(eV) Dye Reaction Time

(min)
Degradation

Efficiency (%) Ref.

SnO2 Green synthesis 21 3.75 Methylene blue 120 89 [68]

SnO2 Green synthesis 7.6 3.8 Rhodamine B 150 92 [69]

SnO2 sol–gel 14.2 3.92 Methylene blue 90 93
[70]

SnO2 sol-gel 14.2 3.92 Methyl Orange 90 84

ZnO–SnO2 Hydrothermal 30 3.4 Methylene blue 75 70 [71]

Sr–SnO2 Sol-gel 8.3 3.7 Methylene Orange 120 94 [72]

Mg–SnO2
Vapour pressure

method 17.5 3.6 Alizarin Red S 120 75 [73]

F–TiO2 Sol-gel 18.79 3.3 Methylene blue 120 91 [74]

F–N–TiO2 Hydrothermal 20.6 3.5 Methylene blue 90 95 [75]

In order to assess the repeatability of the catalytic sample reactions, the ability of
the same catalysis process to degradation of a dye over the course of several days was
evaluated. When the dates of the collected data are displayed, we can observe that, as
the number of days rises, the sample’s reproducibility and stability are slightly varied as
shown in Figure 12. Additionally, we observed from the study that the prepared material
has good stability at different dyes for several days.
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4. Conclusions

The SnO2–Mg–F nanocomposite was successfully prepared through a soft chemical
method. The addition of fluorine significantly impacts the nanocomposite’s crystalline na-
ture, particle size, and morphology. The nanocomposite shows a monodispersed spherical
morphology with an average crystallite size of 29.5 nm and a particle size of 122 nm. The
nanocomposite possesses better optical properties with a 3.6 eV band gap. This band gap
affects the photocatalytic activity with 96% and 82% degradation for cationic and anionic
dyes, respectively. The fluorine is highly responsible for high efficiency in cationic dyes,
which induces a high negative charge over the surface of the nanocomposite.
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