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Abstract: The increasing release of engineered nanoparticles (NPs) into aquatic ecosystems makes it
crucial to understand the interactions of NPs with aquatic organisms, such as algae. In this study, the
association of CeO2 NPs with unicellular algae (Raphidocelis subcapitata) and changes to the cellular
elemental profile were investigated using three exposure concentrations (1, 50, and 1000 µg CeO2/L)
at two different algal growth conditions—exponential and inhibited growth (1% glutaraldehyde).
After a 24 h-exposure, algal suspensions were settled by gravity and CeO2-NP/algae association was
analyzed by single-cell inductively coupled plasma quadrupole mass spectrometry (sc-ICP-QMS) and
ICP time-of-flight MS (sc-ICP-TOFMS). Concurrent detection of the cellular fingerprint with cerium
indicated NP association with algae (adsorption/uptake) and changes in the cellular elemental
profiles. Less than 5% of cells were associated with NPs when exposed to 1 µg/L. For 50 µg/L
exposures in growing and inhibited cell treatments, 4% and 16% of cells were associated with CeO2

NPs, respectively. ICP-TOFMS analysis made it possible to exclude cellular exudates associated with
CeO2 NPs due to the cellular fingerprint. Growing and inhibited cells had different elemental profile
changes following exposure to CeO2 NPs—e.g., growing cells had higher Mg and lower P contents
independent of CeO2 concentration compared to inhibited cells.

Keywords: cellular exudates; uptake mechanism; cellular uptake; nanomaterials

1. Introduction

Thorough understanding of interactions in the nano–bio interface is a key component
in understanding the ecotoxicological effects and bioaccumulation behavior of nanoparti-
cles (NPs) in the environment. Transport through the food web is one of the aspects that
has been widely discussed in the scientific literature, but there is currently a high degree of
uncertainty associated with bioaccumulation studies of NPs while conclusive evidence of
trophic transfer is still lacking [1–3].

For trophic transfer, algae are of particular importance since they may be “point of
entry” of NPs into the food web [2]. Previous studies have documented the association
of NPs to primary producers, such as algae [4–6]. This suggests that NPs are able to
enter aquatic food webs and potentially become transferred from primary producers to
primary consumers and further up in the food webs [7,8]. For bioaccumulation studies with
algae, it is however important to consider that at different growth stages algae produce
extracellular polymeric substances (EPS) for different functions, e.g., cohesion of biofilm
and cell aggregation, water retention, and antioxidant [9]. EPS production can vary as
a function of different environmental stressors such as changes in salinity and nutrient
availability but also from strain to strain. Multiple publications have shown that NP–EPS
interaction occurs though it remains unclear whether NP exposure induces EPS production,
e.g., as a stress response or whether the EPS production mediates shedding of NPs from the
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algal cell. Nevertheless, EPS is believed to play a vital role in the bioaccumulation behavior
and toxicity of NPs, hence also in their potential for trophic transfer [10,11].

Only a handful of studies have addressed uptake and/or adsorption of NPs to al-
gal cells, most in a qualitative rather than quantitative manner. Several analytical ap-
proaches have been used for this purpose, including transmission electron microscopy
(TEM) or scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spec-
troscopy (EDX) [12,13], confocal fluorescence imaging [14], Raman spectroscopy [15], and
NanoSIMS [16]. Recent developments in inductively coupled plasma mass spectrometry
(ICP-MS) techniques have enhanced the possibilities for detection and quantification of
NPs in single cells. The conventional approach has been to separate the cells from the
exposure medium and acid-digest the collected cells to obtain quantitative information on
NP association with algae. However, this approach does not provide information on NP
adsorption or uptake on a single cell level. The new approach is to utilize single-cell induc-
tively coupled plasma quadrupole mass spectrometry (sc-ICP-QMS) and ICP time-of-flight
MS (sc-ICP-TOFMS) combined with dedicated sample introduction systems which allow
the measurement of intact cells. While sc-ICP-QMS is limited to the identification of only
one element per cell or two at best with fast scanning systems [17], sc-ICP-TOF-MS allows
simultaneous detection of entire ranges of elements. Sc-ICP-TOFMS can thereby be used
to determine the elemental “algal cell fingerprint” [18]. A recent study by Hendriks and
Skjolding [19] described the principles of these techniques, as well as their advantages and
limitations when it comes to assessing nanoparticle association with single cells.

Analysis on a single cell level using sc-ICP-MS is being increasingly used for toxico-
logical and ecotoxicological research, either through monitoring cellular elemental content
or tracking NP adsorption and/or uptake to cells. Several toxicology studies have in-
vestigated NP uptake, e.g., by measuring Ag NP contents in human monocyte THP-1
cell line [20] or by quantitative analysis of Ag NPs and TiO2 in lysed mouse neuroblas-
toma cells [21]. This technique has also been used for analyzing Au NP uptake in the
algal species Cyptomonas ovate [4] and Raphidocelis subcapitata [6], BaSO4 NP uptake in
Raphidocelis subcapitata, and Mg content in Chlorella vulgaris cells [22]. Von der Au et al. [23]
used sc-ICP-TOFMS to investigate the cell elemental profile of the diatom species
Cyclotella meneghiniana simulating environmental stress after exposure to different metals.
Additionally, sc-ICP-MS studies found association of between 1 to 10,000 Au NPs per
algal cell for different forms of Au NPs (10–100 nm), rods (ranging from width 10–70 nm
and length 45–300 nm) and wires (width 75 nm, length 300 to 6000 nm) underlying the
potential of trophic transfer of NPs from algae to higher trophic levels, e.g., crustaceans [11].
While Au NPs are ideal for proof-of-concept studies because of low toxicity, high stability,
low background concentrations, and low detection limits both by chemical quantification
methods and by TEM, they have low relevance in relation to environmental impact due to
a relatively limited range of applications and low exposures to the environment [24]. In
contrast to this, CeO2 NPs are used in a wide range of applications ranging from corrosion
protection [24], solar cells [25], fuel oxidation catalysis [26], and car exhaust treatment [27]
where direct environmental release is to be expected. PVP coated CeO2 NPs with a diameter
of 5–10 nm have been identified to internalize in algal species (C. reinhardtii) and cause
membrane damage through direct contact [28] while larger agglomerates of 140 nm did not
show internalization [29]. Internalization is suggested to be size dependent while effects
such as oxidative stress responses have been found for different sizes and coatings of CeO2
NPs in green algae mediated by direct contact [28,30,31]. However, studies have shown
potential for green algae to recover from CeO2 NPs chronic exposures [32], thus suggesting
a mechanisms for shedding or mitigating direct attachment. The underlying mechanism
and the relation to natural processes such as growth and test design considerations like
exposure concentration are unclear.

The aim of this study was to evaluate the effect of exposure concentration (1, 50,
and 1000 µg CeO2/L) and growth conditions (exponential growth compared to inhibition
with 1% glutaraldehyde) on the potential for association of CeO2 NPs with unicellular
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algae (Raphidocelis subcapitata) using two single cell ICP-MS methods (ICP-QMS and sc-
ICP-TOFMS). We investigated the potential for using a simplified ICP-QMS approach
compared to multi-element analysis by sc-ICP-TOFMS for identifying algal cells associated
and non-associated with NPs while also assessing the interaction of EPS or natural organic
matter associated with NPs.

2. Materials and Methods
2.1. Materials

Spherical CeO2 nanoparticles (NM-212, Fraunhofer IME, Aachen, Germany) with a
manufacturer primary particle size of 10–100 nm determined by TEM and a primary crystal
size according to Scherrer 33 nm with specific surface area determined by BET, 28 m2/g,
were suspended in deionized water using the particle dispersion protocol by OECD TG
318 [33] resulting in aggregates with average hydrodynamic diameters of 300 nm with a size
distribution from 100–350 nm (PdI 0.38 ± 0.05 and zeta-potential 28 ± 3 mV), determined
by dynamic light scattering (DLS) (Zetasizer Nano ZS, Malvern, UK).

2.2. Algal Growth Conditions

Unicellular green algae Raphidocelis subcapitata were used as the model organism for
testing nanoparticle association to algal cells. These are crescent shaped and approximately
10 µm long and 4 µm wide. Algal cultures were kept in ISO 8692 algal medium [34] at 20 ◦C
under constant shaking and illumination (80–100 µE·m−2·s−1) using the LEVITATT algal
testing setup [35]. In short, nine wells each containing five scintillation vials fastened with
metal clamps on the side of the wells were illuminated from below with an LED source
sandwiched between two acrylic plates. The LED source delivered light with an intensity
of 108 ± 10 µE·m−2·s−1 measured with an LI-189 Quantum/Radiometer/Photometer
(LI-COR, Cambridge, UK) in the “cool-white” spectrum. The LEVITATT was mounted on
an orbital shaker (IKA®® KS 260 basic) at 200 rpm in a temperature-controlled incubator at
23 ± 2 ◦C. The cell densities in cultures were determined by Coulter counting (Beckman
MultisizerTM 3, Indianapolis, IN, USA). To ensure that the cultures used in experiments
were in the exponential growth phase, a pre-culture was started 2–3 day prior to testing by
adding 104 cells/mL to 20 mL glass vials filled with 4 mL ISO algal medium. These vials
were incubated in the LEVITATT test system as described above.

2.3. Algal–CeO2 Interaction Tests

The test setup for algal exposure to NPs included three different CeO2 exposure con-
centrations: 1, 50, and 1000 µg/L. The range of concentrations was chosen to represent
environmentally relevant concentrations (1 and 50 µg/L) and an ecotoxicology test relevant
concentration (1000 µg/L). Two different test conditions were used—in one batch cells were
allowed to grow exponentially, and in the other batch a growth inhibitor (glutaraldehyde
to a final concentration of 1% (w/w)) was added to stunt algal growth and maintain the
cell concentration constant throughout the testing, storage, and sample preparation. Fur-
thermore, the inhibition of growth limits the release of extracellular polymeric substances
induced by contact with the CeO2 NPs. The samples were prepared in duplicates, one set
for sc-ICP-QMS analysis and another set for sc-ICP-TOFMS analysis.

The tests were carried out in 20 mL glass vials. Each vial contained 4.0 mL ISO 8692
algal growth medium (ISO, 2012) and around 106 cells/mL (R. subcapitata) added from the
pre-culture. As described above the CeO2 NP concentrations were 1, 50, and 1000 µg/L.
The vials were incubated in the LEVITATT system [35] at 20 ◦C for 24 h. Additionally,
control vials with ISO 8692 algal medium containing 106 cells/mL (R. subcapitata) were also
incubated. After 24 h, samples were withdrawn from the LEVITATT system and centrifuged
at 4000 rpm for 5 min, removing the supernatant and resuspending the pellet with media,
this process was repeated three times Algal cell concentrations were determined by a
Coulter Counter (Beckman MultisizerTM 3, Indianapolis, IN, USA), and the vials were put
in the refrigerator to allow settling of algal cells and to minimize cell divisions after the
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24 h exposure test. The algal suspensions were left for 24–96 h to settle and directly prior to
analysis the supernatant medium was withdrawn gently by pipette, and deionized water
was added to the vials to resuspend the sedimented algae for further analysis.

2.4. ICP-MS Instrumentation

The resulting suspensions of algae were analyzed by sc-ICP-QMS (NexION 350D,
Perkin Elmer, ON, Canada) and sc-ICP-TOFMS (icpTOF S2, TOFWERK, Thun, Switzerland).
All operating conditions can be found in Table S1 in the Supplementary Information [36].

In sc-ICP-QMS analysis 24Mg, 31P, 56Fe were measured for identification of algal cells
and their constituents and 140Ce to quantify CeO2 nanoparticles using the AsperonTM

spray chamber and the Perkin Elmer single cell analysis system and single cell application
in Syngystix 2.5 software with sample uptake rate of 15 µL/min and 100 µs dwell time.
Analysis of 24Mg and 31P was conducted in standard mode, and for the 56Fe analysis
dynamic reaction cell (DRC) mode was used with 0.3 mL/min NH3 as reaction gas. Each
sample was injected three times for a 60 s run.

For sc-ICP-TOFMS analysis, the ICP-TOFMS was equipped with a single-cell sample
introduction system (SC-SIS) from Glass Expansion. Samples were injected using a syringe
pump with a flow of 10 µL/min and exchanged manually. The instrument was operated
in collision/reaction cell mode with 5 mL/min H2/He to remove the ArO interference on
56Fe. The TOFMS data were acquired with a time resolution of 1 ms and further processed
in TOFpilot 2.10 (TOFWERK, Thun, Switzerland) using the liquid reprocessing module.
Integrated signals of the analytes of interest were exported as csv files for further data
processing. Transport efficiency was estimated using the particle size method with 60 nm
Au NPs (NIST, Gaithersburg, MD, USA) and 50 nm Au NPs (nanoComposix, San Diego,
CA, USA) for sc-ICP-QMS and sc-ICP-TOFMS, respectively. The recovery of the single
cell injection method was determined by comparing the cell counts from Coulter counter
measurements to cell counts using the isotopic tracers described above.

3. Results and Discussion

For the data interpretation, it is important to underline that both the ICP-QMS and the
ICP-TOFMS instruments are able to detect elements present in the algal cells, as well as
CeO2 nanoparticles in suspension or attached to cells. However, ICP-QMS can measure
only one element at a time. Therefore, it is assumed in the data interpretation of ICP-QMS
analyses that each signal event of an element present in algae belongs to a single, intact
algal cell. ICP-TOFMS, however, simultaneously captures the full elemental fingerprint of
a single cell (algal cell fingerprint) as well as CeO2 particles associated with the cell. The
transport efficiency based on size was 41% and 65% for sc-ICP-QMS and sc-ICP-TOFMS,
respectively (Supplementary Information). The total loss of cells from the centrifugation,
settling, and renewal of media was 10.2± 6.6%. The number of CeO2 NPs in the supernatant
after the final media renewal was not markedly different from the media background.
The cell count from sc-ICP-QMS compared to the cell count based on Coulter counter
measurements were 55 ± 10%.

3.1. Selection of Cellular Tracer for R. subcapitata

For identification of algal cells, it is of utmost importance to have sufficient signal
above background levels (signal-to-noise ratio). Ideally, the same tracers should be used
to identify all cells, independent of their condition; growing and inhibited cells with and
without exposure to CeO2 NPs. It was documented by Von der Au [23] that the detection
of algal cells based on one element alone leads to high false-positive numbers (~30%), and
it was anticipated that the use of multiple fingerprint elements would significantly reduce
false-positives. The TOF mass analyzer can measure all elements simultaneously thereby
providing a clearer picture, whether the detected signals are from cells, EPS, or testing
medium. To determine the reliable tracers for sc-ICP-QMS, we compared the number of
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events detected for each isotope and if this number was within the same range, the elements
were included in the tracer selection.

Algal cell counts from sc-ICP-QMS analysis, where the same dilution factors were
used, were similar for control cells in both growing and inhibited treatments based on all
three elements (Mg, Fe, P). Elemental fingerprint analysis of R. subcapitata revealed that P
and Fe are the most adequate tracing elements for both sc-ICP-TOFMS and sc-ICP-QMS
based on the detection limits and sufficiently high signal-to-noise ratio in both growing
and inhibited cells. While Mn seemed to be suited for sc-ICP-TOFMS analysis, the signal-
to-noise ratio for sc-ICP-QMS was too low for reliable cell detection. In the sc-ICP-TOFMS
analyses (see Figure 1), Mg and K were clearly detectable in growing cells, but their signal
intensities were markedly lower in inhibited cells. Consequently, P, Mn, and Fe signals
were used as tracers for algal cells in the sc-ICP-TOFMS data analysis and P and Fe for the
sc-ICP-QMS analysis. Further data related to the cell tracer selection and reproducibility
for the different samples can be found in the SI.
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Figure 1. Result of sc-ICP-TOFMS analysis of elements in exponentially growing and growth inhibited
algae (R. subcapitata). (a) Overview of the number of events detected for 24Mg, 31P, 39K, 55Mn, and
56Fe for both growing and inhibited control cells by sc-ICP-TOFMS. (b) To identify elements suitable
as cell markers, the number of events for each analyte was normalized to the number of 31P events
for each concentration of CeO2 NPs (normalization with respect to Mn signals is presented in the SI).
Note that the dashed lines between the data points are not supported by any model or data but were
added to help guide the eye.

3.2. Cellular Elemental Profile for R. subcapitata Exposed to CeO2 NPs

No growth inhibition due to the exposure of CeO2 NPs was observed for any of the
exposure concentrations based on cell counts by Coulter counting. This was supported
by cell counts based on Fe and Mg measurements described above (see Figure S6 in
Supplementary Information).

Exposed and non-exposed algal cells were screened for 24Mg, 31P, 56Fe by sc-ICP-QMS,
and the obtained intensities were then compared for these three elements to see the changes
in the cellular elemental profile for different algal growth conditions (growth/no growth)
and CeO2 NP exposures (see Figure 2a). The frequency distribution of detected particle
events was fitted with a Gaussian function, and from this model the median value of
elemental intensities in cell signals were obtained and in addition normalized with the
median of P signal intensity. Inhibited cells had substantially lower Mg content, as was
expected since glutaraldehyde inhibits the production of chlorophyll in the cell. The cellular
content of P was considerably higher for non-growing cells compared to the growing cells.
Growing and inhibited cells showed different patterns of response to exposure to CeO2
nanoparticles—growing cells had higher Mg and lower P contents independent of CeO2
concentration, while inhibited cells did not show a clear trend as a result of CeO2 exposure
for these two elements. It must be noted that for inhibited cells the P content per cell
is semi-quantitative since the signal intensity was too high to acquire accurate intensity
readings due to the fixation with glutaraldehyde. The Fe content per algal cell slightly
increased with higher exposures of CeO2 for growing cells.
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Figure 2. Normalized elemental cellular fingerprints for the freshwater green algae R. subcapitata
measured by (a) sc-ICP-QMS and (b) sc-ICP-TOFMS for growing and inhibited populations. Signals
were normalized using the median of P signal intensity as a reference. Note that the error bars were
removed here to facilitate the visualization of the trends. Figures with error bars can be found in
Figure S9 in the Supplementary Information.

In parallel, sc-ICP-TOFMS measurements were performed by screening through a
wider range of elements present in algal cells. These measurements showed that two distinct
ionomic profiles could be recognized between the growing cells and the inhibited cells (see
Figure 2b). P, Mn and Fe were observed in both populations; while the contents of Mg and
K were clearly decreased; the Fe content slightly increased in the inhibited populations
as observed similarly with the sc-ICP-QMS measurements. As mentioned previously, the
observed Mg decrease in the inhibited cells can be explained by the inhibition of chlorophyll
production by glutaraldehyde, while the decrease in K can also be related to inhibition of
primary cellular functions. Likewise, as with the analyte event count, two distinct patterns
in terms of elemental fingerprint can be observed for the growing and inhibited cells,
respectively, under different exposure conditions.

It is important to note here that although the same elemental profile would be ex-
pected independently of the analytical method used, data treatment plays a key role in
the produced results. Indeed, for sc-ICP-QMS data, all signals were considered to be cells
while for the ICP-TOFMS data only events containing simultaneously signals for P, Mn,
and Fe were considered to be cells events. Consequently, various complexes forming in the
medium, as well as cellular fragments and EPS would possibly lead to different fingerprints
allowing for exclusion of these components.

3.3. CeO2 Nanoparticle Association with Algal Cells

Figure 3 depicts the percentage of algal cells associated with CeO2 NPs in comparison
to the total number of cells detected in the different samples. Although the control samples
were not expected to contain any CeO2 NPs, this was only true for the first measurements,
i.e., before any of the exposed samples were measured. Indeed, even though the system
was rinsed to flush out possible contamination after the exposed samples, there was some
carry-over of CeO2 NPs to the subsequent control measurements on the following day.
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CeO2 association levels were still very low namely <1% for the growing control cells and
2% for the inhibited control cells.
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Figure 3. Overview of the cell-CeO2 NP association ratio for growing (green) and inhibited (beige) algal
cells (R. subcapitata) exposed to different concentrations of CeO2 NPs based on sc-ICP-TOFMS analysis.

At 1 µg/L CeO2 the number of particles detected was very low and close to back-
ground concentrations. The exposure concentration may therefore have been too low to
quantify CeO2 association with cells. However, at this concentration both growing and
inhibited cells showed that only 5% or less of the cells in the algal population were associ-
ated with CeO2 particles. When considering the total amount of CeO2 NPs present in the
suspension at 1 µg/L, around half was found to be associated with the cellular fingerprint
signal. However, the number of detected CeO2 particles was very low, making it difficult
to illustrate a trend. For 50 µg/L CeO2 exposure, non-growing cells were more likely to
be associated with CeO2 NPs than growing cells (16% and 4%, respectively). However,
most of the CeO2 NPs present in the suspension were unassociated CeO2 NPs, i.e., more
than 90% were freely dispersed CeO2 NPs or CeO2 NPs associated with other organic
complexes (e.g., EPS) that did not respond to the cellular fingerprint for both growing and
non-growing cells. Similarly, for the highest CeO2 NP exposure concentration (1000 µg/L)
nearly all the CeO2 was found not to be associated with algal cells, but since the number of
CeO2 NPs was much higher than the number of algal cells, 28% of growing and 85% of
non-growing algal cells were found to be associated with CeO2 NPs. Thus, care should be
taken when extrapolating results obtained for relative high exposure concentrations of NPs
(>1000 µg/L) as the onset of the observed response could be driven by physical phenomena
that cannot be directly extrapolated to environmentally relevant concentrations, as is the
custom in traditional risk assessment.

It should be noted that although concurrent signals have been assumed so far to
represent cell-NP association, it is possible that these signals originate from an independent
CeO2 NP and an independent algal cell reaching the plasma at the same time. Consequently,
the CeO2 NP and the algal cell will be considered as associated when in fact they are
not. While it is not possible to determine a posteriori what happened, the probability of
such a case can be determined by concurrency analysis and is strongly influenced by the
particle number concentration (PNC) in the sample, here high CeO2 NPs PNC. Ideally,
the 1000 µg/L exposure of the CeO2 NP sample should have been diluted further with
respect to the CeO2 NPs, but this would simultaneously have led to a lower concentration
of the algal cells which was undesirable. To check for coincidental nanoparticle and
algal cell events, a simple concurrency analysis was performed. Briefly, the probability of
two independent signals captured at the same time is the product of the two independent
probabilities of measuring a single analyte at a given time point, P(element1 ∩ element2).
Since it was already established that Mn and P are both considered as signals belonging
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to the same cell, the probability of Mn and Ce coincidentally being captured at the same
time was calculated and yielded <0.01% concurrent events (Figure S8 in Supplementary
Information). Hence, although there is a possibility that the assumed CeO2 association
with algae is a false positive, it is still quite low even for the highest exposure concentration.
Because of the relatively wide size distribution of the CeO2 NPs (100–350 nm), it was not
possible to determine whether the cells were associated with one or multiple NPs based on
the relative signal intensity.

The coincident occurrence of cell signals with ceria particles is assumed to be evidence
of CeO2 nanoparticle association with algal cells (either adsorption or uptake of nanoparti-
cles to algae cells). While the incidence of cell fingerprint elements with Ce signals could be
observed in the sc-ICP-TOFMS data, this was not possible with sc-ICP-QMS data. Hence,
the working assumption for QMS data was that after washing the samples multiple times,
all unbound CeO2 particles were removed and the remaining CeO2 particles must be bound
with cells. However, with the cell washing procedure applied here, it was obvious that
the sample preparation did not separate cells from free CeO2 in the medium, since there
were more Ce events detected than cell fingerprint events (see Figure S7 in Supplementary
Information). This observation indicates that extra washing steps or other separation
techniques were necessary, especially for the higher CeO2 concentrations.

In this study, the results obtained through use of these two instruments allowed the
relative abundancies to be revealed of various cellular fingerprint elements in cells exposed
to CeO2 NPs. For cellular association with CeO2 only sc-ICP-TOFMS data were presented,
since with this type of sample preparation sc-ICP-QMS cannot provide reliable data for cell
association with CeO2 nanoparticles. Indeed, in sc-ICP-QMS data, algal fingerprint and Ce
signals cannot be measured simultaneously for the same injection and potentially lead to
false positive measurements of CeO2 NPs not associated with algal cells.

Previous studies using small CeO2 NPs with a primary diameter of 5–10 nm showed
internalization [28], however for larger CeO2 NPs (140 nm) [29] internalization was gener-
ally not observed. Similarly, the present study did not specifically observe internalization,
as the difference between the growing and inhibited exposures show a markedly different
trend, of higher association of CeO2 NPs with the inhibited exposures, suggesting a rapid
clearance mechanism or no internalization in the growing exposure, but relatively high
degree of adsorption in the inhibited exposures, especially at 1000 µg/L (Figure 3).

A proposed clearance mechanism for algae could be the release of extracellular poly-
meric substances or by cell division. In order to limit the effect of these mechanisms algal
cells were inhibited with glutaraldehyde (1%) to stunt growth and metabolic functions.
In Figure 3, a higher association with CeO2 NPs can be observed for the inhibited cells,
which supports the hypothesis that growth or EPS is a mitigating factor of algal association
with nanoparticles. This is important since the extrapolation of results obtained with
non-growing algal cultures may overestimate the potential for trophic transfer of CeO2
nanoparticles in the environment where growth would be a natural part of the cellular
cycle. Another study also showed algal interaction of Au NPs ranging from 10 to 100 nm
having an association in relation to the exposure concentration ranging from 0.21% to
0.01% respectively [11]. Low accumulation potential was also observed for Ag NPs ranging
from 0.44 ng/105 cells to 0.68 ng/105 cells, dependent on coating (curcumin > tyrosine
> epigallocatechin gallate) [37]. However, due to the choice of method for quantifying
the metallic content and separation techniques, no information is available with regard
to whether the NPs are associated with living cells or with EPS or other natural organic
matter, which can cause misinterpretation of the available fraction for trophic transfer.

The interaction between algal cells (R. subcapitata) and twelve different NPs (6 types
of TiO2, 3 SiO2, 1 ZnO, and 2 CeO2) was also studied with flow cytometry, and a general
increase in the modified granularity as a function of concentration for eight (6 TiO2, 1 ZnO,
and 1 CeO2) out of twelve NPs tested indicating association of NPs with algal cells was
found [38]. Similar concentration dependent increase in NP-algal cell association was
observed in this study. However, it should be highlighted that the elevated concentrations
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could induce effects such as entrapment of algae in NP clusters which would most likely
not occur at environmentally relevant concentrations. In environmentally relevant settings,
substances such as natural organic matter (NOM) would also be present which has been
shown to decrease the toxicity of NPs [39,40]. When involving NOM in the test setup,
the complexity of assessing the interaction of NPs with algal cells increases. However,
utilizing sc-ICP-TOFMS to map multiple elements simultaneously will allow for distinction
of algal cells associated with NPs or assess other compounds that will interact with NPs in
environmentally relevant samples.

4. Conclusions

In general, a very low degree of interaction between algae and CeO2 nanoparticles
was documented at environmentally relevant concentrations. Less than 5% of cells exposed
to 1 µg/L were associated with CeO2 nanoparticles in growing and non-growing cultures,
and at 50 µg/L only up to 16% of the cells in a non-growing culture and 4% in a growing
culture interacted with CeO2 nanoparticles. At a higher concentration (1000 µg/L), similar
to concentrations used in guideline ecotoxicological testing, much higher association was
observed (up to 85%). Our results show that extrapolation of results obtained at high
exposure concentration may not be valid for environmentally realistic conditions, since the
higher NP concentration may have caused testing artefacts induced by increased NP to cell
ratio. Furthermore, the marked difference between the association of nanoparticles and
algal cells in growing and non-growing treatments indicate that growing cells may actively
shed nanoparticles due to growth or release of EPS, or that non-growing cells might have a
compromised cell wall that is more prone to permeation or adsorption of nanoparticles.
This limits the value of results obtained with non- or slow-growing algal cultures with
respect to extrapolation to environmentally realistic conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13172468/s1, Figure S1: Normalization of the number of
events recorded for the different analytes with respect to the number of P events, for both the growing
control cells and the inhibited control cells at 1 µg/L CeO2 NP exposure; Figure S2: Normalization
of the number of events recorded for the different analytes with respect to the number of P events,
for both the growing control cells and the inhibited control cells at 50 µg/L CeO2 NP exposure;
Figure S3: Normalization of the number of events recorded for the different analytes with respect to
the number of P events, for both the growing control cells and the inhibited control cells at 1 µg/L
CeO2 NP exposure; Figure S4: Normalization of the number of events recorded for the different
analytes with respect to the number of Mn for the different samples. Overall, an increase in Fe signals
can be observed with increasing exposure dose, which can be explained by oxidative stress; Figure S5:
Display of the number of events recorded for the different analytes for both the growing control cells
and the inhibited control cells on two subsequent days. The observed pattern between inhibited
and growing cells is reproducible; Figure S6: Cell counts per mL for growing (left) and inhibited
(right) cells based on Mg, Fe, and P tracing with sc-ICP-QMS; Figure S7: Number of events per mL of
sample for Ce and P in growing and inhibited cells for different CeO2 exposures; Figure S8: Predicted
and measured number of concurrent events for growing (left) and inhibited (right) cells. Calculated
number of concurrent events is based on Mn and Ce signals, measured number of events is based on
Ce, Mn, and P simultaneous signals. Figure S9: Normalized elemental cellular fingerprints for the
freshwater green algae R. subcapitata measured by ICP-TOFMS (top row) and ICP-QMS (bottom row)
for growing and inhibited populations. The error bars represent one standard deviation. Table S1:
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