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Abstract: Superconducting flux qubits have many advantages as a storage of quantum information,
such as broad range tunability of frequency, small-size fabricability, and high controllability. In
the flux qubit–oscillator, qubits are connected to SQUID resonators for the purpose of performing
dispersive non-destructive readouts of qubit signals with high fidelity. In this work, we propose
a theoretical model for analyzing quantum characteristics of a flux qubit–oscillator on the basis
of quantum solutions obtained using a unitary transformation approach. The energy levels of the
combined system (qubit + resonator) are analyzed in detail. Equally spaced each energy level of
the resonator splits into two parts depending on qubit states. Besides, coupling of the qubit to the
resonator brings about an additional modification in the split energy levels. So long as the coupling
strength and the tunnel splitting are not zero but finite values, the energy-level splitting of the
resonator does not disappear. We conclude that quantum nondemolition dispersive measurements of
the qubit states are possible by inducing bifurcation of the resonator states through the coupling.

Keywords: flux qubit; superconducting quantum interference device; energy level; Hamiltonian;
unitary transformation

1. Introduction

Nanomaterial-based quantum information devices may play a crucial role in next-
generation quantum science and engineering. Among such devices, superconducting
nanocircuits [1–6] are simple quantum systems that can potentially be used for controlling
universal quantum gates in quantum computers. Typically, these circuits are composed of
superconducting qubits framed with Josephson junctions that allow large-scale integrability.
Owing to recent advances in quantum nanotechnology, these have become one of the
main research subjects in quantum information science such as quantum computing and
quantum simulation. Through the developments in fabricating quantum gates, not only
the controllability of single-qubits but also the capability of coupling between them in a
way that the circuit allows decoherence-free information processes [7–9] is highly desired.

As is well known, a qubit is a two-level system that serves as a basic unit for storing
quantum information in quantum computers. A peculiar property of qubits, which is
clearly distinguished from that of classical bits, is that they can be a superposition of the
two states as well as one of both states according to the principle of quantum mechanics.
Several kinds of qubits materialized on the basis of superconducting circuits are flux qubits,
charge qubits, and phase qubits [4,5]. In this work, we focus on flux qubits because they can
be competitively applied as quantum information storages with the availability of real-time
readout of their states [10–12]. While flux qubits exhibit usual quantum properties such
as discrete energy levels, entanglement, quantum interference, and superposed quantum
states, it is possible to control them to preserve their high coherence.

A flux qubit coupled to an oscillator (resonator) can be a potential resource for encod-
ing and processing quantum information in quantum computation [8]. For this reason,
the interaction of a two-level system with an oscillator has become a highly emerging
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research topic over the years. The operation of a qubit is actually the same as a single
atom that has a large electric dipole moment coupled to the cavity mode of the microwave
photons. Quantum interference that takes place in superconducting devices is in fact a
coherent superposition of probability fields. The feasibility of many experimental oper-
ations with flux qubit–oscillators upon theoretical backgrounds has been demonstrated
thus far. For instance, recording Berry phases for geometric operations [13,14], prepara-
tion of squeezed states [15,16], non-demolition readout of qubit information [17,18], and
adaptation of multi-qubit algorithms [19–21] are possible.

Quantum dynamics of superconducting flux qubit–oscillators is investigated in this
work, based on a theoretical model for analyzing them. In particular, the energy split-
ting in the resonator, which appears due to coupling of a qubit on it, is examined in
detail. The harmonic oscillator connected to a flux qubit plays the role of measuring
the qubit states, whereas it is usually composed of a superconducting quantum inter-
ference device (SQUID). Because the formula of the Hamiltonian for a qubit–oscillator
is complicated in most cases, direct evaluation of quantum solutions is very difficult.
For this reason, we adopt a unitary transformation approach which is a powerful aux-
iliary method for managing a system described by a complicated Hamiltonian matrix.
Unitary transformation with the matrix can be performed without loss of the Hermitian
nature of the matrix. The additive and multiplicative relationships between the oper-
ators are kept through such transformations. The Hamiltonian can be simplified via
the transformation, facilitating the investigation of various quantum properties of the
qubit–oscillator system on the basis of complete quantum solutions.

2. Description of the Hamiltonian

Flux qubits can be applied in a scalable manner to quantum information science owing
to the fact that not only can their frequency be broadly tuned, but qubits also exhibit high
relaxation time and strong anharmonicity. Thanks to the anharmonicity in a multi-qubit
system, we can rapidly control pulses without significant frequency crowding [22]. For the
detailed design and fabrication of flux qubits, refer to Refs. [10,20,22,23].

Let us consider a flux qubit coupled to a SQUID oscillator [8]. This coupling exhibits
many interesting effects concerning the experiments of cavity quantum electrodynamics
and ion/atom traps, which facilitate the generation and probe of nonclassical states im-
portant in quantum devices. Further, it is possible to produce entangled states between
qubits from such coupling, which are crucial in quantum-state engineering for quantum
information processing [24,25]. This entanglement is necessary in quantum computing and
can be enhanced by the increase in relaxation time of the oscillator and/or the coupling
strength [8].

By coupling qubits to the SQUID oscillator via current distribution in the shared
regions, an additional term which indicates an interaction appears in the Hamiltonian.
Considering this, the overall Hamiltonian of this system is given by

Ĥ = Ĥq + Ĥsq + Ĥq−sq, (1)

where Ĥq is the qubit Hamiltonian, Ĥsq is the SQUID circuit Hamiltonian, and Ĥq−sq
is the Hamiltonian that represents the interaction between them. Let us see the details
of each term in Equation (1). The qubit–oscillator system can be explained via a spin-
boson model that adopts an effective spectral density [26,27]. Two levels in the flux qubit
are distinguished by the clockwise/anticlockwise directions of the controllable persistent
currents [28] corresponding to the spin-up/spin-down states respectively. These two states
are coupled by tunneling with the tunnel splitting ∆ that has the dimension of frequency.
According to this, the qubit Hamiltonian for the system is given by

Ĥq = −h̄(εσ̂z + δσ̂x)/2, (2)
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where σ̂x and σ̂z are Pauli matrixes with the basis of spin-up/spin-down, h̄ε is the qubit
maximum persistent current, and δ = 2π∆. The approximate value of ε is given by
ε ' IpΦ0(γq − π)/(h̄π), where Φ0 = πh̄/e is the flux quantum, γq is the superconductor
phase across overall junctions and Ip is the qubit maximum persistent current. In many
cases of flux qubits, the junctions are three-fold [8]. The energy splitting between the
ground and the excited states in the qubit is given by Eq

d = h∆L where ∆L is the Larmor
frequency of the qubit. The Larmor frequency is determined by the two coefficients of
Equation (2), i.e., ∆L =

√
∆2 + ε2 where ε = ε/(2π). The minimum energy splitting is h∆

that is given in the case ε ' 0 [29].
The SQUID acts as a harmonic oscillator of an LC circuit coupled, in general, to an

Ohmic bath. The overall inductance of the SQUID circuit is given by Lt = Lj + Lse where
Lj is the Josephson inductance of the junctions and Lse is self-inductance of the SQUID and
shunt lines. Then, the angular frequency of the SQUID circuit can be represented as

ωp = [LtCsh]
−1/2, (3)

where Csh is the shunt capacitance. The Hamiltonian for an ideal SQUID circuit is given by

Ĥsq = h̄ωp(â† â + 1/2), (4)

where we have neglected the interaction of the circuit with Ohmic environment [30].
Finally, the interaction Hamiltonian is of the form

Ĥq−sq = λσ̂z(â + â†), (5)

where λ is the coupling strength. Lots of interesting effects associated with qubit–oscillator
systems described by Equation (1) can also be applied to a wide range of physics besides
quantum computation. For instance, their applicable fields include quantum dots in
photonic crystals [31] and single dipole atoms coupled to cavity microwave photons [32].
The qubit signals in the SQUID environmental noise suffer decoherence and dissipation
depending largely on the coupling strength between the qubit and the SQUID [30].

The detection characteristics, including noise effects, of a dc-SQUID inductively cou-
pled on the qubit mainly depend on λ. Hence, we need to modulate λ in an effective way
depending on the aim of the research. If we want a good readout resolution of qubit states,
a strong coupling is necessary. On the other hand, in the case where we need to reduce
the negative effects of the environment, we must keep the coupling strength small [30]. In
this work, we choose the latter case because it is favorable for quantum nondemolition
measurements of qubit states.

Regarding the general quantum mechanics, let us express the annihilation operator
in the form â =

√
Ω/(2h̄)q̂ + i p̂/

√
2h̄Ω, where p̂ = −ih̄∂/∂q and Ω = Ltωp. Then, as we

know, its hermitian adjoint â† is the creation operator. Now, Equation (1) can be written in
a matrix form as

Ĥ =

(
X̂ + Ŷ D

D X̂− Ŷ

)
, (6)

where D = −h̄δ/2 and the operators are X̂ = p̂2/(2Lt) + Ltω
2
pq̂2/2 and

Ŷ =
√

2Ω/h̄λq̂− h̄ε/2. By solving the Schrödinger wave equation with this Hamiltonian
in the subsequent section, we derive energy eigenvalues and the corresponding wave
functions, which are fundamental in the research of quantum properties of the system.



Nanomaterials 2023, 13, 2395 4 of 14

3. Results and Discussion
3.1. Unitary Transformation Approach

To investigate quantum dynamics of the system, it is necessary to see the eigenvalue
problem of the Hamiltonian given in Equation (6). We put the Schrödinger solutions (wave
functions) of the system as

ψn(q, t) =
(

ψn,+(q, t)
ψn,−(q, t)

)
. (7)

Here, ψn,+(q, t) corresponds to the wave of spin-down whereas ψn,−(q, t) corresponds to
spin-up. Since Equation (6) is a complicated matrix form, the direct evaluation of these
wave functions may be very difficult. Special mathematical techniques are necessary in
order to find their analytical forms. To overcome this difficulty, we simplify the Hamiltonian
using a two-step unitary transformation. Our first step of transformation is focused on
diagonalizing the Hamiltonian, and the second step is on transforming the Hamiltonian to
a most simplified one. For these purposes, we introduce suitable unitary operators Û and
Û± as

Û =
1√
N

 Ŷ +
√

Ŷ2 + D2 D

D −
(

Ŷ +
√

Ŷ2 + D2
) , (8)

Û± = exp
(

i
h̄

d± p̂
)

, (9)

where
N = 2

[
Ŷ2 + D2 + Ŷ

√
Ŷ2 + D2

]
, (10)

d± = ±
√

2ωp/(Lth̄)λε/(ωLω2
p,±), (11)

while ωL =
√

ε2 + δ2 and

ω2
p,± = ω2

p ±
4ωpλ2

h̄2

(
1

ωL
− ε2

ω3
L

)
. (12)

At this stage, we consider the case of a weak coupling strength:

λ/h̄� ε, δ. (13)

In fact, this is a crucial requirement in order to preserve quantum coherence in quan-
tum computation devices [33]. A quantum nondemolition measurement of the qubit
states can be realized by using the oscillator-type resonator under the limit given in
Equation (13) [9,34]. The production of Landau–Zener interference [35] and the securing
of amplitude spectroscopy [36] are also possible under this condition. In addition, weak
coupling allows to generate Fock, dressed, and Floquet states [33,37], which are hard to
realize by other means [37].

For an arbitrary matrix M̂, the unitary transformation rule with a unitary operator
Û is given by M̂′ = ÛM̂Û †. Now, we carry out the two-step unitary transformation
using Equation (8) in the first and Equation (9) in the second step: we use Û in the first
transformation and then Û± are used in the second transformation. From this, we have the
final transformed Hamiltonian as (for detailed methods of transformation, see Appendix A)

Ĥ′′± =
p̂2

2Lt
+

1
2

Ltω
2
p,± q̂2 +H±, (14)
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whereH± = Eq
± + Eadd

± with Eq
± = ±h̄ωL/2, and

Eadd
± = −Ltω

2
p,±d2

±/2. (15)

The transformed Hamiltonian is thus described by the modified angular frequencies
ωp,± of which modifications are deeply related to the connection of the oscillator to the qubit.
That is, such modifications are determined by the coupling constant λ (see Equation (12)).
Frequency modifications imply that the frequency splits into two parts, whereas the depen-
dencies of that splitting on ε and ∆ are shown in Figure 1. We can confirm from Figure 1a
that the difference between the split frequencies, ωd = ωp,+ − ωp,−, is largest when ε is
zero. A detailed evaluation using Equation (12) at ε = 0 gives ωd = ωp(A+ −A−) where
A± = [1± 4λ2/(h̄2δωp)]1/2. Whereas ωd increases as λ grows, ωd becomes zero in the
limit λ→ 0 as expected. Figure 1b exhibits that ωd is zero when ∆ = 0 and it increases as
∆ augments and reaches maximum at a specific value of ∆: that value (∆) is about 0.23 in
the case of the graphs in Figure 1b.

Figure 1. Modified angular frequency ωp,± as a function of ε (a) and ∆ (b) for several values of λ.
δ = 1 for (a) and ε = 1 for (b). We have used Lt = 1, Csh = 1, and h̄ = 1.

The merit of the unitary transformation methods is their potentialities regarding
mathematical simplifications of the problem as shown up to now. The versatile properties
of unitary operators can also be used for other purposes in this field. For instance, one can
carry out quantum computing through properly prepared quantum states by implementing
sequences of unitary gates. Moreover, the time evolution of a closed system can also be
described via a unitary transformation.
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3.2. Analysis of Energy-Level Splitting

We can write the eigenvalue equations for the transformed Hamiltonian in the form
Ĥ′′±|ψ′′n,±〉 = En,±|ψ′′n,±〉. Then, based on the evaluations in Section 3.1, the energy eigenval-
ues are given by

En,± = ESHO
n,± + Eq

± + Eadd
± , (16)

where ESHO
n,± are the eigenvalues of the Hamiltonian of the simple harmonic oscillators

(SHOs) of which angular frequencies are ωp,±: ESHO
n,± = (n + 1/2)h̄ωp,±. ESHO

n,± and Eq
± are

associated with the SQUID energies and the qubit energy levels respectively, while Eadd
±

are additional energies that appear due to the coupling of the qubit to the SQUID.
It is apparent by inspecting Equation (16) that ωp,± play major roles in determin-

ing En,±, where ωp,± are represented in terms of ε and ∆ as can be confirmed from
Equation (12). We have plotted En,± in Figure 2 for a more detailed analysis regarding
this. The dependence of En,± on ε can be seen from Figure 2a and on ∆ from Figure 2b for
the first three lowest quantum numbers n. We can examine the overall energy differences
En,d = En,+ − En,− of the combined system from these graphics. Figure 2a reveals that
these differences are smallest when ε = 0 and increase as |ε| becomes larger.

Figure 2. Energy eigenvalues En,± of the combined system for the first three quantum numbers n
plotted as a function of ε (a) and ∆ (b). The value of δ is 1 for (a) and the value of ε is 1 for (b). We
have used Lt = 1, Csh = 1, λ = 0.01, and h̄ = 1.

The detailed evaluation of En,d using Equation (16) in the limit ε = 0 gives
En,d = h̄[δ + ωd(n + 1/2)]. The first term h̄δ is the usual energy gap in the qubit. On the
other hand, the second term, h̄ωd(n + 1/2)[≡ ∆En], is an additional energy difference
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that originated from the splitting of the modified angular frequency, ωp,±, in the SQUID
resonator, which was previously analyzed from Figure 1. Notice that Eadd

± do not contribute
to En,d in this case since Eadd

± = 0 when ε = 0. Because ωd increases as λ grows, ∆En
are large for a large λ. When ε = 0, the additional energy difference ∆En with a specific
quantum number n is directly proportional to n and becomes small as the actual qubit
energy gap, h∆, increases. However, ∆En vanish in the case λ→ 0 because ωd = 0 in that
limit. Hence, we see that, if the coupling has been removed (λ = 0), the energy differences
are reduced to En,d = h̄δ which are the same value as the pure energy gap of the qubit. By
the way, for both cases ε 6= 0 and ε = 0, the energy-level splitting of the resonator does
not disappear provided that the coupling strength and the tunnel splitting are not zero
but finite values. From Figure 2b, we can confirm that, as ∆ grows from zero, En,d increase
nearly monotonically from the smallest value.

We have compared E0,± with the qubit energy levels Eq
± in Figure 3. Figure 3a exhibits

that E0,+ (E0,−) is larger than Eq
+ (Eq

−) by a constant energy which is given almost regardless
of ε. Roughly speaking, E0,± are larger than Eq

± by an amount of the zero point energy
of the SQUID resonator. Figure 3b shows that E0,± (and, consequently, En,± with an
arbitrary number n) decrease as Lt increases. E0,± also decrease as Csh becomes large (not
shown here). En,± are determined by ωp,±, which decrease as Lt and/or Csh increase (see
Equation (16) with Equations (15), (12) and (3)). However, the qubit energy levels are
irrelevant to Lt and Csh.

Figure 3. Comparison of energy eigenvalues E0,± with the qubit energy Eq
± plotted as a function

of ε (a) and Lt (b). The value of Lt is 1 for (a) and the value of ε is 1 for (b). We have used Csh = 1,
λ = 0.01, δ = 1, and h̄ = 1.

In fact, the additional energies, Eadd
± , in Equation (16) are very small in the case of

weak coupling. The analysis of their detailed characteristics may be interesting though.
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We see from Figure 4 that the absolute values of Eadd
± increase as the coupling strength

λ becomes large. Because the energies Eadd
± take place due to the coupling of the qubit

on the SQUID resonator, their dependence on the coupling strength λ is very sensitive.
Consequently, if we disconnect the qubit from the resonator by setting λ = 0, Eadd

± vanish.
In Figure 4, the behaviors of Eadd

+ and Eadd
− look quite the same as each other. Strictly

speaking however, they are slightly different and this can be confirmed from the insets in
Figure 4 drawn based on Equation (15).

Figure 4. Additional energies Eadd
± as a function of ε (a) and ∆ (b) for several different values of λ.

The value of δ is 1 for (a) and the value of ε is 1 for (b). We have used Lt = 1, Csh = 1, and h̄ = 1. The
insets are enlargement of the indicated part in the graphics.

In the presence of the microwave drive while measuring the qubit, the SQUID-based
resonator would exhibit nonlinearity. This nonlinearity may allow highly sensitive bifurca-
tion readout of qubit states, leading possibly to achieving a direct nondemolition readout
joined with the fast and efficient qubit measurements [17].

3.3. Quantum Wave Mechanics

If we do not regard the last term in Equation (14), the individual Hamiltonians Ĥ′′± just
correspond to those of SHOs with the frequencies ωp,±, whose whole quantum solutions
are well known. The wave functions in the original system can be obtained from the inverse
transformation of the wave functions associated to the final transformed Hamiltonian
which is Equation (14). That transformation leads to (see Appendix B)

ψn(q, t) = Û†
(

φ′n,+(q) exp[iθn,+(t)]
φ′n,−(q) exp[iθn,−(t)]

)
, (17)
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where φ′n,±(q) are functions of q and θn,±(t) are phases, which are of the forms

φ′n,±(q) =
(

Ω±
h̄π

)1/4 1√
2nn!

Hn

[(
Ω±

h̄

)1/2
(q− d±)

]
exp

(
−Ω±

2h̄
(q− d±)2

)
, (18)

θn,±(t) = −ωp,±t(n + 1/2)− h̄−1H±t + θn,±(0). (19)

Equation (17) is the wave functions of the system in Fock states. For further de-
velopment of the wave functions to obtain a more detailed form, refer to the latter part
of Appendix B. These wave functions are necessary for investigating various quantum
properties of the flux qubit system coupled to the oscillator, and can be extended to more
generalized states such as coherent, squeezed, and thermal states. For instance, we can
manage lots of quantum characteristics, such as quadrature fluctuations, Schrödinger–
Robertson uncertainty, von Neumann entropy, purity of the state, Wigner distribution
function, phase properties, and transition probabilities, by means of such wave functions.

In particular, the wave functions, Equation (17), shown with phases can be practically
applied to clarify pure dephasing [38,39] and its relevant concerns in superconducting
qubits. Not only the high fidelity in qubit readout, long coherence time in two-level systems
is also necessary. The off-diagonal density matrix elements decay during pure dephasing,
while the diagonal elements are almost not affected. The understanding and addressing
the underlying mechanism of such a dephasing phenomenon are theoretical challenges,
vital for developing decoherence-protected quantum computing systems.

4. Conclusions

Quantum features of a flux qubit coupled to a harmonic oscillator have been investi-
gated with emphasis on energy-level splitting in the oscillator. Because the Hamiltonian of
the system is a complicated form, the mathematical treatment of the system in the quantum
domain is not an easy task. This is the reason why many researchers relied on numerical
analyses using a rotating wave approximation, instead of analytical analyses, in solving
quantum problem of a qubit system coupled to an oscillator so far [40,41].

However, we have managed the system analytically in this work for the availability of
detailed analyses. We have used the unitary transformation approach as a special math-
ematical technique for treating the matrix Hamiltonian of the system. These procedures
enabled us to examine the quantum characteristics of the system in detail conforming to
quantum wave mechanics. The wave functions that are requisite as the basic tools for un-
folding quantum dynamics of the system were derived. Various quantum properties of the
qubit systems, such as purity of the states and the von Neumann entropy, can be addressed
by making use of quantum information theory that is based on these wave functions.

We have analyzed the upper (En,+) and lower (En,−) energy levels of the qubit–
oscillator and the difference between them, En,d. The overall energy levels En,± are com-
posed of three terms, which are resonator energies (ESHO

n,± ), qubit energies (Eq
±), and the

additional energies (Eadd
± ) that appear due to the coupling of the qubit on the resonator. Ow-

ing to such a coupling, the angular frequency ωp of the resonator splits into two parts which
are ωp,+ and ωp,−. As a consequence, each resonator energy level splits as ESHO

n → ESHO
n,± .

The appearance of this splitting enables us to detect qubit states through inspecting the
bifurcation. Thus, the determination of qubit states utilizing such a conceptual idea for
dispersive measurement is possible.

We have compared En,± with the qubit energy Eq
±: En,± decrease when Lt and/or Csh

increase, meanwhile Eq
± are irrelevant to such parameters. Roughly speaking, the energy

levels with the lowest quantum number for the combined system, E0,+ (E0,−), is larger than
the qubit energy level, Eq

+ (Eq
−), by an amount of zero-point energy of the resonator. The

additional energies Eadd
± are very small enough that they can be negligible in the case of

the weakly coupled system. However, Eadd
± strongly depend on the coupling strength λ.
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We have confirmed that En,d are smallest when ε = 0 and increase as ε grows. En,d also
increase as ∆ grows.

The information developed here can be usefully applied in designing both a flux
qubit and a readout system of qubit signals. Though we adopted the flux qubit coupled to
the SQUID, our development can be tailored for the purpose of describing other similar
systems and structures, such as readout mechanisms for other types of qubits and the
interaction of radiation with superconducting rings [18,42–44].

5. Methods

We first introduced a Hamiltonian that describes a flux qubit system coupled to a
SQUID oscillator. The Schrödinger equation associated with this Hamiltonian was solved
using the unitary transformation method. The unitary transformation of the Hamiltonian
was performed in two steps. The first transformation was carried out with the choice of the
unitary operator as Equation (8), and then, in performing the second transformation, we
used the operator given in Equation (9).

From the first transformation, the Hamiltonian matrix was diagonalized as shown
in Equation (A1). However, the evaluation of the Schrödinger equation in this trans-
formed system in a straightforward way is still difficult due to the fact that the transformed
Hamiltonian involves a linear term of q̂. This is the reason why we have secondly trans-
formed the Hamiltonian to be a further simplified one. The final Hamiltonian derived
via these two transformations is just the combination of two simple harmonic oscillators
(see Equation (14)). Hence, we have easily identified the Schrödinger solutions in the
transformed system as shown in Equation (A4). The full wave functions in the original
system were obtained by transforming these solutions inversely (see Equation (17)). We
have managed the system from a quantum-mechanical point of view throughout the paper.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government(MSIT) (No.: NRF-2021R1F1A1062849).

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Unitary Transformation

We represent the unitary transformation, which is necessary for analyzing the energy
levels of the system together with obtaining the quantum wave functions. We first transform
the Hamiltonian in Equation (2) as Ĥ′ = ÛĤÛ† where Û is shown in Equation (8). A
rigorous evaluation gives a diagonalized Hamiltonian of the form

Ĥ′ =
(

Ĥ′+ 0
0 Ĥ′−

)
, (A1)

where Ĥ′± = X̂±
√

Ŷ2 + D2.
By employing Equation (13), the square root which appeared in the elements of

Equation (A1) is approximated to be

√
Ŷ2 + D2 ' h̄ωL

2
+

2Ωλ2

h̄2

(
1

ωL
− ε2

ω3
L

)
q̂2 −

√
2Ω
h̄

ε

ωL
λq̂. (A2)

Here, we have regarded the terms only up to λ2. If we use Equation (A2), the elements of
Equation (A1) become

Ĥ′± '
p̂2

2Lt
+

1
2

Ltω
2
p,± q̂2 ∓

√
2Ω
h̄

ε

ωL
λq̂± h̄ωL

2
. (A3)
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Equation (A3) is the same as the Hamiltonian of a forced harmonic oscillator because the
linear term involving q̂ represents a force in the equation of motion [45]. The Hamiltonian can
be more simplified by an additional transformation that removes such a force term. Hence,
for further simplification, we use another unitary operators Û± shown in Equation (9). Then,
by performing the second step of transformation in a way that Ĥ′′± = Û±Ĥ′±Û†

±, we finally
have Equation (14) in the text.

Appendix B. More Detailed Derivation of the Wave Functions

From the Schrödinger equation for the final transformed Hamiltonian (Equation (14)),
ih̄∂ψ′′n,±(q, t)/∂t = Ĥ′′±ψ′′n,±(q, t), the wave functions associated with Ĥ′′± are easily identi-
fied to be

ψ′′n,±(q, t) = φ′′n,±(q) exp[iθn,±(t)], (A4)

where

φ′′n,±(q) =
(

Ω±
h̄π

)1/4 1√
2nn!

Hn

[(
Ω±

h̄

)1/2
q

]
exp

(
−Ω±

2h̄
q2
)

, (A5)

while Ω± = Ltωp,± and θn,±(t) are phases given in Equation (19) in the text. Although
the wave functions, Equation (A4), just belong to the SHO, their phases, Equation (19),
are not the same as those of the SHO because of the additional term, −h̄−1H±t, which
remains so long asH± in Equation (14) do not vanish. From an inverse transformation of
the wave functions in Equation (A4), it is possible to obtain the complete wave functions in
the original system.

The wave functions in the first transformed system, ψ′n,±(q, t), can be derived from
the inverse transformation of the form ψ′n,±(q, t) = Û†

±ψ′′n,±(q, t). A straightforward mathe-
matical procedure for this transformation gives

ψ′n,±(q, t) = φ′n,±(q) exp[iθn,±(t)], (A6)

where φ′n,±(q) are obtained from the relation φ′n,±(q) = Û†
±φ′′n,±(q), while their formulas

are given in Equation (18).
We now consider the next step of the inverse transformation

ψn(q, t) = Û†ψ′n(q, t). (A7)

The outcome of Equation (A7) is identical to Equation (17) in the text under the arrangement

ψ′n(q, t) =
(

ψ′n,+(q, t)
ψ′n,−(q, t)

)
, (A8)

where ψ′n,±(q, t) = φ′n,±(q) exp[iθn,±(t)].
A further evaluation of Equation (A7) (or Equation (17) in the text) yields a more

detailed form of the wave functions. That is, a strict evaluation of it using Equation (8)
results in

ψn(q, t) =
(

Wψ′n,+(q, t) + Zψ′n,−(q, t)
Zψ′n,+(q, t)−Wψ′n,−(q, t)

)
, (A9)

where

W =
Y +
√

Y2 + D2
√

N
, Z =

D√
N

. (A10)

By comparing Equation (A9) with Equation (7), we see that

ψn,+(q, t) = Wψ′n,+(q, t) + Zψ′n,−(q, t), (A11)

ψn,−(q, t) = Zψ′n,+(q, t)−Wψ′n,−(q, t). (A12)
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It may be possible to expand W and Z in terms of λ. We first expand N in terms
of λ as a preliminary task before executing such expansions. Then, under the condition
represented in Equation (13), N is given by

N = A0 + A1λq + A2λ2q2 + · · · , (A13)

where

A0 =
h̄2

2
(ε2 + δ2 − εωL), (A14)

A1 = 2
√

2Ωh̄
[

1
2

(
ωL +

ε2

ωL

)
− ε

]
, (A15)

A2 =
2Ω
h̄

[
2− ε

ωL

(
3− ε2

ω2
L

)]
. (A16)

Using this, the coefficients appearing in Equation (A9) are evaluated up to the second order
of λ as

W =
1√
A0

[
B0 + B1λq + B2λ2q2 + O(λ3)

]
, (A17)

Z =
D√
A0

[
1− A1

2A0
λq−

(
A2

2A0
−

3A2
1

8A2
0

)
λ2q2 + O(λ3)

]
, (A18)

where
B0 =

h̄
2
(ωL − ε), (A19)

B1 =

(√
2Ω
h̄

1
ωL
− A1h̄

4A0

)
(ωL − ε), (A20)

B2 =
2Ω
h̄2

(
1

ωL
− ε2

ω3
L

)
−
[

A1

2A0ωL

√
2Ω
h̄

+
h̄
2

(
A2

2A0
−

3A2
1

8A2
0

)]
(ωL − ε). (A21)

Though we have truncated the terms higher than the second order of λ in Equations (A17) and (A18),
it is also possible to increase the precision of them as much as we desire by adding more
higher terms through a rigorous evaluation.
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