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Abstract: The surface morphology of Mg-Al-layered double hydroxide (LDH) was successfully
controlled by reconstruction during systematic phase transformation from calcined LDH, which is
referred to as layered double oxide (LDO). The LDH reconstructed its original phase by the hydration
of LDO with expanded basal spacing when reacted with water, including carbonate or methyl orange
molecules. During the reaction, the degree of crystal growth along the ab-plane and stacking along
the c-axis was significantly influenced by the molecular size and the reaction conditions. The lower
concentration of carbonate gave smaller particles on the surface of larger LDO (2000 nm), while the
higher concentration induced a sand-rose structure. The reconstruction of smaller-sized LDH (350 nm)
did not depend on the concentration of carbonate due to effective adsorption, and it gave a sand-rose
structure and exfoliated the LDH layers. The higher the concentration of methyl orange and the longer
the reaction time applied, the rougher the surface was obtained with a certain threshold point of the
methyl orange concentration. The surface roughness generally increased with the loading mount of
methyl orange. However, the degree of the surface roughness even increased after the methyl orange
loading reached equilibrium. The result suggested that the surface roughening was mediated by
not only the incorporation of guest molecules into the LDH but also a crystal arrangement after a
sufficient amount of methyl orange was accommodated.

Keywords: surface; alkaline earth oxides; clays; MgO

1. Introduction

Controlling surface morphology such as roughness has attracted particular attention
in bulk materials in terms of energy saving and environmentally friendly applications.
Surface controlled materials are widely utilized as antireflection surfaces [1–4], light har-
vesting films [5–7], superhydrophobic surfaces [8–12], etc. In parallel, the surface control
of an individual particle composing bulk material on the nanoscale is also an important
issue considering the fabrication and engineering for versatile applications, for exam-
ple, heterogeneous catalysts [13,14], biological cellular uptake [15,16], and so on. Lay-
ered double hydroxide (LDH), one of the layered materials with a chemical formula of
[M2+

1−xM3+
x(OH)2]x+(An−)x/n·mH2O (M2+: divalent metal, M3+: trivalent metal, An−:

interlayer anion, m: number of interlayer water), is a biologically and environmentally
friendly material [17–20] and is easily synthesized under mild conditions [21,22] to have
high anisotropy [23,24]. LDH is a well-known precursor for mixed metal oxide [25,26], of
which the particle morphology is fairly dependent on that of the precursor, LDH [27–30].
From a macroscopic point of view, LDH particles tend to form a rough surface resulting
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from interparticle edge-to-face interactions by forming a house-of-cards structure, and this
was exploited as an antireflection film [31] and photocontrol of the water contact angle [32].
Controlling the surface roughness of an individual LDH particle is an attractive topic in
terms of microscopic surface modification, such as the effective adsorption of dye [33,34] or
gas molecules [35,36]; however, there has been only limited research on this issue.

We expected, in this study, that the surface roughness of an LDH particle could be
controlled if the reconstruction condition from a mixed metal oxide, also called layered
double oxide (LDO), to LDH is regulated. It is empirically known that LDOs recover the
original crystal structure through simultaneous hydration and intercalation of anionic
species [37–39]. Metal hydroxides formed resulting from hydrolysis of metal oxide would
undergo two crystal growth processes during the reconstruction of the LDH structure:
(i) metal hydroxide layer propagation along the ab-plane and (ii) stacking along the c-axis.
The competition between those two processes could result in various types of surface
roughness in an individual LDH particle. Although general physicochemical changes of
LDHs during reconstruction, such as crystal phase, global crystallinity, porosity, etc., are
fairly well-known [39–43], detailed research on the surface roughness through competitive
crystal growth is quite limited so far [44–46].

In this report, we are going to demonstrate how the surface roughness of the individual
LDH particle is controlled through reconstruction with the presence of small CO3

2− and
large organic methyl orange (MO) anions, which can be incorporated with LDHs by various
supramolecular interactions, such as ionic, van der Waals, and π-π interactions [47–50].
With the goal of establishing reaction parameters, such as time and concentration, the
surface roughness upon changing lattice morphologies and sizes was systematically moni-
tored. Therefore, the obvious relationship between the surface roughness of the particles
and the loading amount of the anions was investigated. Furthermore, the roughness of the
particles was profound as the reaction time elapsed longer. Interestingly, it was found for
the first time that there was a certain threshold amount of organic substance to mediate the
surface morphology, as the detailed mechanism illustrated in Figure 1 shows. The rougher
surface was obtained at a higher loading of MO and with a longer reaction time.
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ilized after centrifugation and washed with deionized water. 
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2. Materials and Methods
2.1. Materials

Aluminum nitrate nonahydrate (Al(NO3)3·9H2O), magnesium nitrate hexahydrate
(Mg(NO3)2·6H2O), urea (CH4N2O), sodium bicarbonate (NaHCO3), and methyl orange
(C14H14N3NaO3S) were purchased from Sigma-Aldrich Co., LLC. (St. Louis, MO, USA).
Sodium hydroxide (NaOH) in pellet form was purchased from Daejung Chemicals & Metals
Co., Ltd. (Siheung, Republic of Korea). All reagents were used without further purification.

2.2. Synthesis
2.2.1. MgAl-LDH with a Diameter of 2000 nm (LDH2000) [44,51]

The LDH2000 was obtained by the urea hydrolysis method. A mixed metal solution
was prepared by mixing 0.66 M Mg(NO3)2·6H2O and 0.33 M Al(NO3)3·9H2O aqueous
solutions. Solid urea was added to the mixed metal solution until the molar ratio of
urea/(Mg2+ + Al3+) reached a value of 3.3. The transparent solution was heated at 90 ◦C,
under stirring for 2 days, to obtain a suspension. The obtained suspension was transported
to a Teflon®-lined stainless-steel bomb and then aged at 100 ◦C for 2 days. The resulting
precipitate was lyophilized after centrifugation and washed with deionized water.

2.2.2. MgAl-LDH with a Diameter of 350 nm (LDH350)

The LDH350 was synthesized by coprecipitation followed by hydrothermal treat-
ment, as reported previously [52]. A mixed metal solution of 0.3 M Mg(NO3)2·6H2O and
0.15 M Al(NO3)3·9H2O was titrated with an alkaline solution containing 0.9 M NaOH and
0.7 M NaHCO3 until the pH reached 9.5. The suspension was placed in a Teflon®-lined
stainless-steel bomb and aged at 150 ◦C for 3 days. White precipitates were collected by
centrifugation, thoroughly washed with deionized water, and then lyophilized.

2.2.3. Calcination of LDH2000 and LDH350 (LDO2000 and LDO350)

The layered double oxides (LDO2000 and LDO350) were obtained by calcination of
LDH2000 and LDH350 in a muffle furnace at 400 ◦C for 9 h, respectively.

2.2.4. Reconstruction of the LDHs with CO3
2−

NaHCO3 was used in the reconstruction of LDO2000 and LDO350 as a carbonate source,
and the amount of Na+ concentration was set the same as that for MO. LDO2000 and LDO350
(50 mg for each) were added to aqueous NaHCO3 solutions (50 mL) at concentrations of
1.52 × 10−3 and 2.3 × 10−2 M (corresponding to 0.2 and 3 equivalents of CO3

2− to Al3+).
The suspensions were stirred for 0.5, 4, and 12 h, respectively. The precipitates were
centrifuged and washed with deionized water 4 times.

2.2.5. Reconstruction of the LDHs with Various MO Concentrations and Reaction Times

The LDOs (50 mg) were added to aqueous methyl orange (MO) solutions (50 mL) at
concentrations of 1.52 × 10−3, 3.8 × 10−3, 7.6 × 10−3, and 2.3 × 10−2 M (corresponding
to 0.2, 0.5, 1, and 3 equivalents of MO to Al3+), and the suspensions were stirred for 0.5, 4,
and 12 h. The resulting precipitates were centrifuged and washed with deionized water
4 times. The pH values of the suspensions did not significantly change by the reaction time,
as summarized in Table S1 in the Supporting Information.

2.3. Characterization

The crystal structure of all the samples was investigated by a powder X-ray diffrac-
tometer (PXRD: D2 Phaser, Bruker AXS GmbH, Karlsruhe, Germany) with Ni-filtered
Cu-Kα X-ray (λ = 1.5406 Å). X-ray diffraction patterns were obtained in the 2θ range, 2–30◦,
with time step increments of 0.02◦ and 0.5 s/step.

The particle size and morphology were visualized by using field emission scanning
electron microscopy (FE-SEM; QUANTA 250 FEG, FEI, Hillsboro, OR, USA, and SU8220,
Hitachi, Tokyo, Japan at KBSI Western Seoul Center). For preparing samples for SEM
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measurement, the sample suspensions were put on a Si wafer and then dried in vacuo.
The samples immobilized on the Si wafer were attached on a stub using carbon tape and
sputtered with Pt/Pd plasma with 20 mA for 60 s. The sample images were obtained under
30 kV acceleration voltage.

Surface roughness and height profiles of all samples were obtained using atomic
force microscopy (AFM; NX-10, Parksystems, Suwon, Republic of Korea). In order to
measure AFM, sample suspensions were dropped on the Si wafer and dried under ambient
conditions. The sample images and height profiles were obtained by non-contact mode
with 0.5 Hz scan speed. The AFM images were analyzed using XEI 1.6 software provided
by Parksystems.

In order to calculate the loading ratio of MO, the concentrations of MO in the su-
pernatants before and after the reaction, as well as in the washing supernatant, were
quantified by using a UV-vis spectrometer (UV-1800, SHIMADZU, Kyoto, Japan). The
loading ratio, r%, of MO was estimated from Equation (1). The MOobs stands for the
experimentally absorbed amount (g) of MO uptake during LDO’s phase transformation,
and MOcalc indicates the theoretically calculated amount (g) of MO, which can be taken
up by the charge neutralization between LDH and MO. MOobs was calculated from the
absorbance at 470 nm of MO that remained in the supernatant and in aqueous solutions
used for washing; MOcalc was calculated with hypothesizing that MO was fully intercalated
into LDH through charge neutralization.

r% =
MOobs
MOcalc

× 100 (1)

3. Results
3.1. XRD Patterns of the LDHs and the LDOs

Powder X-ray diffraction (XRD) patterns of the LDHs and the LDOs are shown in
Figure 2. Both LDH2000 and LDH350 exhibited similar diffraction patterns with peaks at
11.7◦ and 23.5◦, which were attributed to the reflection of (003) and (006), as shown in
Figure 2(a,b). The diffraction peak at 11.7◦ indicated that the basal spacings of both the
LDHs were 0.75 nm, corresponding to the carbonate interlayered LDH. There are also
clearly observed characteristic diffraction peaks of (012), (015), (018), (110), and (113) at
2θ values of 35◦, 40◦, 47◦, 61◦, and 62◦, suggesting the sufficiently high crystallinity of both
the samples [53–55].
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Upon heat treatment at 400 ◦C for 9 h, all the diffraction peaks of the LDHs disap-
peared, as shown in Figure 2(c,d). There were observed (111), (200), and (220) peaks at 36◦,
45◦, and 62◦, which are typical patterns for rock-salt type MgO [44,55,56]. It is well-known
that MgO nanocrystallites are developed during mild heat treatment and that those crys-
tallites are interconnected by tetrahedral Al3+, which is migrated from the octahedral site
of LDH [45]. Thus, we could not find any crystalline signals of AlOx moiety in the XRD
patterns of the calcined LDHs [57].

3.2. SEM Images of the LDHs and the LDOs

As shown in the SEM images (Figure 3a,c), both LDH2000 and LDH350 had hexagonal
shapes with smooth surfaces. As shown in Figure S1 in the Supporting Information, the
surface roughness, Ra, was estimated to be 37 nm and 0.8 nm, respectively, for LDH2000
and LDH350 from the AFM. As the Ra and root-mean-square (RMS) values of single LDH
particles were less reliable due to a tilted arrangement of the LDH2000 and unclear particle
edge of the small particle size of the LDH350, we considered these values as a tendency of
the surface roughness rather than the quantitative results. The reason why LDH2000 had
a rougher surface than LDH350 is due to the large lateral dimension. The SEM images of
LDO2000 and LDO350 in Figure 3b,d showed that the hexagonal shapes were maintained
after the heat treatment. The surface flatness was also maintained after the heat treatment,
according to the surface roughness of 35 nm and 0.8 nm, respectively, for the LDO2000
and LDO350 (Figure S1b,d in the Supporting Information). The change of morphology
due to the conversion from LDH to LDO was negligibly small in terms of the microscopic
observation. An LDH crystal has an edge-shared M(OH)6 octahedron along the ab-plane,
and thus its surface can be very flat. The LDO contains Al3+(tetrahedron)-mediated MgO
domains through an interconnected manner on the surface, and, therefore, it might have
a rougher surface. However, the MgO domains are very small in dimension, and their
array is fairly homogeneous, resulting in the flatness on the surface. Similar morphology
preservation of LDHs after calcination was reported in the previous literature [44,46,58].
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3.3. XRD Pattern of the Reconstructed LDHs

Figure 4a,b represent powder XRD patterns of LDH2000 reconstructed with CO3
2− at

0.2 eq and 3 eq to Al3+ at several reaction times. In both reaction systems, the diffraction
peaks attributable to LDO2000 decreased, and those of LDH2000 increased by reacting with
CO3

2−, which indicated the LDH phase was reconstructed by the hydration of the LDO
phase with the intercalation of CO3

2−. At 4 h of the reconstruction, the clearer (003) and
(006) peaks attributable to the LDH were observed in the 3 eq-treated sample than that
reconstructed in 0.2 eq, while the XRD patterns at 12 h were similar in both concentrations.
As summarized in Table S2 in the Supporting Information, the crystalline size of the
reconstructed LDH after 4 h at 3 eq, which was estimated from Sherrer’s equation (19.3 nm)
and was larger than that reconstructed at 0.2 eq for 4 h (4.66 nm); however, that after 12 h at
3 eq (9.01 nm) was similar to that at 0.2 eq (8.63 nm). It was thought that the reconstruction
of LDH at high and low concentrations of CO3

2− gave different nanostructures.
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The clearer growth of the peaks attributed to the LDH and the decrease of the peaks of
the LDO were shown in the LDH350 systems compared to the LDH2000 systems (Figure 4c,d).
The higher surface area that originated with the smaller particle size of the LDH350 occurred
as a result of effective adsorption and reconstruction of the LDH layers. As summarized
in Table S3 in the Supporting Information, the particle sizes of the reconstructed LDH
for the 0.5 h reaction estimated by Sherrer’s equation were 8.02 nm at 0.2 eq and 9.03 nm
at 3 eq, which were comparable to the ones obtained in the LDH2000 system for the 12 h
reactions. It suggested that the quick hydration along the ab-plane reconstructed the larger
area simultaneously to give the larger LDH particles.

Figures 5 and 6 represent low-angle powder XRD patterns of the LDH2000 and LDH350
before and after reconstruction with MO at various concentrations and reaction times.
As can be seen, the (003) peaks of the pristine LDHs shifted from 2θ = 11.7◦ to 3.5◦,
indicating the intercalation of the MO between the LDH layers. The (003) peak intensity of
0.5–3 eq was higher than that of 0.2 eq as the higher MO concentration, leading to effective
intercalation and interlayer molecular arrangement of the MO [49]. We could also find
that the crystallinity along the (003) plane generally became better upon the reaction time.
These results suggest that the interlayer molecular arrangement of MO became ordered
upon the reaction time. The peak around 2θ = 5◦, which is only seen with 3 eq, might be
attributed to the inter-molecular packing among the MO moieties.
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3.4. SEM Images of the Reconstructed LDHs

Figure 7 shows the SEM images of the reconstructed LDH2000 in NaHCO3 solutions at
0.2 eq and 3.0 eq to Al3+ in the LDO2000 at several reaction times. At the low concentration
of CO3

2− (0.2 eq), the surface of the reconstructed LDH2000 was covered by small particles.
The number of surface particles seemed to be larger at the longer reaction time (Figure 1e).
According to the increase of the LDH phase in the XRD patterns (Figure 4) and the size
of the crystal (Table S2 in the Supporting Information), the surface particles were thought
to be reconstructed LDH. The relatively small-sized CO3

2− is adsorbed on the surface
of the LDO2000 and then incorporated through the surface defect with the reconstruction
of the LDH layer to give the rough surface. The reconstruction at 3 eq for 0.5 h did not
change the surface morphology significantly, while particles with a sand-rose structure
were observed at 4 h. The rough surface with small particles on the sand-rose structure
appeared by further reaction for 8 h (a total time of 12 h). It is thought that the adsorption
of the CO3

2− was slow at the low concentration of 0.2 eq so that the surface along the
ab-plane was hydrated to give small particles of metal hydroxide about 5 nm. On the
other hand, the adsorption of the CO3

2− was fast at a high concentration of 3 eq to develop
CO3

2− intercalated particles and collapse the larger ab-plane, the formation of relatively
large particles of about 20 nm, resulting in the sand-rose structure at 4 h. The massive
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consumption of CO3
2− before the 4 h reaction induced the rough surface, generating small

particles on the sand-rose surface. The phenomenon corresponded to the decrease of the
particle size estimated from Sherrer’s equation from 19.3 nm to 9.01 nm, as summarized in
Table S2 in the Supporting Information.
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The reconstruction for 0.5 h with 0.2 eq and 3 eq of CO3
2− did not alter the morphology

of LDO350 significantly (Figure 7 right columns). The reconstruction at 0.2 eq for 4 h
exfoliated a part of the LDH layers and the sand-rose-like structure, and thus thinner LDH
particles were obtained by the 12 h reaction. A similar change of the morphology was
observed by the reaction at 3 eq for 4 h. The 12 h reaction time gave a clear sand-rose
structure and thinner particles. It is worth noting that the small particles, which were
observed in the reconstruction of the LDH2000, were not observed in the LDH350 systems,
suggesting the size effect on the reconstruction by CO3

2−. The larger lateral size of the
LDH2000 would not allow the exfoliation of a whole layer by the reconstruction, while the
whole layer of LDH350 was exfoliated, giving the thinner particles.

Figure 8 shows the SEM images of LDH2000 reconstructed under four different MO
concentrations (0.2 eq, 0.5 eq, 1 eq, and 3 eq to Al3+ in LDO2000) at 0.5 h, 4 h, and 12 h. In
contrast to the CO3

2− systems, the smooth surface of the LDO2000 was maintained at the
concentration of 0.2 eq, with a 16–21 r%. The slower reconstruction with MO than that with
CO3

2−, which has a strong affinity with LDH, would be a reason. At the concentration
of 0.5 eq, the smooth surface was also preserved at 4 h with 41 r%, while a rough surface
began to appear after 12 h with 44 r%. In the case of the 1 eq concentration, the loading
ratio increased up to 48 r% in the 0.5 h, and surface roughening began to appear. According
to the relationship between the surface roughness and the loading ratio shown in Figure 8,
it can be suggested that the initial smooth surface was maintained up to 41 r% of the
MO loading, while an obvious rough surface began to be seen at over 44 r%; in other
words, a threshold loading ratio to roughen the surface was ~45 r% (Figure 1c,d). It is
thought that the rigid LDO structure, which is structured by covalent bonds, did not
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accept the increase of the c-axis (the interlayer space) induced by the crystal growth of
the LDH along the ab-plane at less than 45 r% (Figure 1d), while the larger r% than the
threshold collapsed the LDO structure to give a rough surface (Figure 1g). It should be
noted that the 1 eq-treated sample showed severe surface roughness change upon the
reaction time despite the comparable loading ratio (48 and 46 r%), suggesting that the
surface roughness progressed even after the MO uptake was equilibrated. Taking into
account the XRD results shown in Figure 5c, a probable reason for the surface roughening at
the equilibrium is the molecular rearrangement of MO in the interlayer space of the LDH to
reach a thermodynamically stable state by π-π interactions [49]. It is worth noting here that
the small particles, which were observed in the CO3

2− systems, were not observed, even
at a high loading ratio (~100 r%), which suggests that the size of intercalated molecules
affected the morphology of the reconstructed LDHs. The 3-dimensional AFM images and
height profiles (Figure S3 in the Supporting Information) also showed that both the loading
ratio and reaction time affected the surface roughness, Ra, of the LDH2000, although they
were rather qualitative compared to the SEM images. The Ra of the LDH2000 reacted at
the 0.2 eq for 0.5 h was 39 nm, which was comparable with pristine LDH2000 (Ra ~ 37 nm),
while the 1 eq at 12 h-treated sample had a significantly enhanced Ra of 105 nm. The
reconstruction of the LDHs was reported as a memory effect by mixing the LDOs with
water and guest anions [40,41,43,46,59], where the small MgO crystallites grew to the LDH
layers with ordering at the surface. However, large MO molecules would prohibit an
ordered arrangement of the crystallites at the surface through the expansion of the gallery
space (Figure 1g) [37,44].
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The LDH350 samples reconstructed with MO showed a similar trend compared with
the LDH2000, as shown in Figure 9. The smooth surface of the LDO350 was fairly well-
preserved until 12 h at 0.2 eq, showing loading ratios of 15–19 r%. On the other hand, we
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could observe a rough surface at 12 h of the reaction time when 0.5 eq was applied. In
the case of the 0.5 eq-treated sample, the surface roughness was different at 4 h and 12 h,
in spite of the comparable loading ratio of 45 r%. As can be figured out with the results
of the LDH2000, the surface roughening seemed to progress after the MO incorporation
was equilibrated. When the MO concentrations of 1 eq and 3 eq were applied, all the
reconstructed LDHs showed a discrete surface roughness at all the time points with loading
amounts higher than 45 r%. This suggested that the threshold loading ratio was also 45 r%
for LDO350. Moreover, the Ra of the LDH350 was governed by both r% values of the MO
and reaction time, as shown in the AFM images in Figure S4 in the Supporting Information
(Ra = 0.9 nm at 0.2 eq for 0.5 h and 3 nm at 1 eq for 12 h), although the changes were not
sufficiently clear due to the small particle size.
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4. Conclusions

To summarize, the surface roughness of MgAl-LDH was successfully controlled by
taking advantage of the reconstruction of LDO in the presence of small and large guests. The
surface roughness was attributed to the denaturation of layer stacking by the intercalation
of small CO3

2− and large methyl orange molecules into the LDH during the reconstruction
of the LDO. The change in the surface morphology of the LDH by the reconstruction was
controlled by the concentration of the small-sized guest (CO3

2−) and the loading ratio
of the large-sized guest (methyl orange, MO), respectively. An obvious size effect of the
LDO precursors on the resulting morphology after reconstruction by CO3

2− was observed.
The reconstruction of larger-sized LDH (2000 nm) at low concentrations of CO3

2− (0.2 eq)
caused the small LDH particles on the external surface to give a rough surface (Figure 1e),
and a sand-rose morphology was given at the high concentration of CO3

2− (3 eq, Figure 1f),
suggesting the possibility that the reaction rate affected the resulting morphology. The
reconstruction of the LDH with a smaller lateral size (350 nm) by the CO3

2− partially
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exfoliated the LDH layers rather than giving small particles at the surface (Figure 1f). The
partial exfoliation of the layers was only facilitated in the smaller lateral size in the whole
layer region. The surface roughening by the intercalation of the MO had a threshold of
incorporation (~45%) regardless of the particle size of the pristine LDHs (Figure 1g). The
higher incorporation and the longer reaction time gave the rougher surface. As shown in
the time-dependent loading ratio values, the MO uptake was equilibrated in an early time,
while the roughening continued afterwards. This strongly suggested that the adsorption
and the roughening occurred in a different time stage. The CO3

2−, which has a smaller
and more rigid structure and higher affinity to the LDH than the MO, effectively adsorbed
and collapsed the LDO structure to alter the morphology even at low concentrations and
in a short reaction time; on the other hand, MO, which has a more flexible structure than
CO3

2−, could maintain the crystalline structure of the LDO until 45% of the leading ratio. It
is, therefore, concluded that by choosing appropriate reaction conditions for reconstruction,
such as the type of guest molecules, concentration of anions, and reaction time, the surface
roughness of an individual LDH particle could be controlled. Furthermore, the control of
the roughness of the particle surface could expand the application of LDHs and LDOs from
versatile nanomaterials to practical applications, like functional film components.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13162363/s1. Table S1: Change of pH during reconstruction.
Tables S2 and S3: Particle sizes (nm) of the reconstructed LDH in CO3

2−. Figures S1–S4: AFM images
of the reconstructed LDHs to estimate the surface roughness (PDF).
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