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Abstract: Beeswax is a bio-sourced, renewable, and even edible material that stands as a convincing
option to provide paper-based food packaging with moisture resistance. Nonetheless, the difficulty
of dispersing it in water limits its applicability. This work uses oxidized, negatively charged cel-
lulose nanofibers along with glycerol to stabilize beeswax-in-water emulsions above the melting
point of the wax. The synergistic effects of nanocellulose and glycerol granted the stability of the
dispersion even when it cooled down, but only if the concentration of nanofibers was high enough.
This required concentration (0.6–0.9 wt%) depended on the degree of oxidation of the cellulose
nanofibers. Rheological hindrance was essential to prevent the buoyancy of beeswax particles, while
the presence of glycerol prevented excessive aggregation. The mixtures had yield stress and showed
pseudoplastic behavior at a high enough shear rate, with their apparent viscosity being positively
influenced by the surface charge density of the nanofibers. When applied to packaging paper, the
nanocellulose-stabilized beeswax suspensions not only enhanced its barrier properties towards liquid
water (reaching a contact angle of 96◦) and water vapor (<100 g m−2 d−1), but also to grease (Kit
rating: 5) and airflow (>1400 Gurley s). While falling short of polyethylene-coated paper, this overall
improvement, attained using only one layer of a biobased coating suspension, should be understood
as a step towards replacing synthetic waxes and plastic laminates.

Keywords: barrier properties; beeswax; cellulose nanofibers; hydrophobic coating; nanocellulose;
paper; Pickering emulsions; TEMPO-mediated oxidation

1. Introduction

Cellulose nanofibers (CNFs) can simultaneously fulfill the roles of rheology modifiers
and Pickering stabilizers in oil-in-water emulsions, especially if they hold a negative
charge [1]. On the one hand, their interactions with water molecules grant a large hydration
shell, hindering the translational movement of the molecules with respect to the nanofibers.
This partial trapping of water, along with a high aspect ratio, is translated into a higher
viscosity and yield stress [2,3]. On the other hand, according to the DLVO theory, the
electrostatic repulsion between the nanofibers that are adsorbed to the dispersed phase of
an oil-in-water emulsion provides a potential energy barrier that prevents coalescence of
oil droplets [4,5].

One of the most popular ways to produce anionic CNFs involves the regioselective
oxidation of primary hydroxyl groups of cellulose to carboxylate groups, usually attained
using 2,2,6,6-tetramethylpiperidine 1-oxyl radical (TEMPO), sodium hypochlorite, and a
bromide salt [6,7]. This is generally followed by a disruptive mechanical treatment [6,8]. The
resulting TEMPO-oxidized cellulose nanofibers (TOCNFs) are typically 5–50 nm in diameter
and 0.3–3 µm in length. Their carboxyl group content mainly depends on the amount
of hypochlorite used, reaching a maximum of roughly 1.5 mmol/g [9,10]. Regarding the
aforementioned application as a thickener, aqueous suspensions of TOCNFs may attain
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gel behavior, along with yield stress values above 20 Pa, at concentrations as low as
~0.3 wt% [3,11]. This, in turn, is also useful for the Pickering stabilization of oil-in-water
systems, since one of the mechanisms postulated for this task is the rheological hindrance
of the motion of the droplets [1].

In the literature, colloidal sols where the dispersed phase is a wax, despite being solid
at room temperature, are also generally regarded as oil-in-water emulsions [12,13]. It could
be said that “wax emulsion” is a common [12,14], yet arguable, naming for wax-in-water
dispersions at any temperature. Since wax particles are solid at standard temperatures and
pressures, speaking in terms of emulsions may be inaccurate. Nonetheless, the strategy
of stabilization generally incorporates all agents when the wax is molten [14,15]; i.e., this
stabilization is indeed an emulsification.

Natural waxes are intrinsically hydrophobic materials with a high potential to replace
polyethylene-based waxes, paraffin wax, acrylic waxes, polyoxyethylene glycol waxes,
styrene-butadiene latex, and other synthetic substances that, despite their proven usability,
ultimately come from fossil resources [16]. Beeswax (BW), like other natural waxes, has
some key advantages that may convince manufacturers to use it in water-resistant prod-
ucts. First, unless it is abusively exploited, it is a renewable resource. Second, it can be
biodegraded by some worms and other organisms with proper hydrolytic enzymes [17].
Third, despite its biodegradability, BW displays antimicrobial activity towards some of the
most worrisome foodborne pathogens [18]. Fourth, it is considered edible [19], although
only in small amounts. Fifth, it has great resistance to chemicals (including acids, alkalis,
and organic solvents) and ultraviolet radiation [20].

However, the difficulty of dispersing BW in aqueous media, even in the presence of
typical surfactants or co-solvents, limits its applicability. One of the suggested uses that
is affected by such limitations is paper coatings. Paper, a bio-sourced, renewable, and
biodegradable material, seems to stand as a promising candidate to replace single-use
plastics in food packaging [21,22]. However, the surface of paper is hydrophilic, while
many food packaging applications strictly demand moisture resistance. BW-based coatings,
as opposed to plastic laminates, synthetic latex, and synthetic waxes, appeal to many
researchers when it comes to making paper competitive with common plastics in terms
of its barrier properties [14,19]. Table 1 displays some advances in this sense, also using
nanocellulose or other polysaccharides to stabilize BW in water. The resulting hydrophobic,
bio-based materials comprise films, edible coatings to wrap foodstuffs, and paper.

Table 1. Representative examples of the Pickering stabilization of BW-in-water emulsions involving
polysaccharide-based materials in the literature.

Stabilizer Concentration of Stabilizer Concentration of Beeswax Purpose Ref.

Cellulose nanocrystals 0.03–0.15 wt% 1.5 wt% Starch-supported films [13]
Carboxymethyl chitosan with
unmodified CNFs 1–5 wt% 10 vol% Edible coating for food [23]

Chitosan 1–3 wt% 10–30 wt% Paper coating [24]

This work assesses the properties and the convenience of using BW-in-water emul-
sions following synergetic stabilization with TOCNFs and glycerol. This assessment began
with a macroscopic approach, seeking to determine the critical concentration of TOCNFs
with different degrees of oxidation to attain homogeneity. Furthermore, the stabilized BW
particles and BW-coated paper were visualized using microscopy. The rheological proper-
ties of the representative dispersions were measured under different temperatures, shear
rates, and TOCNF concentrations. Based on previous observations, certain systems were
used for paper coating, and the improvement that they exerted on the barrier properties
was assessed.
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2. Materials and Methods
2.1. Materials

The cellulose source chosen for nanocellulose production was a bleached eucalyptus
kraft pulp (BEKP) from Ence Celulosa y Energía, S.A. (Navia, Spain). TEMPO, heptane,
toluene, and castor oil were purchased from Sigma-Aldrich (Schnelldorf, Germany. NaClO
(10%, w/v), NaBr, and NaOH were purchased from Sharlab (Sentmenat, Spain). BW pellets
labeled “100% pure” were bought from Promora.

Kraft paper of food packaging grade with an approximate grammage of 156 g m−2

was provided by Billerud AB (Solna, Sweden). This kind of paper generally undergoes
plastic lamination before becoming commercially available as food packaging, but this
work replaced this step with BW-based coatings.

2.2. Production of TEMPO-Oxidized Cellulose Nanofibers

Preliminary experiments using unmodified, purely mechanical, nominally neutral
micro-/nanofibers resulted in a high difficulty to obtain durable macroscopic homogeneity.
To imparting electrostatic repulsion, which helps prevent coalescence in accordance with
the DLVO theory [4,25], cellulose was oxidized before nanofibrillation to acquire a negative
surface charge.

A total of 30 g of BEKP (on a dry weight basis) was suspended in water and stirred at
3000 rpm for 10 min using a pulp disintegrator from IDM (Gipuzkoa, Spain) that complied
with ISO standard 5263. The pulp was divided into three batches (10 g each, dry-weight
basis), and each batch was mixed with NaBr (1.00 g) and TEMPO (0.16 g). Afterwards,
5, 10, or 15 mmol of NaClO was added per gram of dry pulp, and the resulting oxidized
batches were labeled “TOC-5”, “TOC-10”, and “TOC-15”, respectively. The regioselective
oxidation took place at a 1 wt.% consistency under agitation with a 3-blade mechanical
stirrer at approximately 400 rpm at 23 ◦C. A 0.5 M NaOH solution was added throughout
the process to maintain the pH within the range of 10–10.5. The oxidation was considered
finished once the pH stopped dropping below 10. The oxidized pulps were thoroughly
washed with distilled water, vacuum-filtered, and diluted to a 1.5 wt.% consistency.

Fibrillation of the nanofibers was performed using an NS1001L2K high-pressure
homogenizer (HPH) from GEA Niro Soavi (Parma, Italy). The TOC-5, TOC-10, and TOC-15
batches were passed 3 times at 300 bar, 3 times at 600 bar, and 3 times at 900, respectively.
The batches were then stored in PET bottles at 4 ◦C. The properties of these TOCNFs,
with relevance in terms of their electrostatic repulsion, are displayed in Table 2. The
characterization techniques are described in previous works [10].

Table 2. Key characteristics of TOCNFs with different degrees of oxidation.

Sample Carboxyl Group Content (mmol/g) Surface Charge Density (meq/g)

TOCNF-5 0.76 ± 0.04 −1.30 ± 0.00
TOCNF-10 1.11 ± 0.09 −1.64 ± 0.10
TOCNF-15 1.39 ± 0.10 −1.92 ± 0.16

2.3. Preparation and Visual Inspection of BW-In-Water Emulsions

For each experiment, 20 g of BW pellets were mixed with 2 g of glycerol and a TOCNF
slurry, so that the concentration of the latter was 1–10 g/kg based on the oven-dried weight.
Water was added to bring the total weight to 200 g. The heterogeneous mixture was heated
to 70 ◦C and agitated using a 3-blade overhead stirrer set at roughly 400 rpm to melt the BW.
The system was then homogenized using an UltraTurrax T25 device from IKA (Staufen,
Germany) at 12,000 rpm for 4 min.

The emulsions were stored undisturbed and covered at 23 ◦C for 22–24 h. After this
time, they were visually inspected at 23 ◦C to locate the oil/serum interface (if any) and to
discern whether the BW particles were visible to the naked eye, if macroscopic homogeneity
had been attained, and to identify the creaming processes that might threat the stability of
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the suspension. Photographs of the emulsions were taken using a LED-illuminated light
box (20 W, white, color temperature 6000 K, surface luminance 310 cd m−2).

2.4. Analysis of BW/TOCNF/Glycerol/Water Systems

Certain macroscopically homogeneous samples were subjected to optical microscopy
using a DMR-XA microscope from Leica (Wetzlar, Germany). The modes of observation
included halogen illumination and polarized light over a dark field. Then, the particle
size was analyzed using the open-source software ImageJ (Version 1.53), as described
elsewhere [6], but without using the Fractal Box Count plugin. Instead, the average between
the maximum Feret’s diameter and the minimum Feret’s diameter, readily available in the
native software package, was taken to indicate the particle size (d). OriginLab’s OriginPro
8.5 was then used to fit the resulting size distributions.

The viscosity of the stable emulsions, including different degrees of oxidation and con-
centrations of TOCNFs, was measured using a rheometer with concentric cylinder geometry
from PCI (Albacete, Spain), model RVI-2. The radii of the spindle and the outer cylinder
were 4 mm and 5 mm, respectively. The rheological behavior of the TOCNF-stabilized
BW-in-water emulsions was compared with that of the aqueous TOCNF suspensions
at the same consistency. The effects of temperature and the influence of the shear rate
were studied.

2.5. Coating and Visualization of Paper

27 cm × 20 cm-sized food-grade paper sheets were immobilized using a K Control
Coater from RK Print Coat Instruments (Litlington, UK). For the coating, two concentrations
of TOCNFs were chosen: 0.7 wt% and 0.9 wt%. The percentages of BW and glycerol were
maintained at 10 wt% and 1 wt%, respectively. A smooth roll was chosen, the linear speed
was set to 2 m min−1, and up to 7 mL of emulsion was applied per sheet. The coated sheets
were first pre-dried using a thermoventilator blowing air at 50 ◦C for 60 s, and then left to
dry at room temperature for 4 h. Shrinking effects were not observed.

Field-emission scanning electron microscopy (FE-SEM) was carried out to visualize the
surface and cryosections of the paper sheets. Prior to that, the samples had been adhered
to a sample holder using conductive tape and coated with carbon using a turbo evaporator
from Emitech (Berlin, Germany), model K950. The electronic microscope employed was a
Hitachi S-4100 device (Hitachi Ltd., Chiyoda, Japan) with a secondary electron detector
and an acceleration voltage of 5 kV.

2.6. Characterization of BW-Coated Sheets

All the sheets were weighed, and their thickness was determined using a digital
micrometer from Starrett (Athol, MA, USA). The static contact angle of water and castor
oil for the uncoated and coated sheets was measured using a Krüss Scientific’s Drop
Shape Analyzer, model DSA25B (Madrid, Spanish branch office) using the sessile drop
method [26].

The water vapor transmission rate (WVTR) was estimated using the dry cup method [27].
Briefly, disk-shaped paper samples were cut and placed on impermeable cups above silica
gel. The cups were sealed with an O-ring and stored in a climatic chamber at a temperature
of 23 ◦C and a relative humidity of 50%. The WVTR was then calculated using the weight
differences measured across 24 h:

WVTR = ∆w/(A × t) (1)

where A is the transmission area and ∆w is the increment in weight from the beginning of
the experiment to time t.

To assess the grease resistance of the paper sheets, the TAPPI procedure T559, com-
monly known as the “Kit test”, was followed [28]. The number assigned to the most
aggressive mixture of castor oil, toluene, and heptane that the paper probe resisted is
referred to as the “Kit rating”.
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The air resistance of the coated and uncoated sheets was estimated using the Gurley
method following ISO standard 5636/5 [29]. This corresponds to the time required for
100 mL of air to pass through a 6.45 cm2 cross-sectional area with a pressure gradient of
1.2 kPa.

3. Results and Discussion
3.1. Pickering Stabilization: Macroscopic Features

Below 0.5 wt% or 0.6 wt% of TOCNFs, depending on their degree of oxidation, the
mixtures comprising 10 wt% BW, water, and CNFs quickly suffered from phase separation
when undisturbed, regardless of the presence or absence of glycerol. More precisely, an
aqueous or serum phase appeared at the bottom of the suspension, while the BW particles
became aggregated as a layer in the upper part (“Phase separation” in Figure 1a). Keeping
the BW proportion constant and increasing the concentration of TOCNFs resulted in an
increase in the content of nanocellulose/water in the wax phase and/or an increase in
the content of BW in the serum phase. This phenomenon is common among oil-in-water
Pickering emulsions [30,31].
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Figure 1. Macroscopic identification of phases at 23 ◦C based on the type and concentration of
TOCNF (a), setting the proportion of BW at 10 wt% and that of glycerol at 1 wt%. The inset picture
at the left (b) involves 0.6 wt% TOCNF-15, 10 wt%, and no glycerol. The inset picture at the right
(c) correspond to samples with 1 wt% glycerol. Before photographying at a luminance of 310 cd m−2

and a color temperature of 6000 K, samples were left to settle for 24 h.

If the concentration was high enough, the interphase between the serum and wax
became diffuse, but the BW could still be prone to creaming or beading, producing macro-
scopic particles that tended to be buoyant. This is labeled as “Aggregation” in Figure 1a.
Finally, “Macroscopic homogeneity” implied a lack of visible beading, of particles visible
to the naked eye, and of separation, even after at least three months of storage at 4 ◦C.
The critical concentration to reach this homogeneity was 0.9 wt% in the case of TOCNF-5,
0.7 wt% in the case of TOCNF-10, and 0.6 wt% in the case of TOCNF-15. In general, this
represents an advantage over nominally neutral nanocellulose, which usually requires a
higher concentration to stabilize oil-in-water emulsions [32]. The higher the electrostatic
repulsion between the nanofibers, the lower the critical concentration. In addition, when
the proportion of the BW was increased to 20 wt%, attaining macroscopic homogeneity
required at least 0.8 wt% TOCNF-15 or 1 wt% TOCNF-10.
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It is worth noting that, as long as their concentrations were high enough, the TOC-
NFs sufficed to grant an even distribution of BW particles, avoiding phase separation.
Nonetheless, these particles were macroscopic, unless glycerol was also incorporated into
the system. This is shown in Figure 1b, for which the picture was taken with a flashlight
for more evident visualization. In contrast, as illustrated by Figure 1c, in the presence of
glycerol, the stabilization of microsized BW was possible, but only if the TOCNFs accounted
for their critical concentration. Therefore, macroscopical homogeneity was a result of the
synergistic effects of anionic nanocellulose and glycerol, in which the latter is suggested to
work as softener or plasticizer.

The benefits of using glycerol in beeswax-containing systems have already been re-
ported in other works, including as plasticizer for starch [13], as plasticizer for both chitosan
and cellulose nanocrystals [33], and with only chitosan [34]. Nonetheless, the interactions
between glycerol and BW, and not only between glycerol and the polysaccharide, are gen-
erally left unaddressed. However, glycerol is a well-known plasticizer for polyesters [35];
therefore, interactions between glycerol and the long-chain esters of BW, which would
work as hydrogen bond acceptors, are plausible. This is further discussed when assessing
optical microscopy images.

3.2. Assessment of Stable BW-In-Water Dispersions

Although most of the BW particles dispersed in water were below 5 µm, the presence
of large particles (more than 5 µm in diameter) that resisted buoyancy was attributed to
physical hindrance. Figure 2 highlights doublets of these large particles that, even though
they collided, did not coalesce. Despite this stabilization, there is little doubt that, if the
continuous phase were solely water, the large particles would float due to a difference in
density; i.e., the gravitational forces would outweigh Brownian motion [36,37]. Therefore,
the continuous phase was characterized by a network of nanofibers that extended through
the whole suspension, partially trapping water molecules between their hydration shells.
The same reason has been adduced for other cases in which interfacial tensions do not
provide a favorable driving force for the adsorption of TOCNFs on the dispersed phase [38].
This explanation does not depend on the degree of oxidation, since the dispersed phase
was qualitatively similar in the cases of TOCNF-10 (Figure 2a) and TOCNF-15 (Figure 2b).

A recent review of ours dealt with the mechanisms by which anionic CNFs, such
as TOCNFs, attain Pickering stabilization [1]. Applied to this case, it could be said that
TOCNFs, due to their large hydration shell and its subsequent rheological effects, prevent
phase separation by avoiding buoyance. In other words, the coalescence of BW droplets is
not prevented by TOCNFs, but the fibrillar network they establish across the entire volume
of the mixture hinders the movement of BW particles and compensates for gravitational
effects. Nonetheless, in the presence of glycerol, there are favorable interactions between
glycerol–nanofibers and glycerol–BW, preventing the coalescence of the latter even when
its drops collide. The flexibility imparted by glycerol allows for lower angles between the
tangent lines to the BW/water interface and the CNF/water interface (θ), respectively. The
closer this angle, the higher the desorption energy (Ed) [1]:

Ed = π R2 τ (1 + cos θ) (2)

where R is the Sauter’s diameter of BW droplets and τ is the BW/water interfacial tension.
Hence, in the presence of glycerol, the adsorption/desorption equilibrium is shifted to the
adsorption side. Once this condition is fulfilled, the energy barrier that two BW particles
need to overcome for coalescence is due to the electrostatic repulsion between the equally
charged (anionic) CNFs.
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Figure 2. Optical microscopy images of 2-week-old beeswax-in-water dispersions stabilized with
glycerol (1 wt%) and either 0.7 wt% TOCNF-10 (a) or 0.7 wt% TOCNF-15 (b). The latter system was
also visualized under polarized light (c). Red-framed ellipses highlight doublets whose coalescence
was avoided.

Figure 2c demonstrates that BW encompasses compounds with optical activity that
are able to rotate the plane of polarized light. Chiral compounds that are known to be
present in BW include hydroxy-monoesters and some branched hydrocarbons [39].

According to their size, there were different populations of BW particles. The size
distributions in Figure 3 ignore particles with a Feret’s diameter >5 ηm, even though they
comprised 15–20% of the total count or more than half of the total area. Nonetheless, the
size of the large particles seemed to be randomly distributed. In contrast, small parti-
cles presented a non-random (albeit also non-normal) distribution that was significantly
lopsided to the left (smaller size). The size distribution of BW/TOCNF-10/water and
BW/TOCNF-15/water could be fitted to log-normal functions with adjusted correlation
coefficients of 0.927 (Figure 3a) and 0.939 (Figure 3b), respectively.

As can be seen in Figure 3, the particle size attained using stabilization with TOCNF-15
was lower than that attained with TOCNF-10. In the latter case, drops in the 1.2–2.8 ηm
range accounted for roughly 60% of the total population of particles. In the case of using
TOCNF-15 as stabilizer, a similar percentage was comprised of particles in the 0.4–1.6 ηm
range. In any case, it is worth remarking that, in terms of the area or volume, most of the
emulsion consisted of large particles that were outside these distributions, as their Feret’s
diameter adopted apparently non-adjustable values between 5 ηm and 40 ηm.
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Figure 3. Size distribution of BW drops or particles whose size was equal to or lower than
5 ηm in emulsions stabilized either by TOCNF-10 (a) or TOCNF-15 (b). Fitting lines represent
log-normal functions.

3.3. Rheology of BW/TOCNF/Glycerol/Water Systems

Some relevant insights into the rheological behavior of TOCNF-stabilized BW-in-
water emulsions are highlighted in Figure 4. With or without BW (and glycerol), the
mixtures displayed shear-thinning behavior. Although the range of shear rates at which
the apparent viscosity was measured corresponded to the pseudoplastic region, the overall
behavior of the mixtures in the “macroscopically homogeneous” zone should be described
as viscoplastic [40]. In other words, they flowed as long as their yield stress was exceeded,
and further increasing the shear rate decreased their apparent viscosity. These features are
common to all typical CNF suspensions and, in general, to CNF-stabilized oil-in-water
emulsions [40,41].
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Other generalities that were fulfilled included an increase in apparent viscosity with
increasing TOCNF concentration (Figure 4a) and a decrease with an increasing temperature
of the suspension (Figure 4b). Nevertheless, there were two phenomena whose explanation
is not generic or self-evident: (i) the decrease in viscosity at a low shear rate and at
50 ◦C when incorporating BW, and (ii) the increase in viscosity with an increasing degree
of oxidation.
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The curves in Figure 4a correspond to a temperature of 50 ◦C, which is within a
plausible range for paper coating. Seemingly, the more diluted the TOCNF suspension, the
greater the decrease in the apparent viscosity when adding glycerol/BW. To a certain extent,
this is due to the addition of 1 wt% glycerol. By itself, it is a practically Newtonian fluid
and has a viscosity of ~0.9 mPa·s at 20 ◦C [42], but its plasticizer effect tended to decrease
the viscosity of the TOCNF suspensions. Figure 4a shows an example corresponding to the
system containing 0.7 wt% TOCNF-15. By hydrogen-bonding with glycerol, the TOCNFs
were able to retain less water within their first and second solvation shells, which explains
the high viscosity of anionic CNF suspensions at a low shear rate [1].

It is known that, if solvent–particle and particle–particle interactions are neglected,
the addition of quasi-spherical solids to a colloidal system is expected to increase viscosity
proportional to the volume fraction of solids [43]. Indeed, the effect of BW particles by
themselves was either scarce, in the case of low TOCNF concentrations, or positive, thus
compensating for the loss of viscosity that glycerol caused. Their influence on the shear-
thinning behavior of TOCNFs was inconclusive, as this behavior was also observed in
the emulsions. In the range of the shear rates that were analyzed, the apparent viscosity
could be satisfactorily fitted (R2 > 0.98) to the following power law, widely known as the
Ostwald-de Waele model [44]:

η = K × γn−1 (3)

where γ is the shear rate, K is the consistency index, and n is the flow behavior index, with
n < 1 indicating pseudoplastic or shear-thinning behavior. As can be seen from Table 3,
BW/glycerol usually induced lower values of n, slightly enhancing the pseudoplastic
character at shear rates of <20 s−1 at 50 ◦C. This claim should not be extended to other sets
of conditions.

Table 3. Ostwald–de Waele parameters of aqueous suspensions of TOCNF-15 at 50 ◦C and BW-in-
water emulsions stabilized with TOCNF-15.

TOCNF-15 Concentration (wt%)
CNF Suspension BW Emulsion

K (Pa sn) n K (Pa sn) n

0.7 5.8 ± 0.4 0.66 ± 0.06 2.2 ± 0.2 0.55 ± 0.06
0.8 6.7 ± 0.3 0.79 ± 0.04 4.92 ± 0.08 0.70 ± 0.01
0.9 8.0 ± 0.2 0.76 ± 0.02 6.2 ± 0.1 0.65 ± 0.01
1.0 8.05 ± 0.09 0.72 ± 0.01 9.8 ± 0.3 0.84 ± 0.03

As for the positive influence of the degree of oxidation, this is partially due to the
large hydration shells of the carboxylate groups, making TOCNFs retain more water, as
previously described [1]. An additional reason lies in the lower size of BW droplets attained
(Figure 3), implying a higher effective volume of the dispersed phase, even though the
real volume fraction was the same regardless of the surface charge density. All considered,
the emulsions stabilized with TOCNF-15 were selected for paper coating due to their
higher ease of stabilization, higher viscosity attained for a given concentration, and a size
distribution that favored smaller sizes.

3.4. Properties of BW-Coated Papers

Based on macroscopic observations, the coatings with BW-in-water emulsions yielded
even distributions of each suspension onto the paper surface. The hydrophobic nature of
BW eased drying, at least compared to nanocellulose-only coatings [45,46], and the sheets
did not tend to shrink during the process. At a microscopic level, as shown in the SEM
images of Figure 5, the BW particles retained the size that they had in the BW-in-water
emulsions. While Figure 5a shows the surface of the original food-grade paper, two key
differences can be observed in Figure 5b: first, the presence of BW particles that are mostly
1–5 µm in diameter; second, a more sealed, apparently less porous paper surface is visible.
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Figure 5. Micrographs of paper sheets: (a) surface of uncoated paper, (b) surface of a sheet coated
with BW (10 wt%)/glycerol (1 wt%)/TOCNF-15 (0.9 wt%)/water, highlighting an inset image with a
higher magnification; (c) cross-section of the latter sample at two levels of magnification.

The cross-section at Figure 5c allows us to appreciate the mostly amorphous morphol-
ogy of a BW particle over paper. Rather than being an intrinsic characteristic of BW, its
morphology is heavily dependent on the drying process. This globule-like shape that the
BW particles adopted after drying differs from the more ordered, coral-like structure of
other works where molten BW was allowed to cool down slowly [47] and crystallize.

The food packaging-grade paper had barrier properties that were significantly en-
hanced by the incorporation of BW and TOCNF-15. In terms of serving as a barrier to
liquids, Table 4 demonstrates that the coated papers, although still unable to be deemed
hydrophobic due to the relatively low water contact angles, retained a drop of water on
their surface. In contrast, the original paper sheets absorbed the drop in less than 60 s.
However, comparing these results with others of BW-based, nanocellulose-stabilized (albeit
as nanocrystals) coating suspensions [48], the latter attained values over 110◦. The weight
gain of the paper in this case was higher than 15 g m−2, which could partially explain
the difference.

Table 4. Gains in basis weight and thickness after drying, water contact angle, and grease resistance
of BW-coated papers, depending on the temperature of the suspension and on the mass percentage
of TOCNFs.

Coating T
(◦C)

Coat Weight
(g m−2)

Coat Thickness
(µm)

Static Contact Angle (◦)
Kit Rating

Water Oil

None -- -- -- Drop absorbed 25.5 ± 5.0 1
10% BW,

1% glycerol 20 6.6 ± 1.9 5.9 ± 0.7 71.3 ± 0.5 65.5 ± 0.6 5

0.7% TOCNF-15 50 5.3 ± 1.1 8.5 ± 1.1 66.1 ± 9.6 64.8 ± 0.5 5
10% BW,

1% glycerol 20 8.3 ± 1.2 8.5 ± 1.5 79.8 ± 0.8 67.1 ± 4.4 5

0.9% TOCNF-15 50 5.2 ± 1.7 8.7 ± 1.8 96.1 ± 3.9 62.6 ± 0.7 5

The relatively narrow range of coat weights (Table 4) calculated based on the difference
in weight between the coated and uncoated papers showed no significant correlation with
the contact angle values (Pearson’s r = −0.10). Likewise, differences in coat thickness were
mostly due to the drying process [49]. Hence, the failure to attain higher water contact
angles was not due strictly to a low amount of BW on the paper, but rather to the proportion
of highly hydrophilic components (glycerol, TOCNFs). In fact, in a side experiment, we
increased the BW percentage to 20 wt% while keeping glycerol and TOCNF-15 at 1 wt% and
0.9 wt%, respectively, and this resulted in water contact angles of (115 ± 3)◦. A micrograph
of the surface in that case is displayed in Figure S1, showing a nearly complete coverage
of the sheet with relatively large BW particles. In comparison, the coverage of the surface
of paper by BW particles shown in Figure 5 seems incomplete and unevenly distributed,
explaining the lower contact angles that were obtained. Furthermore, in another work using
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chitosan/glycerol as stabilizer and BW concentrations above 20 wt%, the authors attained
water contact angles above 135◦ when applying the resulting emulsion to paper [24].

Interestingly, the emulsions improved not only the barrier properties to water, but also
to grease. The oil contact angle increased from 20–30◦ to more than 60◦, which should be
attributed to the hydrophilic constituents of the emulsion (TOCNFs and glycerol) rather
than to BW. Moreover, for the same reason, the coated papers attained a Kit rating of 5. In
other words, they resisted a mixture of 60 vol% castor oil, 20 vol% heptane, and 20 vol%
toluene, while the original papers only resisted pure castor oil. The enhancement in grease
resistance due to the amphiphilic coating suspension was not fully expected. Nonetheless,
Tyagi et al. [50] attained better results in this context using cellulose nanocrystals, mont-
morillonite, alkyl ketene dimer, and a protein compared to using nanocrystals alone. As
they explained, interactions between the nanocellulose and hydrophobic moieties induced
a favorable packing of the former due to the formation of cellulose–cellulose hydrogen
bonds during drying.

Regarding the resistance to airflow and water vapor flow, both were greatly enhanced
by coating with BW/glycerol/water mixtures, although generally falling short of conven-
tional, commercially available polyethylene-laminated paper. As shown in Figure 6, the
air resistance increased from 90 Gurley s to roughly 400–600 s when the mass percentage
of TOCNFs was 0.7%, and then to 1100–1700 s when it was 0.9%. Given this dependence
on the concentration of nanofibers, it is reasonable to state that this agent is the main con-
tributor to the air barrier properties. Nonetheless, in previous works, coating suspensions
consisting only of TOCNFs attained a lesser improvement [45,51]. Hence, glycerol played
an important role, acting on nanofibers as a plasticizer and easing their even distribution
onto paper.
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While TOCNFs and glycerol were responsible for the enhancement in air resistance,
the sharp decrease in WVTR (Figure 6) cannot be explained without BW. In the case of water
vapor, all three components were relevant. On the one hand, TOCNFs and glycerol granted
low porosity, as discussed above, thus impairing the kinetics of water vapor diffusion.

4. Conclusions

The ability of anionic cellulose nanofibers to stabilize beeswax-in-water systems seem-
ingly arose from both electrostatic repulsion and rheological hindrance. Evidence for the
first mechanism was found in the fact that the critical concentration to attain macroscopic
homogeneity followed this trend: TOCNF15 < TOCNF10 < TOCNF5. At the same time,
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some particles were large enough (>10 ηm) to experience buoyancy if the rheological prop-
erties of the medium resembled those of water. However, buoyancy was prevented when
undisturbed by the existence of yield stress or, when flowing, hindered by high viscosity.
In fact, the apparent viscosity of TOCNF-stabilized emulsions was within the range of
0.5–2.5 Pa·s even at 50 ◦C and at 19 s−1, plausible temperature and a plausible shear rate
conditions for paper coating, respectively. The degree of oxidation of TOCNFs was shown
to exert a positive influence on the viscosity of the emulsions.

BW drops solidified as globule-shaped particles onto the surface of the paper. The
incomplete covering of this surface implied that the water contact angles (~60–100◦) were
lower than those attained in other works using nanocellulose-stabilized BW (higher than
110◦). However, while the resulting paper sheets were not as hydrophobic as intended, they
resisted grease to a greater extent than expected, with a Kit rating of 5 and oil contact angles
above 60◦. Likewise, the barrier properties to air and water vapor were greatly improved
over those of the original food-grade paper, albeit still not meeting the specifications of
polyethylene-laminated paper.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13162353/s1, Figure S1: SEM image of the surface of a sheet
coated with BW (20 wt%)/glycerol (1 wt%)/TOCNF-15 (0.9 wt%)/water.
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