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Abstract: We have simulated BiCoO3 films epitaxially grown along (001) direction with density func-
tional theory computations. Leading candidates for the lowest-energy phases have been identified.
The tensile strains induce magnetic phase transition in the ground state (P4mm symmetry) from a
C-type antiferromagnetic order to a G-type order for the in-plane lattice parameter above 3.922 Å. The
G-type antiferromagnetic order will be maintained with larger tensile strains; however, a continuous
structural phase transition will occur, combining the ferroelectric and antiferrodistortive modes. In
particular, the larger tensile strain allows an isostructural transition, the so-called Cowley’s “Type
Zero” phase transitions, from Cc-(I) to Cc-(II), with a slight volume collapse. The orientation of ferro-
electric polarization changes from the out-of-plane direction in the P4mm to the in-plane direction in
the Pmc21 state under epitaxial tensile strain; meanwhile, the magnetic ordering temperature TN can
be strikingly affected by the variation of misfit strain.

Keywords: first-principles study; phase transition; polarization

1. Introduction

Multiferroic materials, which combine broken space inversion symmetry with time
inversion symmetry, have become one of the fastest growing research topics [1]. Two or
more ferroic orders can coexist in a single phase in such materials, such as ferroelectric and
magnetic orders [2,3]. The ferroelectric polarization breaks the space inversion symmetry,
while the magnetic order breaks the time inversion symmetry. The couplings between these
orders facilitate conditions for controlling the magnetization by an electric field and/or the
polarization by a magnetic field, which open up the technological applications in the field
of spintronics, microwave filters, energy storage, and resistive switching devices [4–6].

BiCoO3 (BCO), isostructural with ferroelectric PbTiO3, possesses a rather large dis-
placement of the Co3+ cation away from the center of the typical oxygen octahedra, result-
ing in forming a pyramid, whereas the pyramidal coordination can evolve into octahedral
coordination under high pressure accompanied by the high-to-low spin state transition
and structural phase transition [7–9]. Such structural characteristics lead to rich applica-
tion research. BiCoO3-based ferroelectrics could possess a significantly negative thermal
expansion (NTE), whereby the volume shrinks rather than expands as the temperature
rises, providing an opportunity to control the overall thermal expansion of structural mate-
rials [10]. By optimizing the arrangement of ligand vacancies, BiCoO3 could enhance OER
activity at a large current density with low overpotential, meeting the requirements of in-
dustrial water splitting [11]. BiCoO3 was also proposed as a low-cost and high-performance
electrode material. The retention of 92.7% after 5000 cycles at 1 Ag−1 current density and
an almost invariable specific capacity over different current density cycles were achieved
with a 3D urchin-like BiCoO3 material as a supercapacitor, which is free of templates and
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surfactants [12]. The Néel temperature could be changed significantly from 44 K for x = 0 to
470 K for x = 1 by varying the composition in the solid solution (1−x)PbVO3−xBiCoO3 [13].
Due to the bulk Rashba effect, BiCoO3 are particularly promising for energy storage via
specific spin texture [14,15].

On the other hand, the properties of thin films could be prominently affected by
epitaxial strain derived from lattice mismatch between a thin film and the underlying
substrate [16]. In this paper, we perform first-principles calculations to simulate BiCoO3
films epitaxially grown along the (001) direction. Due to the coupling of AFD and po-
larization, the polarization tends to tilt away from the out-of-plane in a phase transition
between the tetragonal P4mm phase and the monoclinic Cc phase and eventually tends
to lie along the in-plane direction in the orthorhombic Pmc21 state under epitaxial tensile
strain, resulting in an epitaxial strain-induced phase transition. It can also be demonstrated
that the magnetic ordering temperature TN can be significantly enhanced above 800 K in
the Cc phase and Pmc21 phase under tensile strain.

2. Computational Methods

We conducted first-principles calculations by the Vienna Ab initio Simulation Package
(VASP) with projector augmented wave (PAW) pseudopotentials based on the density func-
tional theory (DFT) [17,18]. The GGA-PBE exchange–correlation functional was employed
to describe the electron–ion interaction [19]. We chose a cutoff energy of 550 eV and a
Monkhorst–Pack k-point mesh with 6 × 6 × 4 after carefully evaluating the convergence of
the computed results with regard to the cutoff energy and the number of k points. Note that
the choice of a 550 eV energy cutoff is higher than 1.3 times the maximum value of ENMAX
for oxygen’s pseudopotential and the 6 × 6 × 4 k-point mesh for a

√
2×
√

2× 2 unit cell
defined as below is also adequately precise, as demonstrated in numerous studies and our
previous work [20–24]. In order to model epitaxial (001) BiCoO3 films, the lattice vectors of
these 20-atom cells (i.e.,

√
2×
√

2× 2 unit cells) are defined as

a = aIP(x̂ + ŷ) (1)

b = aIP(x̂− ŷ) (2)

c = aIP[δ1 x̂ + δ2ŷ + (2 + δ3)ẑ] (3)

where x̂, y, and ẑ are the unit vectors lying the substrate pseudocubic [100], [010], and [001]
directions, respectively. a and b are the in-plane lattice vectors, while c is the out-of-plane
lattice vector, which are along the pseudocubic [110], [1̄10], and [001] directions, respectively.
aIP is the in-plane lattice parameter corresponding to the epitaxial strain. Hence, the
epitaxial strain can be obtained by η = aIP/aeq − 1, where aeq = 3.72 Å corresponds to
the in-plane lattice parameter of the equilibrium P4mm state of bulk BCO. The model
of epitaxial structure grown on a cubic (001)-oriented substrate is shown in Figure 1a.
Structural optimizations are carried out by relaxing the cell parameter δ1, δ2, and δ3 as well
as the atomic positions for total energy minimization until the Hellmann–Feynman force
of 0.005 eV Å−1 is reached. The strategy for structural optimizations can result in fixing
the in-plane lattice parameters while optimizing the out-of-plane lattice parameter. The
validity of such a strategy for modeling epitaxial films has been demonstrated in other
systems, such as BiFeO3, SrZrO3, and NaNbO3 [21,25,26].

The ferroelectric polarization is computed by means of Berry phase [27,28]. One can
also evaluate the polarization from the product of the Born effective charges with the atomic
displacements by the approximated expression [29]:

P =
e
V ∑αβ

Z∗iαβui
β (4)

in which Z∗iαβ and ui
β represent the Born effective charges (BECs) tensor element of atom

i and the corresponding displacement of atom i along the direction β = x, y, z from the
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considered ferroelectric phase to its corresponding paraelectric phase, respectively. The
indices α and β run over the three Cartesian axes and index i runs over all the atoms in the
unit cell. The structural symmetry of strained epitaxial phases are determined by the use of
the FINDSYM program [30].

(b)

P4mm

Pmc21

Cc

aIP

(a)

Figure 1. (a) The model of epitaxial structure grown on a cubic (001)-oriented substrate and the
crystal structures for the lowest-energy phases, that is, P4mm, Cc, and Pmc21. The oxygen octahedra
tilting in in-plane and out-of-plane directions (red oval arrows) can result in distorted structures with
the antiferrodistortive vectors. (b) Total energy of the leading candidates for lowest-energy phase
versus the in-plane lattice parameter in epitaxial (001) BCO films.
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3. Results and Discussion
3.1. Structures

The perovskite BiCoO3 adopts the non-centrosymmetric polar point group C4v with
space group P4mm (the group number 99). As shown in Figure 1a, it yields the tetrago-
nal structure. One can estimate possible low-symmetry distortion from the cubic ABO3
perovskite structure by the use of the typical tolerance factor [31],

t = (rO + rA)/
√

2(rO + rB) (5)

where rA, rB, and rO denote the ionic radii of A, B, and oxygen atoms, respectively. For
the typical polar perovskite BaTiO3 and PbTiO3 with the non-centrosymmetric P4mm
state, the tolerance factor is 1.061 (1.062) and 1.022 (1.019) by the bond valence parameter
(Shannon ionic radii) [32,33], respectively. The tolerance factor of BiCoO3, however, is 0.974,
obtained simply by the bond valence parameter. Such a fact (t < 1) is inconsistent with
BaTiO3 and PbTiO3 and further implies that the oxygen octahedra tiltings will yield a lower
symmetry, such as tetragonal, orthorhombic, rhombohedral, etc. Hence, it is legitimate
to infer that BiCoO3 would exhibit more complex phases under external conditions, for
example, epitaxial strain. However, before considering the strain engineering, let us focus
on the ground state of BiCoO3.

Analogous to the typical ABO3 perovskite, the primitive cell of BCO embodies five
atoms to form one formula unit. By the first-principles calculation, the in-lattice parameter
in the tetragonal P4mm phase of BCO is a0 = 3.718 for the primitive cell with five atoms.
Note that we utilize the

√
2×
√

2× 2 unit cell containing 20 atoms for all computations, as
mentioned in the Computational Methods section. The use of these enlarged supercells is
advantageous for modeling the antiferromagnetic ordering and optimizing the distorted
structures. The result is well consistent with the previous experiments [7,34]. Bi atom is
located in the vertex of the tetragonal structure with the Wycoff coordinate 1a (0, 0, 0).
However, Co and O atoms deviate from the center of both the body and face of the cell. Co
atom occupies the Wycoff coordinate 1b (0.5, 0.5, 0.430), while O1 and O2 atoms are located
in 1b (0.5, 0.5, 0.863) and 2c ( 0.5, 0, 0.342). The off-center Co atom bonds with the five O
atoms, leading to an oxygen pyramid of CoO5 rather than an octahedra.

We first calculate the evolution in the total energy with the in-plane lattice parameter
for the low-energy states. The ground state is a P4mm symmetry with C-type antiferro-
magnetic order. As we can see, the tensile strain will induce a magnetic phase transition
from the C-type antiferromagnetic order to G-type order for the in-plane lattice parameter
above 3.922 Å. Then, the P4mm state will change into a monoclinic state, i.e., Cc symmetry,
when subject to the in-plane lattice constaint from the matching plane with substrates. The
structural phase transition occurs with aIP = 4.03 Å.(4.18,4.47), where the NdScO3, BaSnO3,
BiScO3, etc., substrates [35] can provide such epitaxial tensile strains. Meanwhile, the spin
orders will remain the G-type antiferromagnetic order as the strain continues to increase.
This is even the case when the system undergoes another structural phase transition.

Let us now turn our attention to the phase transition from the Cc-(I) to Cc-(II) state
being of an isosymmetric phase. Such transition is rather different with the isosymmetric
phase transition of Cc to Cc’ in strained BiFeO3 [36], i.e., the tetragonal-like T phase to
the rhombohedral-like R phase. In striking contrast to the rhombohedral-like R phase of
BFO (with a c/a ratio of 1.3 and FeO5 pyramids), the two Cc states in BiCoO3 both possess
CoO6 octahedra with an a−a−c− oxygen octahedral tilting pattern. Hence, the two Cc
states should both belong to the rhombohedral-like R phase. Note also that isosymmetric
phase transition, the so-called Cowley’s “Type Zero” phase transition [37,38], can abruptly
alter c/a lattice parameter ratios and/or unit cell volume, but not change the space group
symmetry (inclusive of translational symmetry). As we can see, the symmetry of Cc (Cs4
point group with Schoenflies’ symbol) does not change when the phase transition occurs
but with a change of c/a ratio from 0.99 to 0.96, as well as with a volume collapse of
2.9%, which are representative of a strong first-order transition. We also predict a tilt
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change of out-of-plane lattice vector, i.e., c axis, deflecting from the epitaxial perpendicular
direction of in-plane, accompanied by a decrease in magnitude of 0.82 degrees, as shown
in Figure 2. Note that the Cc-(II) phase can be matched well with the lattice constant of
LaLuO3 substrate [16]. Moreover, the structural phases at a finite temperature may form
with a smaller strain.
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Figure 2. Structural properties of epitaxial (001) BCO films as a function of in-plane lattice parameter
in the equilibrium phases. Panel (a) displays the lattice parameter a, b, and c/

√
2 versus in-plane

lattice parameter. Panel (b) shows the volume (left vertical axis) and axial ratio (right vertical axis)
versus the in-plane lattice parameter. Panel (c) represents the angle between the c-axis and the
ab-plane versus in-plane lattice parameter.
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As the strain continues to increase, the Pmc21 phase appears. Without the volume
collapses and the change of axial ratio in comparison with the previous phase transition,
both volume and axial ratios change continuously at the boundary of the phase transition.
Nevertheless, it is still a first-order phase transition, since the change in energy is shown
in Figure 1. To facilitate an experimental validation of our theoretical predictions, Table 1
summarizes the calculated lattice parameters and unit cell angles obtained for the relaxed
P4mm, Cc-(I), Cc-(II), and Pmc21 phases when the in-plane lattice parameters aIP are equal
to 3.72, 4.03, 4.18, and 4.47 Å, respectively, which are redefined by the FINDSYM program.

Table 1. The reduced unit cell parameters of the P4mm, Cc-(I), Cc-(II), and Pmc21 phases when
the in-plane lattice parameters aIP are equal to 3.72, 4.03, 4.18, and 4.47 Å, respectively, which are
redefined by the FINDSYM program. a, b, and c are the lattice parameters (in Å). α, β, and γ are
reduced unit cell angles (in degrees). The number n is the number of atoms in the reduced unit
cell of BiCoO3.

Phase aIP n a b c α β γ

P4mm 3.72 5 3.718 3.718 4.817 90 90 90
Cc-(I) 4.03 20 9.809 5.699 5.699 90 124.75 90
Cc-(II) 4.18 20 9.678 5.911 5.911 90 127.26 90
Pmc21 4.47 10 3.769 6.321 6.321 90 90 90

3.2. Polarization and Antiferrodistortive Vetors

Note that the orientation of ferroelectric polarization tends to tilt away from the out-
of-plane in the transition of P4mm to Cc and eventually tends to lie along the in-plane
direction in the Pmc21 state under epitaxial tensile strain, which is shown in Figure 3a. In
the P4mm phase, although the out-plane of polarization decreases with the in-plane lattice
parameter, the magnitude of polarization is still rather large, at above 160 µC/cm2, up
to the boundary of phase transition. For this boundary, the total polarization reduces to
151 µC/cm2 in the Cc-I state. While the out-plane of polarization decreases to 45 µC/cm2,
the in-plane polarization appears, which is about 102 µC/cm2 along y-axis.

At the same time, the pyramidal CoO5 in the P4mm phase disappears and oxygen
octahedrons in the Cc state begin to form and rotate, which leads to the so-called antifer-
rodistortion. Here, we use the antiferrodistortive vector (AFD) to determine its magnitude
and direction, in which its axis provides the direction of oxygen octahedra rotating, whereas
its magnitude provides the angle of such a rotation. For example, the AFD vector of the Cc-I
state for this boundary should be (7.7◦,7.7◦,7.8◦), which is about along the [111] direction.
Such an AFD vector also corresponds to an a−a−a− octahedra tilting pattern (indicated by
Glazer’s notations [39]). With the strain increasing, a decreasing out-of-plane component of
the AFD vector causes the polarization to decrease, resulting from their coupling. Similar
conditions also occur in the Cc-II phase as well as the boundary between Cc-I and Cc-II
phases. Whereas the out-of-plane polarization of Cc-II phase is larger than that of Cc-I
phase, the in-plane polarization is smaller than that of Cc-I. When subjected to the Pmc21
state, a vanishing in-plane component of the AFD vector (i.e., a0a0c+ tilting pattern) results
in the enhancement of out-of-plane polarization and the vanishing of in-plane polarization.
The in-plane polarization exceeds 85 µC/cm2. We note that Ref. [26] also reported a polar
Pmc21 phase induced by strain, with an a−a−c+ octahedral tilting pattern, which is similar
to our calculated Ima2 structure in Figure 1b, featuring in-plane anti-phase rotations (which
are higher in energy for our system, with the out-of-plane in-phase tilting suppressed dur-
ing structural optimization). In contrast, the polar Pmc21 phase of BiCoO3 in this work has
an a0a0c+ tilting pattern, with the in-plane anti-phase tiltings suppressed and out-of-plane
in-phase rotation activated, resulting in lower energy. Hence, the two structures are distinct.
Furthermore, NaNbO3 has a 4d0 electronic configuration for Nb5+ without magnetism as a
ferroelectric. BiCoO3 (with 3d6 for Co3+) exhibits antiferromagnetic ordering with a Néel
temperature above room temperature as discussed later, which makes it a candidate for a
room-temperature multiferroic material.
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Figure 3. The Cartesian components of (a) the ferroelectric polarization and (b) antiferrodistortive
(AFD) vectors of the equilibrium phases of epitaxial (001) BCO films, as a function of in-plane
lattice parameter.

3.3. Néel Temperature

The Néel temperature (TN) can be estimated with the use of the mean field approxi-
mation (MFA) or Monte Carlo (MC) simulations [40,41] by considering the in-plane and
out-of-plane magnetic exchange constants (J‖ and J⊥ ). According to the effective Heisen-
berg Hamiltonian model H = 1

2 ∑<i,j> JijSi · Sj. The magnetic exchange constants can be
determined from our first-principles calculations by mapping the calculated total energies
for each magnetic state to the Heisenberg model:

J⊥ =
(

1/4S2
)
[E(F)− E(G)− E(A) + E(C)]

J‖ =
(

1/8S2
)
[E(F)− E(G) + E(A)− E(C)]

(6)
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where E(F), E(A), E(C), and E(G) are the total energies of the ferromagnetic (FM) and
A-, C-, and G-type antiferromagnetic orders (A-AFM, C-AFM, and G-AFM), respectively.
Note that the A-AFM order exhibits the spins of Co3+, which are parallel in the in-plane
direction and antiparallel along the out-of-plane direction. The C-AFM order possesses
the spins of Co3+, which are parallel along the out-of-plane direction and antiparallel in
the in-plane direction. The G-AFM order yields the spins of Co3+ antiparallel to all the
nearest neighbors. We assume normalized spins and take S = 2 for simplicity here. The
Néel temperature for the magnetic transition can then be evaluated in the MFA level as:

TN ∼
2
3
(2J‖ + J⊥). (7)

The calculated Néel temperature of bulk BiCoO3 perovskite oxide for different Ue f f
values are shown in Figure 4a. These results reveal that the transition temperature from the
C-type antiferromagnetic state to the paramagnetic state of the P4mm phase for BiCoO3
is significantly influenced by the value of Ue f f . Note that the experimental value of TN ,
i.e., 474 K, was reported, which is marked by the gray and magenta dashed lines in the
panels (a) and (b) and presents a direct comparison between our theoretical predictions
and the measured transition temperatures. Hence, we employ the conventional value of
4.8 eV for Ue f f with the Co ions. Such a value is consistent with the measured values,
when recalling that mean field approaches neglect spin fluctuations and thus overestimate
magnetic transition temperatures [23,42]. The corresponding local magnetic moment is
about 3.10 µB for each Co ion, which is consistent with the +3 charge of this Co ion and is
in rather good agreement with the measurements.

We also solve the Hamiltonians to obtain TN by means of Monte Carlo simulations of
a 20 × 20 × 20 periodically repeated simulation supercell that contains 8000 Co3+ spins.
We use 40,000 Monte Carlo sweeps for thermalization and 10,000 additional sweeps for
computing statistical averages. The specific heat can be calculated in MC simulations by

Cv =

(〈
E2〉− 〈E〉2)

T2 (8)

once the system has reached equilibrium at the given temperature (T). Hence, TN can
be obtained by locating the maximum on the curve of Cv versus T. We perform the MC
modeling to determine the transition temperature of the P4mm phase in BiCoO3. As one can
see, the specific heat exhibits a substantial reduction when heating over 410 K, indicating a
transition from antiferromagnetic state to paramagnetic state at such a temperature. When
recalling that the Monte Carlo simulations usually underestimate the magnetic ordering
temperature, we thus employ the mean field approximation by fitting the value of Ue f f to
estimate the Néel temperature. Figure 4b depicts the transition temperature of the resulting
phases possessing the lowest energy as a function of the in-plane lattice parameter. The
blue and red data represent the transition temperature estimated by Ue f f = 4.8 and 5.91 eV,
respectively. Note that, with the modified Ue f f = 4.8 eV, the magnetic order transition
temperature exceeds 800 K via a strain-induced structural phase transition.
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Figure 4. Magnetic-related properties of epitaxial (001) BCO films. Panel (a) displays the magnetic
ordering temperature TN varying with the Hubbard parameter Ue f f for the ground state of BiCoO3.
Panels (b,c) show the TN with Ue f f = 4.8 eV and 5.91 eV and magnetic moment of Co3+ as a function
of in-plane lattice parameter. Panel (d) represents the temperature dependency of the specific heat
Cv in the ground state of BiCoO3. The gray and magenta dashed lines in the panels (a,b) denote the
experimentally determined Néel temperatures (TN) of the tetragonal P4mm phase.

4. Conclusions

In summary, we have used density functional theory calculations to investigate misfit
strain-induced structural phase transition in epitaxial (001) BiCoO3 films. Tensile strain
induces a magnetic phase transition, that is, from a C-type antiferromagnetic order to a
G-type order, without changes in spatial symmetry (P4mm space group). BiCoO3 film
maintains the G-type antiferromagnetic order under larger tensile strains, but undergoes
a continuous structural phase transition from P4mm to Cc to Pmc21 phase in the wake
of couplings between the polarization and antiferrodistortive vectors. Strikingly, two
isostructural Cc phases occur during the isostructural phase transition, resulting from the so-
called Cowley’s “Type Zero” phase transitions. Under epitaxial tensile strain, ferroelectric
polarization changes from out-of-plane to in-plane direction, whereas the magnetic ordering
temperature TN can be significantly enhanced above 800 K in the Cc phase and Pmc21
phase under tensile strain. In ultra-thin ferroelectric and multiferroic films subjected to
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large epitaxial strains, extrinsic factors (such as temperature, as well as materials’ defects,
impurities, thicknesses, interfacial effects, and surface conditions) may impact the emergent
phases and physical properties observed experimentally. Our findings exhibit a rich
multiferroic phase and broaden its potential application based on multifunctional thin
film devices.
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