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Abstract: Microemulsions are nanocolloidal systems composed of water, an oil, and a surfactant,
sometimes with an additional co-surfactant, which have found a wide range of practical applications,
including the extractive removal of contaminants from polluted water. In this study, microemulsion
systems, including a nonionic surfactant (Brij 30), water, and esters selected from two homologous
series of C1–C6 alkyl acetates and ethyl C1–C4 carboxylates, respectively, were prepared by the
surfactant titration method. Phase transitions leading to the formation of Winsor II and Winsor IV
microemulsions were observed and phase diagrams were constructed. The dependences of phase
transitions on the salinity and pH and the addition of isopropanol as a co-surfactant were also inves-
tigated. Some physical properties, namely density, refractive index, electrical conductivity, dynamic
viscosity, and particle size, were measured for a selection of Winsor IV microemulsions, providing
further insight into some other phase transitions occurring in the monophasic domains of phase
diagrams. Finally, Winsor II microemulsions were tested as extraction solvents for the removal of
four tricyclic antidepressant drugs from aqueous media. Propyl acetate/Brij 30/H2O microemulsions
provided the best extraction yields (>90%), the highest Nernst distribution coefficients (~40–88),
and a large volumetric ratio of almost 3 between the recovered purified water and the resulting
microemulsion extract. Increasing the ionic strength (salinity) or the pH of the aqueous antidepressant
solutions led to an improvement in extraction efficiencies, approaching 100%. These results could
be extrapolated to other classes of pharmaceutical contaminants and suggest ester- and nonionic
surfactant-based microemulsions are a promising tool for environmental remediation.

Keywords: microemulsions; esters; nonionic surfactant; co-surfactant; pseudo-ternary phase
diagrams; phase transitions; electrical conductivity; dynamic viscosity; extraction; tricyclic
antidepressant drugs

1. Introduction

Microemulsions have emerged over the past decades as a major research topic in colloid
science. This is primarily due to their multiple areas of application, spanning fields like
cosmetics [1–3], pharmaceuticals [4–7], agriculture [8,9], food [10–12], oil recovery [13–15],
alternative fuels [16,17], catalysis [18–20], templated synthesis of nanoparticles [21–26], and
environmental remediation [27–31].

Microemulsions are nanoscale colloidal systems with high thermodynamic stability,
incorporating at least three components: water, oil, and a surfactant [7]. Often a fourth
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component is also included, known as a co-surfactant or co-solvent, which further en-
hances the stability of micelles dispersed in the continuous phase of the emulsion [26,32,33].
Another advantage of microemulsions is that they form spontaneously, as the surfactant
(and co-surfactant, if present) lowers the free energy of the resulting nano-heterogeneous
thermodynamic system. Unlike regular emulsions, microemulsions tend to be less viscous,
visually transparent, and optically isotropic, in addition to having excellent long-term
stability, which comes from the nanometric dimensions of their micelles, typically below
100 nm [6,10]. Similar to regular emulsions, microemulsions can be oil-in-water (O/W),
where normal micelles made of oil with a surfactant coating are dispersed into a continuum
of water, or water-in-oil (W/O), encompassing inverse micelles with water on the inside
of a surfactant shell dispersed into the oil. The Winsor classification of microemulsions
delineates four types of systems (Figure 1): Winsor I, consisting of an O/W microemulsion
phase in equilibrium with a top oil phase; Winsor II, consisting of a W/O microemulsion
phase in equilibrium with a bottom aqueous phase; Winsor III, representing an equilibrium
between a top oil phase, a bottom aqueous phase, and a middle microemulsion phase,
referred to as bicontinuous, which concentrates all the surfactant within intertwined do-
mains of both W/O and O/W; and Winsor IV, which is a single phase that can be either
O/W or W/O [7]. The particular type of Winsor system formed depends on the relative
proportions of components, the choice of surfactant and/or co-surfactant, the presence of
certain electrolytes, and environmental conditions [34].
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As a result of their spontaneous formation and high thermodynamic stability, the
fabrication of microemulsions is generally based on low-energy methods, typically the
phase titration method and the phase inversion method [7]. The former consists of start-
ing with binary mixtures with variable ratios of the two components to which the third
component is slowly added (titrated) with minimal stirring. Most commonly, the oil and
surfactant (plus co-surfactant, if it is the case) are mixed over a range of mass fractions
and the water is titrated in small portions until the respective types of Winsor phases are
observed visually [35–37]. It is, however, possible that the oil and water are mixed originally
and the titration is performed using the surfactant [28,38]. Ternary (or pseudo-ternary if a
co-surfactant is also involved) phase diagrams are then constructed, the various Winsor
phase existence domains being delimited by frontiers (Winsor curves) given by the experi-
mental compositions where the phase transitions have been observed [39,40]. Typically, the
phase transitions observed with surfactant titration are either Winsor I→III→IV, Winsor
II→III→IV, or Winsor III→IV [39]. Not all systems will show all of these transitions. For
example, the Winsor III phase may not be observed or a system could form the monophasic
Winsor IV from the first drop of added surfactant. The second fabrication method, the
phase inversion technique, implies switching from O/W to W/O or vice versa by one of
two options: either the addition of an excess amount of the dispersed phase at constant
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temperature (phase inversion composition, PIC) or a change in temperature at fixed com-
position (phase inversion temperature, PIT). The phase transition is triggered in PIC by the
modification and fusion of micelle particles upon introduction of the excess component,
while in PIT a decrease in surface tension upon cooling triggers the phase inversion [7].

The oil component of a microemulsion can be, in principle, any nonpolar, water-
immiscible chemical compound. A wide range of substances have been used, depending on
specific applications, ranging from hydrocarbons [41,42], supercritical CO2 [43], vegetable
oils [11,17,44], essential oils [45], fatty acid methyl esters [46], and short chain esters [27,31].

A diversity of surfactant types can also be used for the preparation of microemulsions,
ranging from cationic [47,48] to anionic [43,49] and nonionic [28,38,39]. There is a recent
preference for the latter class, as these are more environmentally friendly than their ionic
counterparts [39]. The most common co-surfactants reported are short-chain alcohols,
like propanol, butanol, and pentanol [29,41,50,51], although other amphiphilic compound
classes have been used occasionally [52].

In the field of environmental remediation, microemulsions have been employed mostly
as low-volatility, environmentally benign extraction solvents for the decontamination
of wastewater and recovery of valuable compounds [27–31,38,50]. In addition, recent
work has shown that microemulsions can also serve as nanoreactors for the catalyst-free
photodegradation of certain classes of environmental contaminants such as dyes [31].
Winsor I microemulsions make good extraction solvents for lipophilic compounds found
in various oil fractions, leaving behind at equilibrium a clean upper oil phase, whereas
Winsor II microemulsions are suitable for extracting hydrophilic compounds found in water,
yielding a clean lower fraction of water (Figure 1). While Winsor I microemulsions have
found their applicability, for example, as mobile phases in liquid chromatography [53,54],
it is the latter type, Winsor II, that is of particular interest for the removal of contaminants
from wastewater in environmental science. In particular, nonionic surfactant and ester-
based Winsor II microemulsions have been recently applied successfully for the removal of
diverse contaminants from real or simulated wastewater, including heavy metal ions, like
cobalt [27,38,55], copper [27,29,55], nickel [39,50,55], chromium [55], iron, zinc, lead [29],
and a series of lanthanides [56] as well as organic dyes such as crystal violet [27,30,31],
methyl orange [30,31], and rhodamine B [27,30,31]. Although pharmaceutical drugs are
another important class of micropollutants of wastewater and natural water, with severe
impacts on both aquatic life and human health, like chronic toxicity, disruptions of the
endocrine system, or increase of resistant bacterial strains [57,58], to our knowledge, there
are no reports in the literature about the application of microemulsion extraction for the
removal of such contaminants of emerging concern.

The present study was aimed at preparing and characterizing a range of microemulsion
systems composed of several ester homologs, water, and a nonionic surfactant, investi-
gating the phase transitions occurring in these systems and how they may be influenced
by the salinity and pH of water or the addition of an alcohol co-surfactant, and finally
applying them for the extractive separation of a selection of antidepressant drugs from
their aqueous solutions, serving as simulated wastewater containing such compounds as
model pharmaceutical contaminants.

2. Materials and Methods
2.1. Chemicals

Methyl acetate (MEAC, ≥99%), ethyl formate (ETFO, ≥98%), propyl acetate (PRAC,
≥99%), ethyl propionate (ETPR, ≥99%), ethyl butyrate (ETBU, ≥99%), and hexyl acetate
(HEAC ≥ 99%) were purchased from Thermo Fisher Scientific. Ethyl acetate (ETAC,
≥99.8%) was from Honeywell, butyl acetate (BUAC, ≥99.5%) from Emsure and pentyl
acetate (PEAC, ≥99%) from Supelco. Polyoxyethylene (4) lauryl ether (Brij 30, ≥99%,
max. 1% H2O) was acquired from Acros Organics. Isopropanol (C3-ol, anh., ≥99.5%),
chloroform (≥99.9%, with amylenes as stabilizer), sodium chloride (≥99%), sodium hy-
droxide (≥97%), phosphoric acid (85% in water), amitriptyline hydrochloride (AMI,≥98%),



Nanomaterials 2023, 13, 2311 4 of 30

doxepin hydrochloride (DOX, ≥98%, ~85% E isomer and 15% Z isomer), imipramine
hydrochloride (IMI, ≥99%), and clomipramine hydrochloride (CLO, ≥98%) were from
Sigma Aldrich. Mirtazapine (MIR, ≥98%) was purchased from Thermo Fisher Scientific.
Helium 6.0 (≥99.9999%) was purchased from Linde GmbH. Doubly distilled water from
an in-house distillation setup was used in all experiments. Brij 30 was dried at 105 ◦C
overnight before use. All other reagents were used as received.

2.2. Preparation of Microemulsions by Surfactant Titration

The surfactant titration method was used in all experiments [28]. The temperature
was always 25 ◦C. A series of test tubes were first loaded with mixtures of ester and water
(totaling 1 mL in all experiments) and spanning the full range of water mass fractions
from 0.95 to 0.05, in 0.05 decrements, to enable the construction of full ternary diagrams.
Water and ester densities at 25 ◦C were used to convert between mass and volume. The
aforementioned water mass fractions correspond to volumetric ratios R between water and
ester from a high 19.0 down to a low 0.05. The dry nonionic surfactant, Brij 30, was added
drop-wise (titrated) using Pasteur pipettes into the water and ester mixtures, with gentle
manual shaking after each drop, until two clear liquid layers were obtained, marking the
formation of a Winsor II microemulsion. At this point, the test tubes were weighed on an
analytical balance Kern ABD 200-4 (KERN GmbH, Bensheim, Germany), with a precision
of ±0.0001 g, and the mass of Brij 30 added was determined by difference. Titration with
Brij 30 was continued until the whole mixture became a clear, single phase, corresponding
to the Winsor IV microemulsion. The total mass of Brij 30 added was also determined by
weighing by difference.

In the case of pseudo-ternary systems, the same procedure was applied with the
only difference that water was replaced by mixtures of isopropanol and water with the
mentioned volumetric ratios, aqueous NaCl solutions with stated molar concentrations,
phosphate buffer solutions with indicated pH values. Buffers were prepared by slowly
adding aqueous NaOH to aqueous H3PO4 until attaining the desired pH, measured with a
stationary pH meter pH50+ DHS (Giorgio Bormac, Carpi, Italy).

2.3. Construction of Ternary and Pseudo-Ternary Phase Diagrams

Phase diagrams of ternary and pseudo-ternary systems [39,59] were constructed
using Origin Pro 8.5 software (Origin Lab Corp., Northampton MA, USA) by plotting the
data points corresponding to the compositions (mass fractions) of mixtures that mark the
beginning of the Winsor II and Winsor IV domains, respectively. Mass fractions of the three
components were computed with the formula:

wi =
mi

3
∑

j=1
mj

(1)

where: wi—the mass fraction of component i;
mi—the mass of component i;
mj—the mass of component j.

2.4. Physical Property Measurements

The densities of the microemulsions were measured with an automated 4500 DMA
densimeter (Anton Paar, Graz, Austria) based on the vibrating tube method with a precision
of ±0.00005 g/cm3. The DMA cell was calibrated with dry air and doubly distilled water,
while a built-in Peltier thermostat maintained temperature at 25 ◦C.

Refractive indices were measured at 25 ◦C, using the sodium D line, with a ther-
mostated Abbé refractometer, having a precision of ±0.0001.

Electrical conductivities were recorded at 25 ◦C with a conductivity probe, part of the
Cobra 3 Chem-Unit (PHYWE Systeme GmbH & Co. KG, Göttingen, Germany). Before



Nanomaterials 2023, 13, 2311 5 of 30

the measurement, the conductivity cell was calibrated with two certified solutions (84 and
1413 µS/cm). The uncertainty of the conductivity measurements was ±0.5%.

Viscosities were determined with a rolling-ball AMVn microviscometer (Anton Paar,
Graz, Austria), equipped with a built-in Peltier thermostat for temperature control. All
measurements were performed at an inclination angle of 70◦ using suitable calibrated
glass capillary tubes (1.8 and 3.0 mm). The relative uncertainty of viscosity measurements
was less than ±2%. The Newtonian behavior of the systems was verified using different
angles of inclination (70◦ and 30◦), when identical viscosity values were obtained, within
experimental errors.

The average size of micelle particles and their polydispersity index (PDI) was de-
termined using the Stokes-Einstein equation from dynamic light scattering (DLS) mea-
surements of undiluted microemulsions using a Zetasizer NanoZS apparatus (Malvern
Instruments Inc., Malvern, UK). Measurement parameters were as follows: solid-state laser
source, measurement angle of 173◦, and temperature set at 25 ◦C.

All measurements were performed on three independent replicates and results are
reported as averages.

2.5. Extraction of Tricyclic Antidepressants (TCAs) into Microemulsions

In all extraction experiments, the Winsor II microemulsion was generated in situ.
The following general protocol was applied: to 9 mL of TCA solution (prepared by

dissolving the necessary amount of solid TCA in water, NaCl 0.5 M, or phosphate buffer)
1 mL of ester was added as an oil component. The mixture was placed on the analytical
balance and Brij 30 was added drop-wise with occasional gentle stirring until the necessary
mass for forming a Winsor II system was reached for the respective ester (according to its
determined phase diagram). The resulting mixture was drawn into a 20-mL syringe, which
was sealed and left overnight for the two Winsor II phases (W/O microemulsion-µE and
excess water-W) to separate and the TCA to partition and equilibrate between the phases.

After equilibration, the volumes of the two separated phases were measured, VµE
and VW, respectively. Next, 1 mL from the bottom aqueous phase was evacuated through
the syringe needle into a clean glass vial for the purpose of determining the concentration
of the remaining TCA in the aqueous phase and CTCA,aq using gas chromatography mass
spectrometry, GC-MS (see Section 2.6). The concentration of TCA extracted into the mi-
croemulsion (µE) phase, CTCA,µE, was determined by mass balance, i.e., by subtracting the
mass of TCA found in the VW mL of aqueous phase after partitioning from the initial total
mass of TCA found in the original 9 mL of solution and dividing the resulting difference
by VµE.

The extraction yield was calculated with the formula:

η[%] =
C0

TCA ·V0
sol − CTCA,aq ·VW

C0
TCA ·V0

sol
· 100 (2)

where: η—the extraction yield, in %;
C0

TCA—the initial concentration of TCA before extraction, in mg/L;
V0

sol—the initial volume of the solution of TCA subjected to extraction, in mL;
CTCA,aq—the final concentration of TCA remaining in water after extraction, in mg/L;
VW—the final volume of water after phase partitioning, in mL.

2.6. Determination of Residual Concentrations of TCAs in Water after Extraction

The 1 mL of residual water collected after extraction was evaporated to dryness at
70 ◦C. The resulting residue was taken up with chloroform into a 1.5-mL GC vial to which
a known amount of an internal standard solution (mirtazapine in chloroform) was added.
All residual TCAs were quantified by comparison of their peak areas against those of the
internal standard with a known concentration. For accurate quantification, calibration
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curves were prepared in advance for each TCA mixed with the internal standard using a
series of TCA solutions with exact concentrations.

Chromatographic analyses were carried out using a Thermo Scientific Focus GC
coupled with a Polaris Q ion trap MS detector. The splitless injection mode at an inlet tem-
perature of 250 ◦C was employed, the GC-MS being equipped with a TriPlus Autosampler.
The capillary column was TR-5MS from Thermo Fisher Scientific (length = 30 m; internal di-
ameter = 0.25 mm; film thickness = 0.25 µm). Helium served as the carrier gas, at a constant
flow rate of 1 mL/min. The ion source temperature was set to 250 ◦C, and the MS transfer
line was set to a slightly higher temperature of 280 ◦C. The oven temperature program was
as follows: start at 60 ◦C and hold for 3 min; ramp up to 300 ◦C at a rate of 15 ◦C/min;
hold at 300 ◦C for 4 min. For enhancing sensitivity, all measurements were performed in
single-ion monitoring (SIM) mode, as per other studies [60–65]. The specific product ions
selected for monitoring each of the four TCA analytes and the internal standard were, in the
order of elution: m/z 58 for AMI; m/z 58 for DOX; m/z 234 for IMI; m/z 195 for MIR; and
m/z 268 for CLO. These ions were selected because they produced the most intense peaks
in the mass spectra of the respective compounds, thus maximizing detection sensitivity.

3. Results and Discussion
3.1. Ternary Phase Diagrams of Prepared Microemulsion Systems
3.1.1. Changes in Phase Diagrams with the Homology of the Alkyl Part Cx (x = 1–6) of
Alkyl Acetates (Cx + C2) Used as Oil Component of W/O/Brij 30 Microemulsion Systems

Figure 2a,b show comparatively the Winsor II curves (i.e., the lower borders of Winsor
II domains, where just enough surfactant has been added to the initial ester and water
mixtures to obtain a Winsor II system) and the Winsor IV curves (i.e., the lower borders of
Winsor IV domains, where the amount of surfactant added is sufficient to create a single
phase in the whole system) for six ternary systems employing different acetate homologs.
These curves essentially make up the ternary phase diagrams. In these diagrams, the mass
fractions of the three components (water, ester, and surfactant) are plotted on the three
sides of the Gibbs-Roozeboom equilateral triangle [39]. Between the bottom side of the
triangle and the Winsor II curve, each system is inhomogeneous and does not constitute a
microemulsion. Between its Winsor II and Winsor IV curves, each ternary mixture forms
a Winsor II system, made of a clear, transparent W/O microemulsion layer on top of the
excess water layer. Above their corresponding Winsor IV curve (the binodal curve), all
ternary systems become single-phase systems [59], i.e., Winsor IV microemulsions.

Using Origin Pro 8.5 software, the areas below each curve in the diagrams were
computed and the relative areas are reported as % of the total triangle area in Table 1.

As can be seen from Figure 2a and Table 1, the lowest-lying Winsor II curve corre-
sponds to the system with MEAC (C2 acetate) and the highest to the one with HEAC (C6
acetate). This means that, in general, the smallest amount of Brij 30 surfactant that needs to
be titrated into the initial ester and water mixtures to reach a Winsor II system is minimal
in the case of the shortest alkyl acetate and maximized when the longest homolog is used
as the oil component. Since the formation of the clear W/O Winsor II microemulsion
implies miscibilization of the ester and water with the aid of the added surfactant, it is not
surprising that the longer and more hydrophobic esters (BUAC, PEAC, and HEAC) require
higher amounts for nonionic surfactant than the shorter ones (MEAC, ETAC, and PRAC).
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Table 1. Relative areas (% of total area) of domains delimited on the ternary diagrams of systems
incorporating water, Brij 30, and homologous alkyl acetate esters.

Ester Cx + C2 (x = 1–6)
Incorporated in the

Microemulsion

% Area of Domain Found
under the Winsor II Curve

% Area of Winsor II
Microemulsion Domain

% Area of Winsor IV
Microemulsion Domain

MEAC (x = 1) 12.97 11.46 52.48
ETAC (x = 2) 17.87 12.52 42.26
PRAC (x = 3) 15.44 10.84 47.10
BUAC (x = 4) 21.65 23.93 44.46
PEAC (x = 5) 18.46 17.70 26.06
HEAC (x = 6) 24.71 12.60 26.07

The Winsor II microemulsions can serve as extraction systems for various analytes
from aqueous media, for example, the removal of contaminants from wastewater or other
contaminated water [27–29,38]. Therefore, a larger Winsor II domain area in the phase
diagram would be desirable for such purposes. However, the data in the third column of
Table 1 should be judged only when taking into account the corresponding data in the other
columns. It would be desirable that the enlargement of the Winsor II domain is the result
of a lower Winsor II curve rather than an upper Winsor IV curve (marked by a reduction
of the Winsor IV domain area in Table 1), the latter corresponding to higher consumption
of Brij 30 surfactant, which would imply a higher cost. Clearly, although BUAC yielded
the largest Winsor II domain, this domain is delimited by high-lying Winsor II and Winsor
IV curves, i.e., requires high amounts of surfactant to form. The same is true for the other
longer chain alkyl esters, PEAC and HEAC. ETAC has fairly high-lying domain frontiers
also, such that MEAC appears to yield the largest Winsor II domain encompassed by the
lowest-lying Winsor II and Winsor IV curves, followed by PRAC. However, a closer look at
Figure 2a reveals that, due to the higher miscibility of MEAC with water, Winsor II phases
are not obtained at high water content (bottom right corner of the phase diagram). This
region is of particular interest for water decontamination because the small amount of ester
oil leads to small amounts of W/O Winsor II microemulsions that extract and concentrate
the contaminants, leaving behind at equilibrium very large amounts of decontaminated
water, as desired. Furthermore, the high volatility of MEAC (b.p. 57 ◦C [66]) makes it an
inconvenient ester for practical purposes. On the other hand, these inconveniences no
longer exist in the case of PRAC (b.p. 102 ◦C [67]), which would thus be a more suitable
ester from a practical standpoint.

3.1.2. Changes in Phase Diagrams with the Homology of the Acyl Part Cy (y = 1–4) of Ethyl
Carboxylates (Cx + C2) Used as Oil Component of W/O/Brij 30 Microemulsion Systems

Figure 3a,b show comparatively the Winsor II and Winsor IV curves, respectively,
for four ternary systems employing different ethyl carboxylate homologs, while Table 2
summarizes the % areas of the domains delimited by these curves in the phase diagrams.
From the data, it can easily be seen that, although the Winsor II domain for the ternary
system with ETAC is the largest, both the Winsor II and Winsor IV curves are uplifted
in comparison with those of ETFO and ETPR; therefore, surfactant demand is higher.
ETBU has both the narrowest Winsor II area and the highest surfactant consumptions for
achieving either Winsor II or IV phases. Similar to its metamer MEAC, ETFO did not allow
the formation of Winsor II phases at high W/O ratios (Figure 3a, bottom right corner), its
volatility is inconveniently high (b.p. 54 ◦C [68]) and the Winsor II domain is the smallest.
Thus, the metamer of PRAC, ETPR (b.p. 99 ◦C [69]), is most convenient for Winsor II
extractions in this homologous series.
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Table 2. Relative areas (% of total area) of domains delimited on the ternary diagrams of systems
incorporating water, Brij 30, and homologous ethyl carboxylate esters.

Ester C2 + Cy (y = 1–4)
Incorporated in

the Microemulsion

% Area of Domain Found
under the Winsor II Curve

% Area of Winsor II
Microemulsion Domain

% Area of Winsor IV
Microemulsion Domain

ETFO (y = 1) 17.73 6.62 47.75
ETAC (y = 2) 17.87 12.52 42.26
ETPR (y = 3) 14.81 10.12 44.63
ETBU (y = 4) 34.65 6.70 25.63

Based on the results above, all further work on establishing and characterizing phase
transitions in these microemulsion systems was focused exclusively on PRAC and ETPR as
oil components.

Ternary microemulsion-forming systems based on water, Brij 30, and ETAC have been
prepared before and are described in the literature [28,30,31,38,39,50]. Mihaly et al. were
the first to publish the phase diagram of this system at 25 ◦C [50]. Our phase diagram
is nearly identical to theirs within experimental errors. Fleancu et al. went further and
studied how the phase diagram changes with changes in temperature and noted that only
at temperatures below 15 ◦C are Winsor I phases observed, while temperatures higher
than 40 ◦C caused an enlargement of Winsor II phase domains [39]. This explains why we
did not observe any Winsor I domains, as our working temperature exceeded the phase
inversion temperature of 15 ◦C.

Similarly, the system with BUAC as an oil component has also been reported several
times [27–29,38,55], although always as an extraction system for either metallic ions or dyes
from contaminated water. There is no complete phase diagram available in the literature for
this ternary system. Cadar et al. reported a pseudo-ternary phase diagram where acetone
was added to water as a fourth component and the aqueous phase was in fact a solution of
[Co(SCN)4]2− ions [28,38]. While their Winsor II curve is very close to ours, the Winsor IV
curve is much lower, likely because acetone increases the miscibility of the phases.

ETBU has also been reported as the oil component of some microemulsions for various
drug delivery systems, albeit with other nonionic surfactants, such as Brij 97 and Tween
80 [70] or polyoxyethylene-10-dodecyl ether [71]. However, phase diagrams have not been
reported. All other ester-based ternary systems presented herein have not been described
in the literature to the best of our knowledge.

3.2. Effect of Co-Surfactant, Salinity, and pH on the Phase Transitions of the Microemulsion Systems
3.2.1. Effect of Addition of Different Amounts of Isopropanol as a Co-Surfactant

The changes in phase boundaries caused by the addition of different proportions of an
alcohol co-surfactant/co-solvent, i.e., isopropanol (C3-ol), to the initial aqueous component
of the mixture were investigated. Due to its amphiphilic nature, the co-surfactant can get
incorporated into the surfactant layer at the surface of micelles, with its hydrophobic part
aligned to the hydrocarbon chain of the surfactant and its polar functional group with the
polar part of the surfactant and in the vicinity of water molecules [51]. The presence of the
co-surfactant at this interface typically causes a change in the interfacial energy and may
affect phase transitions, phase boundary curvatures, and locations, as a consequence of
modification of volumetric ratios between water/surfactant or oil/surfactant [50].

Figures 4 and 5 depict the shifts of Winsor II and Winsor IV curves of the pseudo-
ternary systems with PRAC and ETPR, respectively, as oil components when C3-ol co-
solvent was added to water at initial volumetric ratios H2O/C3-ol, R, equal to 2, 3, and 4,
as shown in the figure legends.
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Figure 5. Winsor II and IV curves of pseudo-ternary systems made of water (H2O) with and without
isopropanol (C3-ol), Brij 30, and ETPR (R is the volumetric ratio H2O: C3-ol; t = 25 ◦C).

Tables 3 and 4 include the relative areas (% of total area) of the various domains
delimited by the phase boundaries in Figures 4 and 5 for the pseudo-ternary systems with
PRAC and ETPR, respectively.
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Table 3. Relative areas (% of total area) of domains delimited on the pseudo-ternary diagrams of
systems incorporating water/C3-ol in a volumetric ratio R, Brij 30, and PRAC.

H2O/C3-ol Volumetric Ratio R % Area of Domain Found under
the Winsor II Curve

% Area of Winsor II
Microemulsion Domain

% Area of Winsor IV
Microemulsion Domain

R = 2 22.79 4.93 33.48
R = 3 16.13 14.32 32.87
R = 4 19.98 22.16 38.67

Without C3-ol 15.44 10.84 47.10

Table 4. Relative areas (% of total area) of domains delimited on the pseudo-ternary diagrams of
systems incorporating water/C3-ol in a volumetric ratio R, Brij 30, and ETPR.

H2O/C3-ol Volumetric Ratio R % Area of Domain Found under
the Winsor II Curve

% Area of Winsor II
Microemulsion Domain

% Area of Winsor IV
Microemulsion Domain

R = 2 17.02 20.28 36.97
R = 3 27.68 22.63 33.88
R = 4 12.88 39.48 29.45

Without C3-ol 14.81 10.12 44.63

From the data in Table 3 regarding the systems with PRAC as ester oil, it is immediately
apparent that the addition of C3-ol favored phase separation towards the formation of
Winsor II microemulsions, given that the Winsor II domains are larger for ratios R equal to
3 and 4. Especially for R = 4, there is a noticeable extension towards the left of the diagram
of the Winsor II curve (Figure 4), meaning that this level of added co-surfactant makes it
possible to attain Winsor II systems with high ester content, but this is not necessarily a
desirable feature for water decontamination because a larger amount of the water would get
incorporated into the W/O microemulsion along with the contaminants and less purified
water would result. In contrast, for R = 2, the Winsor II domain decreased in comparison
with the ternary system lacking a co-surfactant, with too much alcohol making it difficult
for the aqueous and oil phases to separate. This type of differential phase behavior, where,
up to a certain amount of added co-surfactant, the Winsor II domain widens and then it
narrows down past that amount, has been reported before for a related system, water and
isopropanol/Brij 30/pine oil [45].

In the case of systems with ETPR (Table 4), the addition of C3-ol extended Winsor II
domains in all cases, the area is greater the lesser the proportion of added C3-ol (the higher
the R ratio). Nonetheless, for both PRAC and ETPR-based systems, the Winsor II not only
extended farther left on the phase diagrams but also shifted higher up (Figures 4 and 5 and
the second column of Tables 3 and 4). This effect corresponds to a higher consumption of Brij
30 to reach Winsor II phases, which is undesirable in practice. In fact, when inspecting the
last columns of Tables 3 and 4, it becomes clear that the wider Winsor II domains are mostly
the result of narrower Winsor IV domains (uplifting of Winsor IV curves) combined with
the occasional extension to the left of Winsor II curves, none of which is consistent with the
generation of maximum purified water with minimum surfactant and ester consumption.

The utilization of isopropanol as a co-surfactant does not offer any benefits for com-
positions characterized by high water content and minimal ester oil presence (located in
the lower right corners of the phase diagrams depicted in Figures 4 and 5), which are
particularly relevant in the context of contaminated water remediation.

3.2.2. Effect of Salinity (NaCl Content) of the Water Component

Although laboratory research studies are typically carried out with doubly distilled
or other types of high-purity water, environmental aqueous samples are almost always
contaminated not just by a certain class of particular contaminants, but also by many
other components that make up a very complex matrix. Inorganic salts are ubiquitous,
so, in order to model how their presence might cause changes in phase transitions, we
investigated the effect of water salinity by incorporating NaCl of different concentrations
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into the starting aqueous phase. For this purpose, only four compositions from the water-
rich end of the phase diagrams of both PRAC and ETPR-based systems were chosen,
namely those corresponding to volumetric water/ester ratios R equal to 19, 9, 5.7, and 3.
The salinity of the water was varied also: 0.1, 0.5, 1, and 2 M NaCl. The minimal amounts
of Brij 30 surfactant (reported as % weight of total pseudo-ternary system) that needed
to be titrated into the NaCl solution and ester mixtures in order to obtain Winsor II and
Winsor IV phases, respectively, are plotted in Figure 6a,b for PRAC- and Figure 7a,b for
ETPR-based systems.
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Figure 6. (a) Minimum weight % of Brij 30 needed to obtain Winsor II microemulsion for
H2O + NaCl/Brij 30/PRAC systems as a function of NaCl concentration in water. R is the vol-
umetric ratio H2O + NaCl/PRAC. t = 25 ◦C. (b) Minimum weight % of Brij 30 needed to obtain
Winsor IV microemulsion for H2O + NaCl/Brij 30/PRAC systems as a function of NaCl concentration
in water. R is the volumetric ratio H2O + NaCl/PRAC. t = 25 ◦C.
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Figure 7. (a) Minimum weight % of Brij 30 needed to obtain Winsor II microemulsion for
H2O + NaCl/Brij 30/ETPR systems as a function of NaCl concentration in water. R is the vol-
umetric ratio H2O + NaCl/ETPR. t = 25 ◦C. (b) Minimum weight % of Brij 30 needed to obtain Winsor
IV microemulsion for H2O + NaCl/Brij 30/ETPR systems as a function of NaCl concentration in
water. R is the volumetric ratio H2O + NaCl/ETPR. t = 25 ◦C.

Overall, the minimum consumption of Brij 30 to attain Winsor II and especially Winsor
IV microemulsions increases with an increase in water salinity (Figures 6 and 7). This
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higher demand for surfactant for the formation of microemulsion phases in electrolyte
media has been reported before and explained as a consequence of the decrease of the
effective volume of polar heads of surfactant in the presence of inorganic ions and thus
of the number of hydrogen bonds between surfactant and water, which would otherwise
stabilize the microemulsion [72,73]. The increased demand of Brij 30 with salinity is less
pronounced and more irregular in the case of Winsor II systems (Figure 6a or Figure 7a)
than with Winsor IV systems where it is more consistent and proportional with NaCl
concentration (Figure 6b or Figure 7b). Only in the case of PRAC and when the salt content
was highest (2 M), there was a substantial increase in Brij 30 consumption (Figure 6a). For NaCl
concentrations up to 1 M, there is little, if any, increase in the Brij 30 needed to produce Winsor
II microemulsion in comparison with systems lacking salt (Figure 6a or Figure 7a).

3.2.3. Effect of the pH of Water

The pH of the aqueous component was varied using buffer systems in order to
investigate how the formation of Winsor II and IV microemulsions may be influenced. This
influence presents interest also because wastewater and natural effluents are likely to have
a variety of pH values as a result of the various contaminants they may contain. Once
again, only four compositions closer to the water-rich ends of the PRAC and ERPR-system
diagrams were selected, specifically those corresponding to volumetric water/ester ratios
R equal to 9, 5.7, 3, and 1.9. The pH of water varied from a low of 3 to a high of 10. Our
in-house doubly distilled water had a pH of 6. The desired aqueous phase pH values
were attained using phosphate buffers, by slowly mixing aqueous solutions of NaOH and
H3PO4 until reaching the desired pH as indicated by a pH meter. The minimal amounts
of Brij 30 surfactant (reported as % weight of total pseudo-ternary system) that needed to
be added to the aqueous buffer and ester mixtures as a function of pH in order to obtain
Winsor II and Winsor IV phases, respectively, are plotted in Figure 8a,b for PRAC-based
systems and in Figure 9a,b for ETPR-based systems.
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Figure 8. (a) Minimum weight % of Brij 30 needed to obtain Winsor II microemulsion for aque-
ous phosphate buffer/Brij 30/PRAC systems as a function of buffer pH. R is the volumetric ratio
buffer/PRAC. t = 25 ◦C. (b) Minimum weight % of Brij 30 needed to obtain Winsor II microemulsion
for aqueous phosphate buffer/Brij 30/PRAC systems as a function of buffer pH. R is the volumetric
ratio buffer/PRAC. t = 25 ◦C.
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Figure 9. (a) Minimum weight % of Brij 30 needed to obtain Winsor II microemulsion for aque-
ous phosphate buffer/Brij 30/ETPR systems as a function of buffer pH. R is the volumetric ratio
buffer/ETPR. t = 25 ◦C. (b) Minimum weight % of Brij 30 needed to obtain Winsor IV microemulsion
for aqueous phosphate buffer/Brij 30/ETPR systems as a function of buffer pH. R is the volumetric
ratio buffer/ETPR. t = 25 ◦C.

What stands out from Figure 8a,b and Figure 9a,b is a substantially higher demand
for surfactant for both systems (PRAC and ETPR) in order to obtain Winsor II as well as
Winsor IV microemulsions when the pH is 3 as compared to the usual pH 6 of water. Thus,
highly acidic aqueous phases make it more difficult to obtain ester-based microemulsions.
For the PRAC system, only for R = 5.7, there was a rather important increase in Brij 30
consumption to achieve a Winsor II microemulsion at pH values of 8 and 9 vs. the usual pH
of 6. On the other hand, there appears to be no substantial change in surfactant demand for
obtaining Winsor IV microemulsions for all pHs from 6 to 10, irrespective of aqueous/oil
phase initial ratio R. Similarly, for ETPR, neutral and basic pH values produce no change in
Brij 30 demand for attaining a Winsor IV microemulsion as compared to the slightly acidic
pH 6, while for attaining a Winsor II microemulsion there is only a somewhat sizeable
increase for a pH of 9 in the case of R = 9 and R = 5.7. In general, basic pH values of the
water phase do not influence microemulsion phase formation.

3.3. Characterization of a Selection of Microemulsions
3.3.1. Densities of Microemulsions

Density is an important physical property of microemulsions but was also determined
here as prerequisite input data for the measurement of viscosities using the automated
AMVn viscometer, viscosities that can provide further insight into some phase transitions
possibly occurring [74,75]. Densities of the single components were measured first at 25 ◦C
for reference and found to be as follows (in g/cm3): 0.997 for water, 0.95 for Brij 30, 0.887
for both PRAC and ETPR, and 0.786 for C3-ol.

Figure 10 and Figure S1 show the variation of measured densities of Winsor IV mi-
croemulsions with the weight % of the water component of the microemulsions, for the
pseudo-ternary systems incorporating PRAC and those incorporating ETPR, respectively.
Both systems without co-surfactant C3-ol and those with C3-ol were measured, R values
shown being once again the volumetric ratios H2O/C3-ol, ranging from 2 to 3 to 4.
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Figure 10. Variation of densities as a function of the weight % of H2O incorporated for Winsor IV
microemulsion systems H2O/Brij 30/PRAC without and with different proportions of added C3-ol
co-surfactant. R is the volumetric ratio H2O/C3-ol. t = 25 ◦C.

Figure 10 and Figure S1 show consistently a linear increase of densities with increasing
water content, irrespective of the ester used as an oil component or of the proportion of C3-
ol added. This suggests, on the one hand, that the concentration of the densest component,
i.e., water, is a determinant for the overall density and, on the other hand, that a simple
density measurement could be used to interpolate the water % of the microemulsions
based on the linear equations shown above. As expected, the more of the C3-ol was
added as a co-solvent to replace part of the water (lower R), the smaller the densities
obtained of the respective microemulsions as a result of the much smaller density of C3-ol.
Working with benzene, water, Tween 20, and heptanol microemulsions, Mehta and Bala
also observed that, irrespective of the relative composition, densities always remained
>1 g/cm3, dominated by their only component with a density exceeding 1 g/cm3, i.e., the
Tween 20 surfactant [75].

Densities of the microemulsions were also estimated by using the following mixing rule:

ρcalc = ∑
i

% comp. i
100

· ρi (3)

in which: ρcalc—the calculated density of microemulsion;
% comp. i—the mass percent of component i (water, ester, Brij 30, and C3-ol);
ρi—the density of component i.
The results of the calculations are shown in Supplementary Tables S1 and S2 for PRAC

and ETPR, respectively. From the data presented in these tables, it can be concluded that
such estimated densities are fairly close to the real, experimental values, showing deviations
well below 5%.

3.3.2. Refractive Indices of Microemulsions

For the same selection of microemulsions, refractive indices were measured at 25 ◦C,
and the values obtained are plotted in Figure 11 and Figure S2 for PRAC and ETPR systems,
respectively, with and without a co-surfactant. Reference refractive indices for the single
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components were also recorded at 25 ◦C: 1.3352 for water, 1.3776 for C3-ol, 1.3845 for ETPR,
1.3848 for PRAC, and 1.4525 for Brij 30, respectively.
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Figure 11. Variation of refractive indices as a function of the weight % of H2O incorporated for
Winsor IV microemulsion systems H2O/Brij 30/PRAC without and with different proportions of
added C3-ol co-surfactant. R is the volumetric ratio H2O/C3-ol. t = 25 ◦C.

For all pseudo-ternary systems incorporating C3-ol co-surfactant, refractive indices
increased linearly with the weight % of the Brij 30 surfactant, while for the ternary systems
lacking C3-ol, there was also an increasing trend, albeit not linear. The data suggest that
the refractive indices of microemulsions are determined primarily by the component with
the highest refractive index, i.e., Brij 30, and thus the experimentally determined refractive
index could serve as a direct indicator of the concentration of this component on the basis
of the curves above (Figures 11 and S2).

The range of refractive indices obtained here, 1.36–1.43, is quite typical of microemul-
sions incorporating water, esters, nonionic surfactants, and alcohol co-surfactants. Working
with isopropyl palmitate as the oil, water, and a variety of Tween surfactants together with
1-butanol as the co-surfactant, Basheer et al. obtained refractive indices ranging from 1.39
to 1.44 [51]. Hermansky and Mackay showed that, even when the oil was not an ester
but an alkane, hexadecane, in combination with Brij 96 and 1-butanol, refractive indices
remained similar, between 1.34 and 1.44 [76].

3.3.3. Electrical Conductivities of Microemulsions

Electrical conductivity measurements have been used in past studies as experimental
evidence for delineating the specific type of Winsor IV microemulsions: water-in-oil (W/O),
oil-in-water (O/W), or bicontinuous. This is because it has been shown that, with an
increase in water content, the conductivity of W/O microemulsions incorporating nonionic
surfactants increases, while in the case of bicontinuous emulsions, it varies very little, and
for O/W systems, it decreases [72,77]. Moreover, a sudden and pronounced increase of
conductivity in the domain with low water content corresponding to W/O microemulsions
was shown to be indicative of a water percolation phase transition [74,75]. Up to the
water percentage corresponding to this sudden increase, inverse micelles are scattered
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in the oil matrix, but at the water percolation point, they approach each other enough to
form clusters, whose number increases from this point onward, and implicitly, there is an
increase in electric conductivity. A further increase of water content leads to the appearance
of bicontinuous domains (intertwined domains of water and oil) and then, when there
is sufficient water, phase inversion occurs and the microemulsion becomes O/W, with
oil-based normal micelles dispersed into water. Any additional water added past the
phase inversion point leads only to the dilution of these micelles and thus a decrease in
overall conductivity.

The curves that depict the variation of conductivity for the same selection of mi-
croemulsions as a function of their water weight percent are shown in Figure 12 (PRAC)
and Figure S3 (ETPR), overlaid with their first-order derivative curves that reveal better
local maxima corresponding to sudden conductivity changes at percentages of water where
the percolation transition occurs in each system [75]. All figures generally show the expected
behavior, with slight conductivity increases at first in the W/O domain, then a sudden in-
crease up to a maximum, followed usually by a decrease along the O/W domain. The only
exception is the systems with a water/isopropanol R ratio of 4 (Figures 12 and S3) where
only the water percolation transition is observed, but not the decrease following the phase
inversion, which is likely the result of the limited range of water percentages explored,
from 0 up to only 80%. Overall, there is a shift towards lower water percentages of both
percolation transition and phase inversion points as the C3-ol content increases (lower R
values), which suggests that the alcohol co-surfactant facilitates the joining and then the
merger of water molecules.
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Figure 12. Electrical conductivity variation curves (full) and their first order derivatives (dashed)
as a function of the weight % of H2O incorporated for Winsor IV microemulsion systems H2O/Brij
30/PRAC without and with different proportions of added C3-ol co-surfactant. R is the volumetric
ratio H2O/C3-ol, color coded as follows: R 2 (orange), R 3 (grey), R 4 (yellow), Without C3-ol (blue).
t = 25 ◦C.

Given the nonionic nature of the surfactant, it comes as no surprise that conductivity
values remained very low in all cases, from about 5 to 160 µS/cm. The conductivity
of microemulsions incorporating only nonionic species is thought to be the outcome of
statistical equilibrium fluctuations of micelle charges around a zero mean, where pairs of
initially neutral, neighboring micelles approach each other and undergo disproportionation
leading to oppositely charged micelles: 2 M → M+ + M− [78,79]. For microemulsions
composed of nonionic EL-35 (poloxyl 35), water, vitamin E and ethyl butyrate as oil, and
ethanol, Feng et al. measured conductivities from about 10 to 160 µS/cm, very similar to
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ours [72]. Working with microemulsions made of Tween 20, water, benzene, and various
alcohol co-surfactants, Mehta and Bala also obtained similar conductivities, from ~1 to
150 µS/cm [75]. Xu et al. measured conductivities in the range of 5–200 µS/cm for
microemulsions made of water, Tween 20, and algal oil and observed the same increasing
trend in the W/O area followed by a decrease in the O/W domain [77].

3.3.4. Viscosities of Microemulsions

The viscosity of microemulsions is not only a very important physical and transport
property, reflecting their resistance to flow, but also another parameter that can be used in
practice to distinguish between W/O and O/W microemulsions since the increase of water
content leads to an increase in viscosity for the former and a decrease for the latter [72].
Furthermore, should a bimodal profile of viscosity as a function of increasing water content
be obtained, i.e., two local maxima and one local minimum in between, this is typically
assigned to a phase inversion phenomenon [74,75].

The dynamic viscosities of the same selection of Winsor IV microemulsions, based on
either PRAC or ETPR as an ester component, Brij 30 as a surfactant, and either water or
a mixture of water and C3-ol with a volumetric ratio R, were measured at 25 ◦C with an
automated microviscometer AMVn (Anton Paar), which relies on the rolling-ball method of
measurement. The curves showing the change of viscosities with increasing water content
are shown in Figure 13 and Figure S4 for PRAC and ETPR, respectively, overlaid with the
first-order derivative conductivity curves from Section 3.3.3. In almost all cases, viscosity
profiles are indeed bimodal. Apparent exceptions are the two microemulsions lacking
a co-surfactant (Figures 13 and S4), where the second maximum is not fully developed
because viscosity measurements were not possible past the 60 or 70% H2O limits shown
as a consequence of gel formation. A closer look reveals that, for all samples, their two
maxima in viscosity are perfectly aligned with or at least very close to the local maxima of
the matching conductivity derivative curves, hence they correspond to sudden conductivity
changes (Figures 13 and S4). Thus, the first viscosity maximum marks the water percolation
transition within the W/O microemulsion existence domain. It is due to the formation of an
aqueous microdomain within the ester dispersion medium, resulting from the build-up of
inverse micelle clusters that precedes the bicontinuous structure [75]. The second viscosity
maximum appears within the bicontinuous domain, just before phase inversion happens,
which is why viscosity drops sharply beyond this second maximum, a phenomenon that is
a characteristic of O/W microemulsions and is the result of the dilution of normal micelles
dispersed in the continuous water environment.

As mentioned before, one of the acclaimed advantages of microemulsions is their
low viscosity. For the systems studied herein, this ranged from a low of 2 to a high of
30 mPa·s. Similar values were reported for other related systems. For example, Mehta and
Bala reported dynamic viscosities from about 2 to 50 mPa·s for their systems with Tween
20, benzene, water, and several alcohol co-surfactants [75]. Working with a more complex
composition of Miglyol 812N oil (mostly mid-chain glycerides), water, Solutol HS 15, and
Span 80 mixed nonionic surfactants and ethanol co-surfactant, Ren et al. also observed
Newtonian behavior for their microemulsions, but with somewhat higher viscosities from
57 to 92 mPa·s at 20 ◦C, but still below 100 mPa·s [80].

3.3.5. Micellar Particle Sizes and Polydispersity Indices (PDIs)

Hydrodynamic diameters and PDIs were determined for the micelles that make up
a selection of Winsor IV microemulsions with a variety of initial water-to-oil volumetric
ratios (VWater/VEster), but with water always in larger amounts, as well as without and with
added C3-ol in the three relative ratios to water mentioned above. The results are shown in
Table 5 for PRAC-based emulsions and Table S3 for the ETPR-based ones.
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Figure 13. Dynamic viscosity variation curves (full) and the first order derivatives of conductivity
curves (dashed) as a function of the weight % of H2O incorporated for Winsor IV microemulsion
systems H2O/Brij 30/PRAC without and with different proportions of added C3-ol co-surfactant.
R is the volumetric ratio H2O/C3-ol, color coded as follows: R 2 (orange), R 3 (grey), R 4 (yellow),
Without C3-ol (blue). t = 25 ◦C.

Table 5. Particle diameters and polydispersity indices (PDIs) for micelles of Winsor IV microemulsions
prepared with PRAC as ester oil, water, Brij 30, without and with isopropanol (C3-ol) added as a
co-surfactant. R represents the volumetric ratio between water and C3-ol. The initial volumetric
ratio between water and ester (VWater/VEster) is also given in the first column. Results are reported as
average ± standard deviation (n = 3).

VWater
VEster

Particle Diameter, nm PDI Particle Diameter, nm PDI Particle Diameter, nm PDI Particle Diameter, nm PDI

Without C3-ol R = 2 R = 3 R = 4

19.0 gel 74.66 ± 1.52 0.20± 0.05 54.30 ± 0.37 0.14± 0.04 44.45 ± 1.66 0.13± 0.03
5.7 85.17 ± 8.70 0.57 ± 0.05 32.89 ± 0.18 0.11± 0.01 26.25 ± 0.37 0.16± 0.02 37.82 ± 1.03 0.20± 0.04
3.0 63.31 ± 0.88 0.17 ± 0.08 22.03 ± 0.08 0.23± 0.03 20.86 ± 0.13 0.21± 0.01 34.05 ± 1.24 0.22± 0.02
1.9 47.40 ± 3.67 0.19 ± 0.01 21.12 ± 1.32 0.30± 0.04 33.65 ± 1.88 0.21± 0.04 24.83 ± 0.86 0.24± 0.03

There is some size variability noticeable in the two tables. Based on the conductivity
and viscosity data presented in the sections above, there is an indication that phase inversion
tends to occur around a ratio VWater/VEster of around 5.7 for the majority of the systems.
The only exceptions are the two pseudo-ternary systems with R = 4 where phase inversion
happens at a ratio VWater/VEster of 19 or above as they have not shown conductivity maxima
within the limited range of compositions plotted and the microemulsion with PRAC devoid
of C3-ol where the phase inversion takes place around a VWater/VEster of 3. In this respect,
it is noticeable in the data that larger variations in size happen when there is a change
in the nature of micelle particles, from inverse micelles to normal micelles, i.e., when the
microemulsion inverts from W/O to O/W. In the cases where the system also contains
the co-surfactant C3-ol, the normal micelles have larger diameters (>50 nm) while inverse
micelles are smaller (<50 nm). For W/O microemulsions, as water content increased,
surfactant content decreased as there was lesser demand for it for the formation of Winsor
IV microemulsions (see Section 3.1). Consequently, with few exceptions, inverse micelles
grow upwards in Table 5 and Table S3 as there is less and less surfactant available, which
needs to enclose more and more water. Inverse micelles are known to be a lot more
prone to the phenomenon of coalescence than normal micelles [81]. After the phase
inversion happens, the resulting normal micelles could be either larger or smaller than the
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maximum size reached by corresponding inverse micelles just before their inversion. The
systems with a 19-fold excess of water in comparison to oil formed gels rather than liquid
emulsions at room temperature; therefore, their particle sizes could not be measured. PDI
values remained below 0.7 in all instances, which is indicative of a low spread of particle
dimensions [82].

3.4. Application of Ester-Based Microemulsions for the Extraction of Tricyclic Antidepressant
Drugs from Aqueous Media
3.4.1. Comparison of Extraction Efficiencies into Winsor II Microemulsions Using Seven
Different Homologous Ester Oils

Winsor II microemulsions using seven of the nine ester homologs (excluded were
the highly volatile and thus inconvenient MEAC and ETFO) were investigated as poten-
tial extraction solvents for tricyclic antidepressants (TCA) from aqueous solutions, i.e.,
laboratory-simulated wastewater contaminated with such drug residues. Antidepressants
were chosen as model compounds for water contaminants as they represent one phar-
maceutical class that has witnessed a boom lately in prescription and consumption rates
worldwide [83–85] and, therefore, their residues found in wastewater are of increasing
environmental concern, especially considering their reported negative effects on aquatic
life [86].

All extractions were performed starting with 9 mL of TCA aqueous solution to which
1 mL of ester was added (to ensure a sufficiently large excess for recovery of purified water
after phase separation at equilibrium) and then the amount of Brij 30 necessary to form a
Winsor II microemulsion (according to the phase diagrams determined in Section 3.1) was
added drop-wise under gentle stirring, i.e., the extracting microemulsion was generated
in situ. The four TCAs investigated in this work are hydrochlorides of organic tertiary
amines (Figure 14); therefore, they tend to be more hydrophilic than hydrophobic and have
a greater preference for water than ester oil.
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Figure 14. Chemical structures of the four tricyclic antidepressants used as model pharmaceutical
contaminants of water in this work.

A diagram depicting the principle of extraction of TCAs from the aqueous medium into
the inverse micelles of the Winsor II microemulsion is shown in Figure 15. TCA molecules
dissolved in water diffuse towards the interface with the organic (microemulsion) layer
where they are incorporated into the aqueous micelles coated with a surfactant shell that
disperses them into the ester oil medium until equilibrium is reached.

Table 6 shows the extraction yields (η) from water into the microemulsion (µE) and
Nernst distribution coefficients (KD) between microemulsion and water achieved for the
four TCAs (each with an initial concentration of 20 mg/L) using the seven ester-based
microemulsions. An additional relevant parameter for appreciating the extraction per-
formance, which was also included in Table 6, is the water per microemulsion (W/µE)
volumetric ratio after equilibration. This is important because it reflects the amount of
purified water recovered from the original 9 mL; therefore, a higher ratio is desirable.
Although the starting volumetric ratio between water and ester was 9 in all cases, the
formation of Winsor II phases in these systems demands very different amounts of Brij 30
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as shown in Section 3.1, which implies very different degrees of water incorporation into
the Winsor II microemulsions and thus variable recovery of non-emulsified water.
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Figure 15. Schematic of the principle of extraction of TCA hydrophilic contaminants from the aqueous
solution into the microemulsion (µE) upper phase. Filled small circles represent the TCA molecules,
the tailed dots are surfactant molecules, and the larger circles with attached tailed dots around their
circumference represent the inverse water-containing micelles (adapted from [28]).

Table 6. Water over microemulsion volumetric ratios (W/µE), extraction yields (η), and distribution
coefficients (KD) were obtained when extracting 20 mg/L AMI, DOX, IMI, and CLO from water
into microemulsions based on seven homologous esters as oil component and Brij 30 as a surfactant
(t = 25 ◦C).

Ester W/µE Ratio
AMI 20 mg/L DOX 20 mg/L IMI 20 mg/L CLO 20 mg/L

η (%) KD η (%) KD η (%) KD η (%) KD

ETAC 4.8 67.2 9.9 35.5 3.3 77.1 14.0 82.5 28.3
PRAC 2.7 95.5 63.8 94.4 39.3 97.4 60.9 98.4 87.8
BUAC 2.7 90.6 25.7 71.1 6.6 85.0 15.1 97.2 92.3
PEAC 1.9 95.6 41.2 65.2 4.3 91.0 19.0 95.2 45.8
HEAC 0.7 99.0 67.1 97.7 30.2 98.5 43.6 99.5 166.9
ETPR 3.4 84.0 18.2 62.7 5.7 79.7 13.4 91.2 35.2
ETBU 0.8 98.7 59.7 96.3 23.8 98.4 40.6 99.3 132.5

Although the W/µE ratio is highest in the case of ETAC, extraction yields and Nernst
coefficients are the worst for this choice of ester, irrespective of the TCA (Table 6). The
longer chain esters, namely PEAC, HEAC, and ETBU, lead to higher extraction yields of
TCAs, but produce too much microemulsion and thus leave behind too little purified water.
In fact, in these cases, the high extraction yields, representing the % of the initial mass of
TCA that passed into the microemulsion phase, are due in great part to the fact that there is
a much higher volume of microemulsion taking up the TCAs than in the case of other esters.
In this respect, KD would be a better measure of extraction efficiency than η, as it quantifies
the amount of TCA per unit volume of µE divided by the amount of TCA per unit volume of
W, so equal volumes of the phases in equilibrium are considered in its calculation. Among
the remaining esters, ETPR leads to a higher volume of purified water, but at the cost of
consistently lower extraction yields and KD values for all TCAs. This leaves PRAC and
BUAC, which both produce almost three times more purified water than microemulsion
at equilibrium, but with better yields and KD coefficients in the case of PRAC. For these
reasons, combined with its low volatility and the observed lower consumption of Brij 30
when preparing its Winsor II systems (see Section 3.1.1), PRAC was the ester component
of choice for the preparation of Winsor II microemulsions in all extraction experiments
to follow.
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3.4.2. Determination of Extraction Yields and Distribution Coefficients into PRAC-Based
Microemulsions for Different Initial Loadings of Water with TCAs at pH 6

The variability of the extraction efficiency of the PRAC emulsion with an initial
H2O/PRAC volumetric ratio equal to 9 from several aqueous solutions with different
concentrations of TCAs was also tested (Table 7). The pH of all aqueous TCA solutions
was measured and found to be around 6, while the range of initial TCA concentrations
was from 5 to 100 mg/L, which are rather large concentrations compared to the typical
concentrations of pharmaceutical emerging contaminants found in water streams, in the
order of ppb (µg/L) [87]. While there were slight drops in extraction yields with increasing
initial concentrations for all TCAs, even at the largest initial loading level, extraction yields
remained around 90% and there was no indication of saturation of microemulsions with
any of the TCA contaminants within our working range (Table 7). While it cannot be ruled
out that at some higher contaminant loading level of the water, there may occur a saturation
point past which the microemulsion micelles can no longer incorporate any more TCAs,
this saturation level is likely very high compared to the realistic concentrations of such
contaminants in wastewater.

Table 7. Extraction yields of TCAs into H2O/Brij 30/PRAC microemulsion as a function of initial
concentrations of TCAs in water (t = 25 ◦C; pH = 6).

TCA Initial Concentration in Water, mg/L Extraction Yield
η, %

AMI

5 99.3
10 98.4
20 95.5
30 98.0
40 93.4
60 93.5
80 92.4

100 91.5

DOX

5 97.9
10 96.5
20 94.4
30 94.9
40 90.5
60 91.8
80 90.1

100 89.7

IMI

5 98.7
10 98.8
20 97.4
30 98.3
40 93.7
60 92.3
80 90.9

100 88.0

CLO

5 98.6
10 98.2
20 98.4
30 97.1
40 97.1
60 97.4
80 96.5

100 96.6

The distribution coefficient KD of a given TCA represents the ratio between the con-
centration of that TCA in the microemulsion (CTCA,µE) and its concentration in the aqueous
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phase (CTCA,aq) after equilibrium is reached between the two phases. Rather than calculat-
ing this ratio for every data point, a more accurate way of determining KD over the whole
data set corresponding to each TCA is to plot the log

(
CTCA,µE

)
against the log

(
CTCA,µE

)
and obtain the log(KD) value as the y-intercept of the resulting linear plot [50]. Figure 16
shows the linear plots corresponding to the four TCAs and Table 8 is a centralization of KD
values obtained for each of these.
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Table 8. Distribution coefficients of TCAs between the H2O/Brij 30/PRAC microemulsion and water
(t = 25 ◦C; pH = 6).

TCA logKD KD

AMI 1.812 64.8
DOX 1.598 39.6
IMI 1.794 62.2
CLO 1.943 87.6

The data in Table 8 show that all distribution coefficients are in order of a few tens,
clearly favoring the partitioning of TCAs into the microemulsion as opposed to water. A
somewhat higher preference for the microemulsion for CLO and a somewhat lower one
for DOX are also apparent, while AMI and IMI seem to be equally well extracted. These
trends are also noticeable upon a closer inspection of the data in Table 7 as well. Unlike the
situation in Section 3.3.1, this time extraction yields are an accurate reflection of extraction
performance because the same type of PRAC-based microemulsion is used as an extraction
medium for all TCAs and all concentrations, with a consistent W/µE ratio of 2.7.

As ionic compounds, the limiting solubilities of TCA hydrochlorides in water are
known to be very high, around 500 mg/mL at ambient temperature [88,89]. Thus, it is
somewhat surprising that they show such higher preference (ca. 40- to 88-fold) for the
microemulsion phase to the detriment of the water phase. It is the surfactant that likely
plays a key role in this sense. The Winsor II microemulsion is of the W/O type, meaning
that the surfactant molecules form inverse micelles, with their hydrophobic tails pointing
outwards and the more polar polyoxyethylene groups inwards of the micelles, where the
TCA hydrochloride molecules are sequestered within an aqueous droplet. Thus, in addition
to interactions with water molecules that exist in any aqueous TCA solution, e.g., ion-dipole
and hydrogen bonds, other stabilizing intermolecular forces come into play that involve
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the surfactant coating of the micelle. The oxygen atoms of polyoxyethylene groups can act
as additional hydrogen bond acceptors for the acidic protons of TCA hydrochlorides, thus
favoring their encapsulation into the micelles of the microemulsion phase as opposed to
their spread into the water continuum of the aqueous phase.

3.4.3. Determination of Extraction Yields into PRAC-Based Microemulsions from Aqueous
Solutions of TCAs at pH 9 and at High Ionic Strength

Because TCAs are tertiary amines, with pKa values around 9 [90], they are involved in
a proton exchange equilibrium in aqueous media:

Nanomaterials 2023, 13, x FOR PEER REVIEW 26 of 32 
 

 

somewhat higher preference for the microemulsion for CLO and a somewhat lower one 

for DOX are also apparent, while AMI and IMI seem to be equally well extracted. These 

trends are also noticeable upon a closer inspection of the data in Table 7 as well. Unlike 

the situation in Section 3.3.1, this time extraction yields are an accurate reflection of ex-

traction performance because the same type of PRAC-based microemulsion is used as an 

extraction medium for all TCAs and all concentrations, with a consistent W/µE ratio of 

2.7. 

As ionic compounds, the limiting solubilities of TCA hydrochlorides in water are 

known to be very high, around 500 mg/mL at ambient temperature [88,89]. Thus, it is 

somewhat surprising that they show such higher preference (ca. 40- to 88-fold) for the 

microemulsion phase to the detriment of the water phase. It is the surfactant that likely 

plays a key role in this sense. The Winsor II microemulsion is of the W/O type, meaning 

that the surfactant molecules form inverse micelles, with their hydrophobic tails pointing 

outwards and the more polar polyoxyethylene groups inwards of the micelles, where the 

TCA hydrochloride molecules are sequestered within an aqueous droplet. Thus, in addi-

tion to interactions with water molecules that exist in any aqueous TCA solution, e.g., ion-

dipole and hydrogen bonds, other stabilizing intermolecular forces come into play that 

involve the surfactant coating of the micelle. The oxygen atoms of polyoxyethylene groups 

can act as additional hydrogen bond acceptors for the acidic protons of TCA hydrochlo-

rides, thus favoring their encapsulation into the micelles of the microemulsion phase as 

opposed to their spread into the water continuum of the aqueous phase. 

3.4.3. Determination of Extraction Yields into PRAC-Based Microemulsions from Aque-

ous Solutions of TCAs at pH 9 and at High Ionic Strength 

Because TCAs are tertiary amines, with pKa values around 9 [90], they are involved 

in a proton exchange equilibrium in aqueous media: 

R
N

CH3

CH3

+ H
+ R

N
+ CH3

CH3
H

  predomiant at pH>10           predominant at pH<8

pKa~9

 

As a consequence of this equilibrium, pH is expected to have a significant effect on 

the relative proportions of the protonated and non-protonated forms, which have very 

different affinities for water, the former being ionic and a lot more hydrophilic. It follows 

that an increase of the pH above 6 (the typical pH value of all aqueous TCA hydrochloride 

solutions) would cause a shift of the chemical equilibrium in favor of the non-protonated 

form, which is less hydrophilic and, thus, less soluble in water. This is expected to increase 

even further the extraction yield of TCAs from water into the W/O microemulsion. 

Another factor that may increase extraction yields is the increase of the ionic strength 

of the aqueous phase through the addition of kosmotropic salts like NaCl. Such salts are 

known to increase surface tension, enhance the hydrophobic effect, and produce a “salting 

out” of the aqueous phase of otherwise water-soluble compounds during liquid-liquid 

partitioning [91,92]. They also increase the density of the water layer easing the phase 

separation of the microemulsion at the top. 

To test these hypotheses, we prepared 100 mg/L TCA solutions using 0.5 M NaCl and 

phosphate buffer with a pH of 9 as solvents instead of distilled water and repeated the 

extraction experiments with in situ generated PRAC microemulsions. This specific con-

centration of NaCl and particular pH value were chosen because they were shown previ-

ously to not affect Winsor II phase formation much (Sections 3.2.2 and 3.2.3). Table 9 pre-

sents the extraction yields obtained. 

Table 9. Extraction yields of TCAs into an H2O/Brij 30/PRAC microemulsion when the aqueous 

phase has high ionic strength (0.5 M NaCl) or a pH of 9 (phosphate buffer). t = 25 °C. 

As a consequence of this equilibrium, pH is expected to have a significant effect on
the relative proportions of the protonated and non-protonated forms, which have very
different affinities for water, the former being ionic and a lot more hydrophilic. It follows
that an increase of the pH above 6 (the typical pH value of all aqueous TCA hydrochloride
solutions) would cause a shift of the chemical equilibrium in favor of the non-protonated
form, which is less hydrophilic and, thus, less soluble in water. This is expected to increase
even further the extraction yield of TCAs from water into the W/O microemulsion.

Another factor that may increase extraction yields is the increase of the ionic strength
of the aqueous phase through the addition of kosmotropic salts like NaCl. Such salts are
known to increase surface tension, enhance the hydrophobic effect, and produce a “salting
out” of the aqueous phase of otherwise water-soluble compounds during liquid-liquid
partitioning [91,92]. They also increase the density of the water layer easing the phase
separation of the microemulsion at the top.

To test these hypotheses, we prepared 100 mg/L TCA solutions using 0.5 M NaCl
and phosphate buffer with a pH of 9 as solvents instead of distilled water and repeated
the extraction experiments with in situ generated PRAC microemulsions. This specific
concentration of NaCl and particular pH value were chosen because they were shown
previously to not affect Winsor II phase formation much (Sections 3.2.2 and 3.2.3). Table 9
presents the extraction yields obtained.

Table 9. Extraction yields of TCAs into an H2O/Brij 30/PRAC microemulsion when the aqueous
phase has high ionic strength (0.5 M NaCl) or a pH of 9 (phosphate buffer). t = 25 ◦C.

TCA and Concentration η (%)
aq. NaCl 0.5 M

η (%)
aq. pH 9

AMI 100 mg/L 99.06 99.95
DOX 100 mg/L 98.88 99.97
IMI 100 mg/L 99.80 99.96
CLO 100 mg/L 93.61 99.93

As expected, the already large extraction yields reported in Table 7 were enhanced
even further by both the adjustment of pH from acidic to basic and, in general, also by
the addition of salt, the only exception being CLO where the yield was slightly smaller
(Table 9). In particular, the pH increase led to extraction yields of almost 100% in all cases,
which translates into the complete removal of pharmaceutical contaminants from water.
There is a possibility that this excellent outcome is actually the combined result of both the
basic pH and salting out effect by buffer ions, as phosphate anions are also known to be
kosmotropic [93].

These results suggest that both pH and ionic strength adjustments of wastewater con-
taining antidepressant contaminants could be included in wastewater treatment procedures
prior to microemulsion-based extraction to enhance decontamination efficiency.
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4. Conclusions

Winsor II and IV microemulsion systems were fabricated successfully from water and
all nine homologous esters investigated in this work using titration with Brij 30, PRAC,
and ETPR being the esters with the largest microemulsion domains and the smallest
surfactant consumptions. The addition of a co-surfactant, isopropanol, often increased
surfactant consumption for system compositions high in water, so it presented no significant
advantage for the extraction of analytes from aqueous media. The presence of NaCl in the
aqueous phase increased surfactant consumption for obtaining Winsor IV microemulsions,
but had little effect on Winsor II formation when the concentrations of NaCl remained below
1 M. An acidic pH in the aqueous phase increased the Brij 30 consumption needed to reach
Winsor II and IV microemulsions, but basic pHs did not affect this much. Microemulsion
densities of Winsor IV systems appeared to be influenced primarily by their water content,
while refractive indices were influenced by the surfactant content. Conductivity and
viscosity measurements helped delineate W/O from O/W microemulsions. The addition
of isopropanol as a co-surfactant shifted the phase inversion points to lower water contents
in comparison to ternary systems lacking the co-surfactant. Micelle sizes remained below
100 nm both with and without the co-surfactant.

PRAC was also the best choice of ester for fabricating Winsor II microemulsions for
the purpose of extracting tricyclic antidepressant residues from water, leading to the best
extraction yields, highest Nernst distribution coefficient, and a good ratio of recovered
water per microemulsion produced. Increasing the ionic strength of the aqueous phase or
shifting the pH to more basic values were shown to have a beneficial effect on the extraction
of TCA drugs into PRAC-based microemulsions.

With the exception of ETAC and BUAC systems, which have been described before,
all the other Brij 30- and ester-based systems in this paper are reported here for the first
time. This is also the first report about the successful application of in situ-prepared
microemulsions for the extraction of pharmaceutical residues contaminating the aqueous
environment. Aside from the fundamental insights into microemulsion phase behavior
provided by our studies and the particular practical application evidenced in this work,
considering the structural similarity between TCAs and many other drug classes, these
findings recommend ester and nonionic surfactant aqueous microemulsions as extraction
systems for the depollution of water contaminated with a wide range of pharmaceuticals
and personal care products.
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https://www.mdpi.com/article/10.3390/nano13162311/s1. Figure S1: Variation of densities as
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30/ETPR without and with different proportions of added C3-ol co-surfactant; Figure S2: Variation
of refractive indices as a function of the weight % of H2O incorporated for Winsor IV microemulsion
systems H2O/Brij 30/ETPR without and with different proportions of added C3-ol co-surfactant;
Figure S3: Electrical conductivity variation curves and their first order derivatives as a function of the
weight % of H2O incorporated for Winsor IV microemulsion systems H2O/Brij 30/ETPR without
and with different proportions of added C3-ol co-surfactant; Figure S4: Dynamic viscosity variation
curves and the first order derivatives of conductivity curves as a function of the weight % of H2O
incorporated for Winsor IV microemulsion systems H2O/Brij 30/ETPR without and with different
proportions of added C3-ol co-surfactant; Table S1: PRAC-based Winsor IV microemulsion densities
calculated based on a weighted average of the densities of pure components, with mass percentages
taken as weights, experimental densities, and relative % deviations of experimental densities from
the calculated ones; Table S2: ETPR-based Winsor IV microemulsion densities calculated based on
a weighted average of the densities of pure components, with mass percentages taken as weights,
experimental densities, and relative % deviations of experimental densities from the calculated ones;
Table S3: Particle diameters and polydispersity indices (PDIs) for micelles of Winsor IV microemul-
sions prepared with ETPR as ester oil, water, Brij 30, without and with isopropanol (C3-ol) added
as co-surfactant.
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