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Abstract: Bifunctional catalysts consisting of metal-containing nanoparticles (NPs) and zeolite sup-
ports have received considerable attention due to their excellent catalytic properties in numerous
reactions, including direct (biomass is a substrate) and indirect (platform chemical is a substrate)
biomass processing. In this short review, we discuss major approaches to the preparation of NPs in
zeolites, concentrating on methods that allow for the best interplay (synergy) between metal and
acid sites, which is normally achieved for small NPs well-distributed through zeolite. We focus
on the modification of zeolites to provide structural integrity and controlled acidity, which can be
accomplished by the incorporation of certain metal ions or elements. The other modification avenue
is the adjustment of zeolite morphology, including the creation of numerous defects for the NP
entrapment and designed hierarchical porosity for improved mass transfer. In this review, we also
provide examples of synergy between metal and acid sites and emphasize that without density
functional theory calculations, many assumptions about the interactions between active sites remain
unvalidated. Finally, we describe the most interesting examples of direct and indirect biomass (waste)
processing for the last five years.
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1. Introduction

Biomass types include dedicated energy crops, forestry waste, agricultural crop
residues, algae and other marine sources, wood processing residues, municipal waste,
and wet waste such as sewage sludge from municipal wastewater, etc. [1]. An estimated
biomass output is 100 billion metric tons per year. Three major ways of biomass processing
are (i) thermo-chemical conversion of biomass (combustion, pyrolysis, gasification, lique-
faction), (ii) biochemical conversion of biomass (anaerobic digestion and fermentation), and
(iii) physicochemical conversion of biomass (including fractionation and depolymerization
of biomass) [1,2].

Biomass, and especially biomass waste of different origins, are excellent sources for the
environmentally sustainable fabrication of various nanomaterials, such as biochars [3–6],
nanocellulose [7–13], porous carbons [5,14–18], carbon nanofibers [19,20], carbon quantum
dots [21–29], graphene [28–30], lignin-based materials [31–38], etc. The main methods of
obtaining such materials from biomass include thermal, microwave and ultrasound treat-
ments [39], as well as pyrolysis carbonization for carbon-based materials [40,41]. In these
cases, biomass processing also includes activation before and/or after thermal treatment
with acids or bases as well as catalytic reactions with metal-containing catalysts [42]. The
other important group of products that can be acquired from biomass is biofuels and value-
added chemicals that could be obtained via catalytic reactions from biomass [43–52]. For
years heterogenous catalysts based on different metals and supports have been involved in
these reactions [53–64].
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Among heterogeneous catalysts, bifunctional ones consisting of mono- or bimetallic
nanoparticles (NPs) and zeolite supports have received considerable attention due to
excellent catalytic properties in many reactions, including biomass processing, tandem
reactions, etc. [65–73]. The term “Bifunctional catalysts” means that two types of catalytic
sites are present in a single catalyst: metal sites from NPs and acid sites from the support.
This allows carrying out simultaneous or tandem reactions, changing a reaction pathway
due to dual catalytic action or changing the target products. All these advantages would be
impossible with traditional metal-containing heterogeneous catalysts.

For the last ten years, a number of reviews have been published that were focused
on the bifunctional catalyst structure and/or the reactions relevant to biomass process-
ing [73–82]. At the same time, we believe that two crucial aspects of the NP/zeolite catalyst
structure and function have been underrepresented, such as the zeolite/catalyst modifica-
tion to improve catalyst integrity and catalytic performance as well as interactions between
metal and acid sites that are normally critical for the success of the catalysts. Considering
that the number of publications in this field has doubled from 2018 to present compared
to the previous five years, in this short review we will analyze the literature published
from 2018 through March 2023 with a major focus on the synergy or lack thereof between
metal NPs and acid sites of zeolites as well as their controlled modification. To allow
better understanding of interactions of catalytic sites in bifunctional catalysts, first, we will
describe the major types of zeolites used in catalysts, as well as the fabrication methods
of bifunctional catalysts. In the following sections, we will analyze (i) the modification of
zeolites and catalysts, focusing on the structural integrity, morphology, porosity, and the
control of the charges/acidity, (ii) interactions between active sites in bifunctional catalysts,
and (iii) examples of direct and indirect biomass processing reactions. Here, direct biomass
processing means that biomass or its waste is a substrate in the catalytic reaction, while in
the indirect processing, the substrate is a platform chemical obtained from biomass. This
review structure helps us to identify the most important developments in the field as well
as the prospects for further research.

2. Types of Zeolites

Zeolites are aluminosilicates that are characterized by well-defined porosity and
crystallinity [83,84]. The porous structure contains either cages or channels (or both) of
different sizes (Figure 1) [85]. The presence of Al in zeolites provides negative charges,
which result in acidic protons or cations for neutrality. The higher fraction of Al leads to
higher acidity; thus, the acidity of zeolites can be controlled by the Al/Si ratio or by the
incorporation of other species (for example, Ti, La, etc.). As is illustrated in Figure 1, the
three major zeolite types are MFI (for example, ZSM-5, HZSM-5), FAU (for example, Y),
and BEA (β). The other representatives of MFI-type zeolites are fully silicious silicalite-1
(S-1) and Ti-containing TS-1, including tetrahedral units of SiO4 and TiO4 [86]. MFI-type
zeolites possess two interconnected channel systems containing pentasyl units and are
considered medium pore-size zeolites [87,88]. FAU-type zeolites contain larger pores [89],
while the BAU-type zeolite porosity is in between those of MFI and FAU (Figure 1) [90].
Diverse types and sizes of pores allow for various molecules either to penetrate the support
or to be filtered out, depending on their size.

Normally, zeolite acidity is originated from Bronsted acid sites directly attributed to
Al atoms in a tetrahedral [AlO4] framework [84,91,92]. At the same time, zeolites include
substantial amounts of Lewis acid sites resulting from dehydration of the Bronsted sites or
other sources. The important parameter is the ratio between Bronsted and Lewis acid sites,
which is also dependent on the Si/Al ratio. It decreases at a low Si/Al content. It is worth
noting that zeolites can also be basic when they are subjected to ion exchange with alkali
cations or when they contain inclusions of basic metals.
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It is worth noting that besides the major types of zeolites discussed above, new
modifications were introduced, including layer-like hierarchical [93–96] and mesoporous
zeolites [97–100]. A recent example shows a remarkably different outcome of the catalytic
reaction, depending on the zeolite type, including porosity. In tandem reactions, it is
very important to achieve a high selectivity for each reaction. Cho et al. discovered
that an adjustment of the pore size in bifunctional catalysts based on Pt NPs and zeolite
plays a crucial role in achieving high selectivity [101]. The encapsulation of Pt NPs in
H-BEA zeolites allows for one-pot transformation of cyclopentanone (CPO) (obtained from
biomass) to C10 cyclic hydrocarbons (bicyclopentane and decalin) with a total yield reaching
78%, a remarkable accomplishment. In the case of MFI, whose pores are smaller than those
of H-BEA, mainly cyclopentane (~70%) is formed. These data show size selectivity of
zeolite micropores towards bulky reactive intermediates.

3. Methods of the NP Formation in Zeolites

The key methods for metal-containing NP formation in zeolites include (i) wet impreg-
nation of premade zeolites [102–108], (ii) physical mixing of metal compounds/NPs and
zeolites [109–112], (iii) ion exchange in zeolites [113,114], and (iv) encapsulation of NPs in
zeolites normally during a simultaneous formation of both constituents of the nanomate-
rial [103,115–117]. For each example, we will indicate a particular reaction in which the
catalyst was utilized, and we will indicate the correlations (if any) between NP/catalyst
characteristics and the catalytic process.

3.1. Impregnation

Wet impregnation is most frequently used because of its simplicity and the possibility
to employ commercially available zeolites. Normally, wet impregnation is followed by
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reduction or calcination. For example, ZSM-5-based catalysts with different Al/Si ratios
and containing NiO NPs (10–20 nm in diameter) were prepared by impregnation and
tested in hydrodeoxygenation, decarboxylation and hydrocracking of palmitic acid [118].
It was determined that Ni loading influenced the ratio of Lewis/Brønsted acids, which
in turn controlled the reaction outcome. In the case of bimetallic Ni/Fe NPs, sequential
impregnation followed by calcination has been employed [102]. Here, the Ni/Fe-BEA
catalyst showed much higher selectivity in the hydropyrolysis of eucalyptus leaves to
polyaromatic hydrocarbons compared to monometallic Ni-BEA.

A major shortcoming of this approach is a tendency to the formation of large NPs
with a broad NP size distribution, which diminishes interactions with zeolite acid sites.
It is noteworthy that it is not always the case. In a remarkable development, the authors
reported RuW alloy NPs (1–4 nm) prepared by wet impregnation on HY zeolite with a
high silica content for the in situ processing of lignin (least valuable part of lignocellulosic
biomass) [106]. This resulted solely in the formation of benzene due to the combination
of Brønsted acid catalyzed conversion of sp2 to sp3 bonds of lignin. At the same time,
RuW species facilitated the hydrogenolysis of the C-O bonds with hydrogen extracted from
lignin. Even more controlled NP formation via impregnation was reported when very
small Ru NPs (~1 nm in diameter) were formed in the zeolite Y micropores (Figure 2) [119].
Apparently, small NPs can be obtained by impregnation if the diffusion of the precursor
metal compound is hindered by small pores, defects, traps, etc.
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Figure 2. Structural characterization of the bifunctional catalyst materials under study. Representa-
tive aberration-corrected high-angle annular dark-field scanning transmission electron microscopy
(AC-HAADF-STEM) images of (a,b) the Ru/H-Y and (c,d) the Ru/La-Y showing the existence of Ru
nanoparticles confined in zeolite Y, corresponding particle size distribution derived from measure-
ments of over 200 particles. (e,f) Atomic resolution of AC-HAADF-STEM images of the Ru/La-Y and
(g) EDX spectral imaging of the Ru/La-Y and corresponding elemental maps: Ru pink, La red, Si
green, Al yellow, and O blue, showing that Ru and La species are indeed highly dispersed in zeolite
Y. Reproduced with permission from [119] Wiley, 2021.
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Impregnation in hydrothermal conditions was employed to place Pd NPs (with sizes
below 3.5 nm) on nanocomposite containing carbon with numerous defects on the surface
of HZSM-5 zeolite spheres [120]. These defects serve for catching the Pd NPs, limiting their
size and promoting substrate adsorption. This leads to the successful hydrodeoxygenation
of vanillin to [2-methoxy-4-methylphenol (a favorable liquid biofuel) with high selectivity.
The authors believe that both the high concentration of defects on the nanocomposite
surface and the high dispersion of Pd NPs play a crucial role in the success of this reaction.

3.2. Mixing

Mixing is the simplest method of bifunctional catalyst formation, but it rarely results in
well-defined catalytic structures and in optimized catalytic processes. Co NPs incorporated
in mesoporous Y zeolites were prepared by a melt infiltration method after mixing and
studied in the direct conversion of syngas (CO/H2) into three different biofuels: diesel,
gasoline, and jet fuel [121]. The authors discovered that the outcome of the reaction (the
product distribution) is determined by the porosity and acidity of the zeolite and can be
tuned at will. The Co NP sizes were in the range of 14–16 nm. Cu/Zn bimetallic NPs
with diameters of 6.2 ± 2.0 nm were mixed with a number of acidic supports, including
zeolites ZSM-5 and Y, to catalyze a synthesis of methanol from syngas and the methanol
transformation to dimethyl ether or hydrocarbons [111]. The authors stated that the metal
and acid sites are in close proximity in these catalysts, although the mixing of solids and
calcination was used as a preparation technique, which normally provides a rather crude
distribution of species.

In another avenue, mixing was used to combine two prefabricated catalysts, one of
which contains NPs and the other is zeolite. Such a bifunctional catalyst mixture was
proposed by Arslan et al. [110]. The nanocomposite catalyst was prepared by mixing
ZnCr2O4 NPs and H-ZSM-5 and tested in one-step transformation of syngas to an aromatic
hydrocarbon. High selectivity for aromatics was provided by short straight channels in
H-ZSM-5, which demonstrate low diffusion resistance for these molecules. The reaction
was catalyzed by ZnCr2O4 NPs, while the function of acid sites of zeolite was not realized
in this study.

An interesting example of the catalyst mixture was discussed in Ref. [70]. Here,
the catalyst mixture referred to as a tandem catalyst was prepared by mixing Pd/ZnO,
which converts CO2 to methanol, and biomass-derived ZSM-5, which catalyzes methanol
dehydration to dimethyl ether (DME)—a high value chemical. The authors compared
the above tandem catalyst with the bifunctional catalyst (Pd/ZSM-5) and found that the
close proximity of the catalytic sites in the latter was detrimental to the DME production
(selectivity < 3%) due to ion exchange, while for the tandem catalyst, the selectivity to DME
reached 31%. This work demonstrates that on a rare occasion, close proximity of active
sites in a bifunctional catalyst can be disadvantageous.

3.3. Ion Exchange

An ion exchange method is infrequently used for bifunctional catalyst synthesis as ion
exchange is often slow and results in low metal ion loading. The major advantage of this
method is small, well distributed NPs. The bifunctional catalysts with well-dispersed Ni
NPs (3.5 or 6.1 nm depending on the precursor loading) in the BEA zeolite were fabricated
by ion-exchange–deposition–precipitation and tested in a hydrodeoxygenation of guaiacol
towards hydrocarbons [113]. The catalysts showed much better catalytic performance
than those prepared by wet impregnation with larger Ni NPs. It is worth noting that
the conversion of guaiacol did not depend on the catalyst preparation method, while the
product selectivity was strongly affected.

A bifunctional catalyst consisting of small Ru NPs well-dispersed on H-β zeolites were
employed in the transformation of furfural (FAL) into 3-acetyl-1-propanol (3-AP) [114]. The
authors prepared the catalysts using either ion-exchange or impregnation. In the former
case, 1.3 nm NPs with a narrow size distribution were obtained, while in the latter case,
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2.5 nm NPs with a broad particle size distribution were formed (Figure 3). Smaller Ru
NPs were found to provide much better catalytic properties, which were assigned to two
factors: (i) more Ru active sites on smaller NPs and (ii) a better interaction between acid
and metallic sites.
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3.4. Encapsulation

Encapsulation is a complex but very sophisticated way for syntheses of bifunctional
catalysts. Encapsulation can be carried out either by crystallization of zeolite around
premade NPs (or complexes) or by the formation of both components at the same time or in
a sequence. Wang et al. developed two different approaches for Co NPs containing HZSM
zeolites, which dramatically altered the final product in the reaction of γ-valerolactone
(GVL) obtained from lignocellulose [103]. In one approach (Co@HZ5), Co NPs were
formed in silica, which was further converted into crystalline zeolite. In the other approach
(Co/HZ5), Co NPs were formed by impregnation of zeolite, followed by calcination.
As a result, for Co@HZ5, valeric biofuel was obtained, while for Co/HZ5, the product
was pentane biofuel, demonstrating a complete switch of selectivity caused by different
interactions of Co NPs with zeolite. For well-dispersed Co NPs encapsulated within HZ5
crystals (Co@HZ5), the synergy in the catalytic interactions was at its best, leading to
GVL upgrading. In the case of Cu NPs, the same strategy was employed, where Cu
NPs were encapsulated in highly crystalline zeolites producing valeric biofuel with high
hydro-conversion efficiency [115].

One of the important reactions of biomass valorization is the selective dehydrogenation
of ethanol to acetaldehyde. Small (~1.8 nm) Cu nanoparticles were encapsulated inside
zeolites by an in situ approach first coordinating Cu ions with polyethylene-polyamine
to prevent the Cu species precipitation during the zeolite formation [116]. In this way Cu
NPs are located within zeolite cavities due to the interaction between zeolite and the metal
complex. This also allows a significant fraction of the active (but normally unstable) Cu+

species. The encapsulated catalyst provided enhanced selectivity, activity, and stability vs.
the non-encapsulated catalyst formed by wet impregnation.
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The advantages of the encapsulation of metal NPs in zeolites vs. impregnation by
metal compounds (resulting in limited catalyst stability due to agglomeration of NPs)
were also demonstrated by Fu et al. in the development of the bifunctional Pd@HZSM-5
catalyst [71]. Here, Pd NPs were captured in HZSM-5 zeolites in situ and demonstrated
excellent stability and high 3-acetyl-1-propanol yield in the conversion of 2-methylfuran. It
is worth noting that this reaction is an important step in the processing of biomass-derived
platform chemicals, such as furan derivatives, to value-added products.

Using an in situ encapsulation method, highly dispersed 1.8 nm Cu NPs were formed
within TS-1 (titanium silicalite-1) zeolite (Figure 4) [117]. An exchange of protons for Na
ions allows stabilization of the zeolite structure and excellent performance in the selective
hydrogenation of biobased FAL to furfuryl alcohol (FOL). The authors discovered that
restricting the zeolite environment for NPs promotes electronic interactions of Cu NPs and
Ti species in Na-Cu@TS-1. This results in the inhibition of Cu NP aggregation and leaching,
while Na species modify acidity and suppress side reactions.
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The catalyst based on Ni NPs (2–5 nm in diameter) encapsulated in HZSM-5 has
been utilized for the hydrodeoxygenation of palmitic acid to diesel-like biofuels [122].
The full deoxygenation of palmitic acid to C15-C16 alkanes with 100% selectivity using
Ni-HZSM-5 was attributed to comparatively small Ni NPs well dispersed in zeolite. Again,
a comparison with the catalyst prepared by impregnation shows a clear advantage of the
encapsulated NPs.

The above discussion demonstrates that most well-defined and efficient catalysts are
prepared by encapsulation due to limiting NP growth, inhibition of NP aggregation and
metal leaching. However, from a technological point of view, these preparations are often
too complex and time and labor consuming. The formation of small NPs in bifunctional
catalysts allowing high catalyst efficiency can be achieved by simple impregnation if the
zeolite support contains defects or folds limiting the NP growth. The values of NP sizes
prepared by different methods are presented in Table 1.

Table 1. Sizes of NPs obtained in zeolites by different methods.

Preparation Method Zeolite Type NP Type NP Size, nm Ref.

Impregnation ZSM-5 NiO 10–20 [118]
HY RuW 1–4 [106]
Y Ru ~1 [119]

HZSM-5 Pd 3.5 [120]
H-β Ru 2.5 [114]

Mixing Y Co 14–16 [121]
ZSM-5 and Y Cu/Zn 6.2 ± 2.0 [111]

Ion exchange BEA Ni 3.5 or 6.1 [113]
H-β Ru 1.3 [114]

Encapsulation HZSM-5 Co 3.0 ± 0.5 [103]
HZSM-5 Cu 3.6 [103]

Silicalite-1 Cu 1.8 [116]
HZSM-5 Pd 2.1 ± 0.5 [71]

TS-1 Cu 1.8 [117]
HZSM-5 Ni 2–5 [122]
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4. Zeolite/Catalyst Modification for the Enhancement of Bifunctional Catalysts

A modification of zeolites/catalysts is carried out for the strengthening of the zeolite
framework, a change in acidity, dealumination, etc. It can be performed with the preformed
zeolite, with the bifunctional catalyst or at the stage of the zeolite formation.

4.1. Influence of Porosity on Mass Transfer and Catalytic Processes

Zeolite porosity is a part of the morphology modification introduced at the stage of
the zeolite synthesis. Small pore (microporous) zeolites of different types possess valuable
properties and find numerous applications in catalysis [123]. Even among those, it was
reported that zeolites with larger pores (BEA) showed better conversion from sorbitol
to isosorbide than MOR (mordenite) and MFI with smaller pores [124]. It is noteworthy,
however, that these zeolites also possess different acidity so the pore influence is not
quite straightforward.

In many publications, the importance of the creation of mesopores in zeolites and/or
hierarchical porosity (including meso- and macropores, along with micropores) is discussed
from the viewpoint of optimizing mass transfer [81,125–128]. The study of mesoporous β
zeolites in the catalytic benzylation of naphthalene showed that the increase in the amount
of mesopores improved the diffusion of the reactants and products and facilitated access to
acid sites, resulting in improved catalyst performance [129].

A catalytic behavior of MFI nanosheets with hierarchical porosity and the microporous
parent MFI zeolite was studied in the methanol-to-propylene reaction [130]. It was demon-
strated that the former displays much better performance due to the shortening of the
diffusion path length, thus reducing mass transport limitations. MFI with a microporous
carcass embedded in the ordered mesoporous structure was loaded with Pt NPs and tested
in the hydroconversion of n-decane [131]. This test showed the formation of 10 membered
ring products due to the size selectivity of the mesopores as well as the products typical for
microporous MFI.

A bifunctional catalyst based on ultra-small Pt NPs formed on a hierarchical ze-
olite showed exceptional performance in the consecutive mild hydrodeoxygenation of
4-propylphenol to a nearly 100% cycloalkane product, significantly exceeding the perfor-
mance of the catalyst based on conventional zeolite [132].

4.2. Modification with Ions

La ions have been utilized for the stabilization of the zeolite against deconstruction.
He et al. suggested such a modification of the bifunctional catalysts based on Ni NPs and
zeolite by incorporation of La ions into H-Y [72]. This significantly increased the stability
of the catalyst performance in the liquid phase, which was assigned to decreasing coke
formation, dealumination and metal NP aggregation. This strategy was employed by the
same group for the fabrication of a bifunctional catalyst based on very small Ru NPs (~1 nm
in diameter) formed by an impregnation method in the zeolite Y micropores, allowing
for an active site “intimacy” (close proximity of Ru species to zeolite acidic sites) [119].
An additional modification of zeolite with La stabilizes the Y structure during catalysis
by stopping lattice deconstruction and preserving the proximity of the catalytic sites.
Such a catalyst significantly enhances selectivity towards pentanoic biofuels in one-pot
hydrodeoxygenation of biomass-derived ethyl levulinate.

Sn ions have been introduced in the β zeolite during its formation for further fab-
rication of a hybrid multifunctional catalyst, Au/CuO-Sn-β. It has been prepared by
combining Au/CuO NPs and Sn-modified β zeolite followed by calcination [133]. The
addition of Sn led to Lewis acid sites, which, in turn, improved the catalytic transformation
of biomass-derived glycerol to methyl lactate—a monomer for a biodegradable polymer.

Intimate metal–acid interfaces were probed in the bifunctional catalyst based on Pd
NPs encapsulated in the Y zeolite and modified with sulfonic acid groups [134]. This
approach immobilizes metal and acid sites in close proximity due to the rigidity of the
zeolite crystal. Moreover, because sulfonic acid groups are much stronger than the acid
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sites of zeolite, the success of the hydrodeoxygenation of FAL (a multistep reaction) is
attributed to the interfaces of the former with metal NPs.

Zeolite 5A (with cage-like 0.5 nm pores) was impregnated with trifluoromethanesul-
fonic acid (to introduce strong acid sites) without solvent and after drying was used for
the thermal deposition of Ni NPs [135]. The catalyst was employed for the processing of
model compounds imitating lignin (oxybis(methylene)dibenzene and benzyloxybenzene).
It was determined that Ni NPs are very large (under 100 nm) and located on the surface
of zeolites. Nevertheless, this catalyst allows the production of protons and their transfer,
leading to hydrogen formation, i.e., catalytic hydroconversion. However, in our opinion,
the morphology of this catalyst is so ill-defined, it should not be recommended for any
further studies.

4.3. Dealumination, Desilication

Dealumination normally decreases the amount and strength of acid sites, while de-
silication creates the opposite effect. Both actions can significantly modify the catalyst
properties. It is noteworthy that some side reactions are suppressed at high acidity, while
the other side reactions are blocked at low acidity or at different types of acid sites. This
determines the choice of zeolite and its modification. A detailed study of the reaction routes
for the transformation of methyl palmitate to jet biofuel was presented in ref. [136]. The
authors used Ni NPs in the desilicated (by the NaOH treatment) Y zeolite. Both calculations
and catalytic tests allowed the authors to determine the most probable mechanism. It was
shown that desilication increases the zeolite acidity, suppressing side reactions. Quantum
chemistry calculations revealed that with such catalysts, the hydrodecarboxylation reaction
is more probable than hydrogenolysis and decarboxylation.

An extreme case of dealumination is fully silicious zeolite, silicalite-1, which contains
no Al and is characterized by very weak Brønsted acid sites. It has been utilized for the
fixation of Pd NPs either by impregnation or encapsulation (Figure 5) [137]. The modulation
of the support wettability by the functionalization of silanol groups resulted in the altered
diffusion of reacting molecules and exceptional activity and selectivity in the hydrogenation
of FAL to furan.
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4.4. Incorporation of Fluorine

A promotional effect of F on bifunctional Pd/HZSM-5 catalysts was reported by
Jiang et al. [138]. Here, fluorine, which is introduced as NH4F together with the Pd precur-
sor, replaces OH group in zeolite, forming the F-Al bond. This alters the acidity, hydropho-
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bicity, and surface morphology of the catalyst. A variation in the fluorine amount allows
one to control the above properties. The fluorine modification improved the catalytic prop-
erties in the selective hydrodeoxygenation of ketones obtained from biomass. In another
example of modification with F, Ru NPs in MFI zeolites were prepared by impregnation
using a novel method for the zeolite synthesis [139]. Instead of crystal seeds or solvent, the
authors utilized fluorine-containing species for ZSM-5 crystallization. The coordination of
fluoride ions with Al3+ ions leads to six coordinated ‘F-Al-O-Si’ species that promote the
growth of tetrahedral [AlO4] fragments in the zeolite. These bifunctional catalysts were
employed in the successful hydrogenation of levulinic acid and glucose.

4.5. Post-Fabrication Modification

In Ref. [140], a multicomponent catalyst synthesized by forming Pt NPs in the dealu-
minated β zeolite was coated with Mg(OH)2 and utilized to obtain 1,2-propanediol from
biomass-based sucrose. The coating with Mg(OH)2 resulted in the weakening of the Lewis
acid sites as well as an appearance of weak and strong alkaline sites. Altogether, this
resulted in an enhanced catalytic performance compared to the catalyst without Mg(OH)2
due to suppression of side reactions.

A combination of ZrO2 NPs with ZSM-5 by ball-milling resulted in the catalysts
converting methyl levulinate into GVL [112]. Because selectivity to GVL was decreased
due to a side reaction on the Lewis and Brønsted acid sites, such bases as pyridine and
2,6-dimethylpyridine have been utilized to completely suppress side reactions, improving
the GVL outcome.

4.6. Modification with Magnetic NPs

Magnetically recoverable catalysts have been at the forefront of the fabrication of novel
catalysts due to easy magnetic separation, allowing one to conserve energy and materials
and to simplify both catalyst purification and reuse in catalytic processes [141–158]. Among
bifunctional catalysts based on zeolites, there are several examples where magnetic NPs
were added to ensure facile magnetic separation [159–167]. At the same time, we found
only a single example of such a catalyst utilized in biomass-related catalytic reactions.
Prech et al. developed magnetically recoverable catalysts with the incorporation of iron
NPs coated with carbon into the Y zeolite-bearing Lewis acid sites [140]. The catalyst was
utilized in the hydrolysis of the marine-based polysaccharide, where acid sites of zeolites
were catalytic sites, while magnetic NPs provided magnetic separation. Despite the fact
that there are two functions here from the same nanocomposite, magnetic and catalytic, the
magnetic function is irrelevant to catalysis.

4.7. Morphology Modification

One of the methods to tune zeolite ZSM-5 porosity and acidity is its formation around
carbon NPs [168]. The high concentration of -C-O-C- groups on the carbon NP surface
results in enhanced hydrophilicity during the zeolite formation, leading to hierarchical
porosity and improved Brønsted acidity—important parameters for successful bio-refining.

Meeting the challenges of the formation of small metal NPs in mesoporous zeolites,
the authors of Ref. [169] proposed steam-assisted recrystallization, creating an unusual
shell-like morphology that stabilizes small metal NPs in microporous channels (Figure 6).
To demonstrate exceptional morphological stability of Ni NPs as well as their excellent
catalytic performance, methanation of CO2 was used as a test reaction. Despite a high
reaction temperature (450 ◦C), no NP agglomeration was observed.

Xu et al. proposed an interesting morphology for the bifunctional catalyst to maximize
metal–acid synergetic interactions [170]. For this, the authors developed a mesoporous
core–shell catalyst with a ZSM-5 core and a shell formed by Pd NPs on Al2O3 for the
hydrodeoxygenation of biomass-based compounds. For comparison, they also used a
mixture of zeolite and Pd/Al2O3 and synthesized Pd NPs/ZSM-5 by impregnation and
encapsulation. It is worth noting that encapsulation normally creates the greatest proximity
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between metal and acid sites. Nevertheless, the core–shell zeolite@Pd/Al2O3 catalyst
showed the best activity, selectivity, and stability upon reuse compared to other catalysts.
This was assigned to the highest metal–acid synergy, also suppressing the coke formation
in the hydrodeoxygenation process, allowing for successful recycling. This explanation
would be valid if the Pd/Al2O3 shell were thin, but it is not the case. It is noteworthy that
Pd NPs contain both Pd0 and Pd2+ species, with the highest fraction of Pd0 in Pd/Al2O3,
the highest fraction of Pd2+ in Pd/ZSM-5, and an intermediate amount of Pd-oxidized
species in the core–shell catalyst. One might assume that this is the cause of exceptional
catalytic properties.
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The cross-shaped (containing spherical and cuboid shapes) HZSM-5 zeolite was ob-
tained with the help of seeds and piperidine as a structure-directing agent. It was filled with
Ru NPs prepared by wet impregnation and tested in a tandem reaction of hydrogenolysis of
guaiacol to benzene [171]. A comparison of the catalytic performance of the above catalyst
with those based on the single morphology zeolites (either cuboid or spherical) showed
that a cross-shaped morphology led to better catalytic properties in both catalytic steps.
This was attributed to smaller and better dispersed Ru NPs in cross-shaped zeolite and
better guaiacol adsorption that, in turn, was assigned to a high concentration of Lewis
acid sites.

Thus, there are different aspects of the catalyst structure and properties that can be
successfully influenced by the different modification approaches. Although technologically
sound, a modification with ions (La) to prevent deconstruction, dealumination/desilication
to control acidity, and morphology modification to control NP formation appear the most
promising avenues.

5. Interactions between Zeolite Acid Sites and NPs

The major advantage of bifunctional NP-zeolite catalysts is the opportunity of acid
sites of zeolites to “talk” to active sites of catalytic NPs and vice versa to weaken or to
strengthen catalytic effects, allowing for high selectivity and activity even in tandem or
simultaneous complex catalytic reactions.

A rearrangement of biomass-derived FAL to CPO via FOL is an important path for
biomass valorization. Gao et al. synthesized Pd NPs in H–ZSM–5 zeolites using wet
impregnation [105]. The catalyst allowed 98% selectivity toward CPO with the 120 h−1
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specific reaction rate. Brønsted acid sites in zeolite facilitated the hydrogenation of FAL to
FOL. At the same time, Lewis acid sites of zeolite allowed the hydrogenative rearrangement
of FOL to CPO. The important finding was that bare H-ZSM-5 (no Pd) was not efficient
compared to the Pd-containing catalyst, revealing the synergy between Pd species and
acidic sites.

α-Pinene is an important biomass-derived chemical that can be converted into
pinane—an intermediate in preparation of fragrances and pharmaceuticals. However,
α-pinene hydrogenation normally results in the mixture of cis- and trans-products, with
trans-pinane being undesirable. Fan et al. developed Ru NPs modified by Ni in the Hβ

zeolite, allowing for 98% selectivity to cis-pinane at 100% conversion [172]. This exceptional
performance was assigned to the influence of Ni, which controls the ratio of Brønsted
and Lewis acids and adjusts the hydrogen spillover between Ru and zeolite as well as
modifies adsorption sites, altogether validating the importance of multifunctionality in
such catalysts.

Dai et al. studied the transformation of biomass-derived FOL to pentanediols using
several bifunctional Cu/MFI catalysts [173]. One of them, containing a certain combination
of Cu0 and Cu+ species as well as Brønsted acid sites, demonstrated excellent catalytic
properties. Density functional theory (DFT) calculations showed that successful ring-
opening and hydrogenation should be assigned to the synergy between the Cu species and
Brønsted acid sites; the latter impact the ring-opening in FOL, while the adsorption of the
FOL methyl group on the Cu+ species promotes hydrogenation (Figure 7).
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Wetchasat et al. synthesized several bifunctional catalysts, including 1 nm Pt NPs dis-
persed on hierarchical zeolites sheets using encapsulation with ethylenediaminetetraacetic
acid to provide high-dispersion Pt NPs in the catalyst [132]. Using a model reaction of
hydrodeoxygenation of 4-propylphenol to cycloalkane, the authors demonstrated the ad-
vantages of the above catalyst compared to larger Pt NPs stabilized on conventional zeolite
or silicate. They believe that the location of 1 nm Pt NPs in the vicinity of Brønsted acid
sites could improve the transfer of an intermediate between catalytic sites, thus promoting
the desired catalytic process.

W(Ni)-zeolites prepared by impregnation and based on different zeolite types were
studied as catalysts in the production of bio-based aromatic compounds from model
biomass tar [174]. The W content in zeolites was found to raise the number of Lewis acid
sites and total acidity, which could relate to the increased catalytic activity. On the other
hand, the W species decrease Brønsted acidity and some other factors, which could also be
beneficial for catalytic activity. Unfortunately, the interactions and influences observed in
this work are too complex to provide a clear picture of synergetic effects.

It is noteworthy that there are numerous claims about intimate, close, excellent, etc.
interactions between metal and acid sites, but in some papers, these claims are not verified.
Only a combination of DFT calculations and experimental studies, including thorough
nanomaterial characterization, allows one to validate both the most probable mechanism
of the catalytic reaction and interactions between metal and acid catalytic sites [175–182].

6. Biomass Processing Catalytic Reactions with Bifunctional Catalysts

As was discussed in the Introduction, three major processes used for biomass upgrad-
ing include (i) the thermo-chemical conversion of biomass, (ii) the biochemical conversion
of biomass, and (iii) the physicochemical conversion of biomass. Many of the above pro-
cesses are catalytic. Heterogeneous catalysis is necessary for the transformation of biomass
to platform chemicals and their further reactions to biofuels and value-added chemicals
for pharmaceutical, cosmetic, and chemical industries [1,2,183]. In this review, we limit the
discussion to those processes that are carried out with bifunctional zeolite/NP catalysts.

The reactions associated with biomass processing can be divided into two major
groups: (i) the reactions of the direct biomass (waste) processing, and (ii) the transforma-
tions of platform chemicals obtained from biomass (indirect biomass processing). The
former case is especially appealing from the viewpoint of green chemistry; however, it is
often very complex. Hence, the examples of direct conversion of lignocellulosic biomass
are comparatively rare. In this section, we will discuss some recent examples of both types
of catalytic biomass processing.

6.1. Direct Processing of Biomass

Protonated HBEA (β) zeolite containing mesopores in the range of 8–11 nm and Ni
or Ni/Fe NPs demonstrated a considerable efficiency in the catalytic hydropyrolysis of
eucalyptus leaves to aromatic monomers and biofuels [102]. Moreover, both types of
catalysts display excellent selectivity to polyaromatic phenols via partial hydrogenation as
well as ring-opening of polyaromatic hydrocarbons to aromatic compounds. Considering
that Ni/BEA and Ni/Fe-BEA exhibited an analogous acid site concentration, the weaker
hydrogenation activity and improved hydrogenolysis of the bimetallic bifunctional catalyst
is attributed to the presence of Fe along with Ni (Figure 8). Altogether, the observed
enhancement of the multi-step catalytic reaction is assigned to the interaction of both metal
species and dissociated protons of zeolites.

Waste tire pyrolytic oil was converted to fuels using catalysts whose zeolite supports
were also obtained from waste [104]. Ni-W NPs in such a zeolite were obtained by the
impregnation of corresponding precursors, followed by a thermal treatment. The authors
explored two different zeolite structures and two different metal loadings, but no clear
advantage was found for either catalyst.
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pyrolysis of eucalyptus leaves over different catalysts; (d) collected liquid products diluted in 20 mL
dichloromethane. Other MAHs refer to monoaromatic hydrocarbons except for BTEX chemicals
(benzene, toluene, ethylbenzene, and xylene). Reaction conditions: initial PH2 = 3.0 MPa, 350 ◦C,
0.5 g biomass, 0.2 g catalyst, 2 h. Reproduced with permission from [102], Elsevier, 2023.

Successful catalytic pyrolysis of lignocellulose biopolymers into bio-oil (via partial
deoxygenation) has been carried out with highly dispersed ZrO2 NPs formed on the surface
of nanocrystalline or hierarchical ZSM-5 [184]. Here, Zr species adjust ZSM-5 acidity via a
decrease in strong acid sites in zeolites and a production of new Lewis acid sites attributed
to ZrO2.

A multifunctional catalyst based on bimetallic Cu-Ru NPs and HZSM-5 was employed
in the one-pot processing of woody biomass to cyclic ketones and aromatic monomers [185].
In this multifunctional catalyst, the zeolite moiety with a Si/Al ratio of 100 was responsible
for needed acidity for the successive depolymerization, dehydration, and isomerization of
cellulose, while bimetallic NPs synergistically catalyzed the hydrogenation, hydrogenolysis
and stabilization of lignin-derived intermediates. The authors believe this catalyst type can
be a versatile platform for one-pot biomass processing to valuable chemicals.

Chen et al. chose to combine biomass—pine sawdust—with plastics to increase
hydrogen content for a better yield of biofuels [186]. This mixture was used in catalytic
conversion with Pd/trap-HZSM-5 catalysts. The most efficient catalyst was obtained when
the Pd2+ compound was self-reduced by traps in HZSM-5. The traps were fabricated by
a hydrothermal treatment of zeolite at 700◦ due to dealumination [187]. Increasing the
concentration of Pd species in the traps followed by the reduction leads to sinter-resistant
Pd NPs. The authors of Ref. [186] demonstrated that in this case, the smallest Pd NP size
(5.4 nm) and moderate acidity promote the biofuel formation.
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To achieve direct processing of plant biomass to gaseous and liquid intermediates
involving several high-temperature processes, thermally stable catalysts need to be devel-
oped. Hu et al. synthesized such a catalyst by growing ZSM-5 on SiC nanowires [188]. At
the same time, the authors adjusted the pyrolysis process, resulting in the optimization of
both catalyst development and process strategy, enhancing the lifetime of the catalyst and
promoting catalytic properties.

6.2. Indirect Processing of Biomass

One of the valuable platform chemicals in plant-based biomass is 5-hydroxymethyl-
furfural (HMF), whose transformation to 2,5-furandicarboxylic acid (FDCA) may allow the
substitution of petroleum-based terephthalic acid. Salakhum et al. formed well-dispersed
Pt NPs in alkaline-substituted ZSM-5 NPs with a hierarchical pore system using wet
impregnation [107]. The catalyst showed remarkable performance in the HMF-FDCA
reaction in mild conditions with 100% conversion and 80% FDCA selectivity. The authors
assign their success to synergy between Pt NPs and alkaline ZSM-5 in the multi-oxidation
reaction, especially in the case of the Ca+ modified zeolite.

To prepare efficient bifunctional catalysts for a successful one-pot conversion of xylose
to tetrahydrofurfuryl alcohol, the authors formed the Ru/Hβ catalyst [189]. Here, the
impregnation was followed by reduction with hydrazine (to remove chloride ions) and
then by oxidation to form RuO2 at the corners and edges of Ru NPs. The combination of
Ru with RuO2 suppressed side reactions and allowed for the high selectivity to the target
products (Figure 9).

The cleavage of β-1,4-glycosidic bonds in cellulose is the first and crucial step in
lignocellulosic biomass processing. The catalyst based on Ir NPs and the HY zeolite
prepared by impregnation was utilized in the β-1,4-glycosidic bond cleavage of cellobiose
with excellent activity and selectivity (>99%) under visible light at mild temperatures [190].
Cellobiose hydrolysis in such conditions was assigned to synergy between the Ir NPs
(transforms light to thermal energy) and the acid sites of the HY zeolite, which provide
active sites.

Trimetallic zeolite-based catalysts, Cu-Ni-Zn/H-ZSM5, have been synthesized by a
wet impregnation method and utilized for the one-pot conversion of bio-derived levulinic
acid to 1,4-pentadiol, a value-added chemical [108]. In this case, Zn was used to control
the Cu-Ni alloy NP size and to improve reducibility. The authors carried out a thorough
analysis of the functions of all parts of the catalyst, identifying the role of Lewis and
Brønsted acid sites as well as the Cu-Ni alloy sites in this complex process.

A hybrid method to biomass-based jet fuel production from 2,3-butanediol (2,3-BDO)
was proposed by Adhikari et al. [191]. The authors first carried out the conversion of
2,3-BDO to C3+ olefins using Cu NPs on ZSM-5 (with 98% selectivity and ~97% conversion)
and then performed oligomerization to C3-C6 olefins with Amberlyst-36. This paper did
not study the interaction between Cu species and zeolite active sites, thus not allowing one
to elucidate synergy, if any, in the first reaction step. In Ref. [192], the authors discussed
the catalyst based on Ru NPs on the NaY zeolite and emphasized that the Ru NP size and
high surface area of the hydrophilic support are crucial in H2 production from glycerol and
ethylene glycol, but the zeolite acidity of the proposed catalyst is not mentioned.

A mixture of two major compounds of bio-oil pyrolysis, guaiacol and acetic acid,
was catalyzed over a bifunctional catalyst containing Ni2P NPs in ZSM-5 [193]. The
paper describes various intermolecular interactions during the hydrodeoxygenation of the
mixtures at various reaction conditions. A control of the selectivity of hydroconversion
of FAL (biomass upgrading) was realized by the encapsulation of sub-nanometer Pd NPs
in several MFI zeolites [194]. Surprisingly, different products such as furan, FOL, and
1,5-pentanediol are obtained, depending on the support. The authors determined that
the zeolite microenvironment influences FAL adsorption and hydrogen activation due to
cooperation between Pd NPs and the acid sites of the zeolite.
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Figure 9. (A) Reaction pathways and byproducts for the conversion of xylose to tetrahydrofur-
furyl alcohol (THFOL) and (B) biomass valorization to THFOL, THFOL applications, and the scope
of this study. Here, FFA, FOL, 2-MTHF, 2-MF, CPO, and THP denote furfural, furfural alcohol,
2-methyltetrahydrofuran, 2-methyl furan, cyclopentanone and tetrahydropyran, respectively. Repro-
duced with permission from [189], Elsevier, 2021.

An unusual phenomenon of self-activation was observed for Pt/NaY catalysts in the
base-free oxidation of biomass-derived ethylene glycol to glycolic acid and then to polygly-
colic acid, a valuable product [195]. The thorough physicochemical characterization shows
that upon oxidation, zeolite dealumination takes place, which results in the shortening of
the Si-OH bond and the special interactions of Pt NPs with gluconic acid, which enhances
the catalyst activity by a factor of two. This effect is explained by the electron enrichment
of Pt species in oxidation.

To the best of our knowledge, bifunctional NP/zeolite catalysts are currently studied
in research laboratories. For industrial applications in biomass processing, NP/zeolite
catalysts need to be more stable and efficient, the features which are especially crucial
for a technology transfer [81]. In general, catalytic processes can be implemented in
modern biorefineries and biomass-upgrading systems because catalysis allows one to
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vary selectivity for many products obtained from biomass. However, to make it happen,
additional efforts are needed to increase the stability of catalytic processes and to provide
the further advancement of robust, well-defined multifunctional catalysts [183].

7. Conclusions

Bifunctional catalysts based on metal-containing NPs and zeolites and combining
metal and acid sites have been successfully utilized in numerous catalytic reactions of
biomass processing. In the majority of cases, the best catalysts are obtained when NPs
are small and when there are significant interactions between metal and acid sites. These
results are achieved for NPs encapsulated by zeolites. Various encapsulated bifunctional
catalysts and their advantages compared to the catalysts obtained by simple impregnation
were repeatedly recognized. Recently, innovative methods to achieve small NPs intimately
interacting with the microenvironment of zeolites have been developed when zeolite
morphology was tweaked. For example, wet impregnation was used for the formation of
small NPs in the traps developed in the zeolite support at high temperature. The other
approach is placing NPs in micropores developed in hierarchical (mainly mesoporous)
zeolites. In other words, if the NP growth is restricted due to the suitable morphology
modification, simple wet impregnation can result in excellent bifunctional catalysts. Beside
the control of NP growth, the hierarchical porosity of zeolites allows for an enhanced mass
transfer of reagents, thus intensifying the catalytic reactions.

The literature of the last five years also emphasizes the importance of the modification
of NP/zeolite catalysts to control acidity (by dealumination, desilication, incorporation
of F, ions, etc.), porosity (by the choice of zeolite or by the fabrication of mesoporous and
hierarchical zeolites), and structural integrity (by incorporation of certain ions).

In this review, we were mostly “enchanted” by the interactions of metal catalytic sites
and acid sites in bifunctional NP/zeolite catalysts. It is “assumed” that these interactions
are responsible for excellent catalytic properties in complex and/or tandem reactions. How-
ever, “assumed” is the key word here. Even extensive physicochemical characterization,
including the assessment of the NP size and composition, porosity and acidity of the sup-
port, does not allow one to evaluate these interactions. On the other hand, DFT calculations
combined with thorough experimental studies allow for the validation of both probable
reaction mechanisms and the interplay between metal and acid sites in these catalysts.

So far, the most important results in biomass processing with NP/zeolite bifunctional
catalysts are the following. In direct processes, catalytic hydropyrolysis of eucalyptus leaves
to aromatic monomers and biofuels with catalysts based on β zeolite containing mesopores
and Ni/Fe NPs is especially successful due to the interaction of both metal species and
dissociated protons of zeolites. Also, a remarkable development was reported for lignin
processing in the presence of the RuW/HY catalyst to form solely benzene. Among indirect
processes, we believe the transformations of biomass-derived platform chemicals such
as furan derivatives to value-added products are particularly important because they are
sources of many valuable target molecules.

Despite many remarkable accomplishments in this field, we clearly see two major
shortcomings or niches, whose filling/remediation could be especially beneficial for cata-
lyst design and biomass processing. First, despite the fact that magnetically recoverable
catalysts literally overwhelmed catalyst development elsewhere, there are a few examples
of magnetic bifunctional NP/zeolite catalysts, and almost none are used in biomass pro-
cessing. This is surprising considering that the incorporation of magnetic (iron oxide) NPs
in other catalysts did not show any detrimental effects on catalytic processes. Moreover,
altering acid sites of the support in the presence of iron oxide NPs can be beneficial.

The second avenue for the successful development of this field is an increased focus
on the direct processing of biomass or biomass waste, when they serve as substrates in
one-pot transformations to biofuels or value-added chemicals. We recognize that these are
very complicated processes, and several reactions can occur sequentially or concurrently,
but the development of multifunctional catalysts with bi- and trimetallic NPs in zeolites
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could be promising. This would be a very important advancement of the field with huge
environmental benefits.

For the further development of biomass upgrading, novel methods of biomass pro-
cessing and the enhancement of catalyst stability and efficiency are extremely important.
Both factors are impossible without the development of novel multifunctional catalysts.
Bioprocessing plants combining thermochemical, biotechnological, chemical, and physical
processes as well as novel catalysts will allow one to improve the yield, productivity and
purity of multiple target compounds obtained from biomass.
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