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Abstract: Orthorhombic molybdenum oxide (α-MoO3), as a one-layered pseudocapacitive mate-
rial, has attracted widespread attention due to its high theoretical lithium storage specific capacity
(279 mAh/g) for lithium-ion batteries’ cathode. Nevertheless, low conductivity, slack reaction ki-
netics, and large volume change during Li+ ions intercalation and deintercalation seriously limit
the practical application of α-MoO3. Herein, we added a small number of CNTs (1.76%) to solve
these problems in a one-step hydrothermal process for preparing the α-MoO3/CNTs composite.
Because of the influence of CNTs, the α-MoO3 nanobelt in the α-MoO3/CNTs composite had a larger
interlayer spacing, which provided more active sites and faster reaction kinetics for lithium storage.
In addition, CNTs formed a three-dimensional conductive network between α-MoO3 nanobelts,
enhanced the electrical conductivity of the composite, accelerated the electron conduction, shortened
the ion transport path, and alleviated the structural fragmentation caused by the volume expansion
during the α-MoO3 intercalation and deintercalation of Li+ ions. Therefore, the α-MoO3/CNTs
composite cathode had a significantly higher rate performance and cycle life. After 150 cycles, the
pure α-MoO3 cathode had almost no energy storage, but α-MoO3/CNTs composite cathode still
retained 93 mAh/g specific capacity.

Keywords: cathode; α-MoO3; carbon nanotubes; lithium-ion batteries

1. Introduction

Nowadays, to cope with the ever-increasing energy demands, it is imperative to de-
velop energy storage technologies with low cost, high capacity, and long cycle life [1]. In
typical energy storage technologies, rechargeable lithium-ion batteries (LIBs) stand out for
their environmental friendliness, high energy density, high operating voltage, and no mem-
ory effect. However, with the rapid development of portable electronic devices, electric
vehicles, grid applications, etc., researchers should continue to dive into the exploration of
higher-capacity electrode materials to meet the increasing needs for higher energy-density
storage, although LiCoO2, LiMn2O4, LiFePO4, and LiNi0.33Co0.33Mn0.33O2 cathode materi-
als have been commercialized [2]. Transition metal oxides with high reversible capacity
and excellent electrochemical performance based on pseudocapacitive energy storage
mechanisms are good candidates for cathode materials [3]. As a cathode material of LIBs,
MoO3 has piqued broad research interests due to its abundant resources, stable chemical
properties, and high theoretical specific capacity [4–7]. Taking the widely studied thermo-
dynamically stable orthorhombic stable a-phase MoO3 (α-MoO3) with anisotropic [5] as an
example, its unique layered structure consists of two edge-sharing layers of [MoO6] octahe-
dra sharing corners along the crystal orientation [001] and [100], and a two-dimensional
structure stacked by van der Waals forces along [010]. This two-dimensional structure of
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α-MoO3 allows ions (such as Li+) to intercalate into the interlayer, leading to highly redox
active Mo6+/Mo5+ and Mo5+/Mo4+ double electron reactions, with a high specific capacity
of nearly 300 mAh/g [8]. In our previous work on α-MoO3 as an anode for Li+ storage
based on conversion reactions, the intercalation reaction of α-MoO3 as a cathode had better
structural stability and a faster kinetic reaction [9]. In recent studies, xia et al. monitored
the structural changes of MoO3 during lithium storage by in situ TEM, providing intuitive
evidence for its lithiation and delithiation behavior [10]. The MoO3 cathode modified
by ammoniation by Wang et al. showed good stability in the voltage of 1–3.5 V [8]. The
electrodeposition of MoO3 nanoparticles on conductive materials by Zhang et al. showed
excellent kinetics [11]. However, the inherent low conductivity and poor rate performance
of α-MoO3 as a transition metal oxide still limit its application [12]. In addition, during the
initial cycle, an irreversible phase transition occurs near the discharge platform at 2.8 V,
which causes α-MoO3 layer deformation and the capacity to rapidly decay in subsequent
cycles. To solve these problems, researchers have enhanced pseudocapacitance storage by
constructing nanostructures and manufacturing oxygen vacancies, electrical conductivity
by pre-intercalation and compounding with carbon materials, the electrochemical perfor-
mance of α-MoO3, etc. [13–16]. Although the lithium storage performance of α-MoO3 has
been improved, the preparation methods are often complicated, and the improvement of
lithium storage performance is still insufficient. For example, the fabrication of oxygen
defects requires strict control of the etching time. The pre-intercalation is necessary for
controlling the amount of ion insertion and prevention of detachment during subsequent
cycles. Several studies have indicated that ensuring the uniformity of composite materials
when compounding with carbon materials is difficult [11,13,17–23]. Therefore, it is still
challenging to effectively improve the electrochemical performance of α-MoO3 of lithium
storage to meet future large-scale production needs.

Herein, unique α-MoO3/carbon nanotubes (CNTs) composite cathode was synthe-
sized by adding a small amount of functionalized CNTs (1.76%) in a one-step hydrothermal
process, and we used hydrophobic multiwall carbon nanotubes (CNTs). To facilitate the
synthesis of α-MoO3/CNTs composite with an internal embedded structure, we treated
the CNTs to make them rich in functional groups. Specifically, we acidified the multiwall
CNTs to make them hydrophilic. Given the influence of CNTs, the α-MoO3 nanobelt in the
α-MoO3/CNTs composite introduced oxygen vacancies and had a larger interlayer spacing,
providing more active sites and faster kinetic reaction for lithium storage. In addition,
the CNTs formed a three-dimensional conductive network between α-MoO3 nanobelts,
enhancing the composite’s electrical conductivity, accelerating the electron conduction,
shortening the ion transport path, and alleviating the structural fragmentation caused by
the volume expansion in the Li+ storage process. Thus, the rate performance and the cycle
life of α-MoO3/CNTs composite were significantly improved compared to pure α-MoO3.

2. Results and Discussion
2.1. Structure and Morphology Analysis

The α-MoO3/CNTs composite was prepared by a simple one-step hydrothermal
method. Figure 1a shows the effect of CNTs on α-MoO3 in the α-MoO3/CNTs composites,
including the expanded interlayer distance α-MoO3 structure and CNTs’ three-dimensional
conductive network in the α-MoO3/CNTs composite. This point is confirmed by the X-ray
diffraction (XRD) results of α-MoO3/CNTs composite and pure α-MoO3. As shown in
Figure 1b, the X-ray excitation source was monochrome Al Ka (hv = 1486.6 eV), power
150 W, X-ray beam spot 500 µm, and an energy analyzer through an energy of 30 eV. Due to
the low content of CNTs, the α-MoO3/CNTs composite corresponds well to orthorhombic
α-MoO3 (JCPDS No. 05-0508, space group: Pbnm (62)) [24–26]. The α-MoO3/CNTs com-
posite had better crystallinity without other impurity phases, and the (0k0) peak was very
sharp, which further illustrates that the layered structure of α-MoO3 held together along
the b-axis and preferred orientation growth along the [001] direction. This is consistent
with the long nanobelt shape in the SEM image. The SEM image (Figure 1c) shows a thin
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and uniform nanobelt structure of the α-MoO3/CNTs composite with a length of about
1–6 µm [27–30]. Compared with pure α-MoO3, the composite nanobelts were shorter, and
the TEM image in Figure 1d indicates the presence of bent CNTs between the α-MoO3
nanobelts. The CNTs were uniformly distributed between the α-MoO3 nanobelts to form
a serviceable conductive network, which greatly increased the conductivity during the
energy storage process. It is worth noting that the XRD patterns were partially enlarged,
as shown in Figure 1e. Compared with the (0k0) peak position of pure α-MoO3, the peak
position of the CNTs added α-MoO3/CNTs composite was significantly shifted to a smaller
angle. This verifies that the CNTs embedded α-MoO3 in the α-MoO3/CNTs composite had
a larger interlayer spacing than the pure α-MoO3.
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Figure 1. (a) Schematic of the comparison of α-MoO3/CNTs composite and pure α-MoO3. (b) XRD
patterns of the α-MoO3/CNTs composite and pure α-MoO3. (c) SEM image of the α-MoO3/CNTs
composite. (d) TEM image of the α-MoO3/CNTs composite. (e) XRD patterns around the (020), (040),
and (060) diffraction peaks.

Figure 2a is the Raman spectra comparison of the α-MoO3/CNTs composite and
pure α-MoO3. Both the D-peak and G-peak are the Raman characteristic peaks of C-atom
crystals, which were observed around 1300 cm−1 and 1600 cm−1, respectively. The D and
G bands in the Raman spectra can verify the presence of a small number of CNTs in the
α-MoO3/CNTs composite. The characteristic bands of α-MoO3 in the composite were
observed at 1006 cm−1 (Ag, νas Mo=O stretch) and 828 cm−1 (Ag, νas Mo=O stretch), which
corresponds to the axially symmetric stretching vibration of the terminal Mo=O along
the a-axis and b-axis, and the characteristic bands of α-MoO3 were observed at 676 cm−1

(B2g, B3g, νas Mo-O-Mo stretch) and 482 cm−1 (Ag, νas Mo-O-Mo stretch and bend), which
corresponded to the bridge oxygen bond with weakly bound oxygen along the c-axis.
The peak on the right side of Figure 2a is the D-band and G-band of the CNTs in the α-
MoO3/CNTs composite, and the D-band and G-band frequencies were 1373 and 1620 cm−1,
respectively. The ID/IG = 0.876, indicating that the disorder of CNTs was high, which is
consistent with the TEM image of Figure 1d. To determine the content of CNTs in the α-
MoO3/CNTs composite, an thermogravimetric analysis of the composites was carried out.
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Figure 1b shows the TG and DTG curves of the α-MoO3/CNTs composite at a 10 ◦C/min
heating rate in an air atmosphere. The apparent weight loss from 150 ◦C to 450 ◦C was the
reaction of bound water in the composites, and the apparent weight loss from 450 ◦C to
550 ◦C could be ascribed to the decomposition of CNTs. Therefore, the content of CNTs
was 1.76%, and a small amount of CNTs greatly influenced the structure of α-MoO3 in the
α-MoO3/CNTs composite. The XPS spectra of the α-MoO3/CNTs composite and pure
α-MoO3 are shown in Figure 2c,d. The XPS survey spectrum signifies the coexistence of
Mo, O, and C elements in the α-MoO3/CNTs composite. The high-resolution spectrum
of Mo 3d in the composite (Supplementary Figure S1a) shows a pair of Mo6+ peaks and
a pair of weaker Mo5+ peaks. The 232.8 and 235.95 eV peaks belonged to Mo 3d5/2 and
Mo 3d3/2 peaks of Mo6+. The 231.7 and 234.85 eV peaks corresponded to Mo 3d5/2 and
Mo 3d3/2 peaks of Mo5+. Because of the presence of Mo5+, the α-MoO3 component in
the α-MoO3/CNTs composite contains oxygen defected. Compared to pure α-MoO3, the
peak position was almost not shifted, but the Mo5+/Mo6+ of α-MoO3/CNTs composite
was more extensive because CNTs made the synthesized α-MoO3 contain more defects.
The value of Mo5+ and Mo6+ was 0.072, so the calculation of α-MoO3−x with defects was
x = 0.03 in the composite. The strong peak at 530.6 eV in the O 1s high-resolution spectrum
of Supplementary Figure S1b corresponded to the Mo-O bond in α-MoO3, while 531 eV
corresponded to the C=O bond. The content of the C=O bond in the composite was lower
due to the presence of CNTs. The C 1s high-resolution spectra Figure 2d of α α-MoO3/CNTs
composite can be fitted into three peaks of 284.6, 285.1, and 288.75 eV, corresponding to
C=C, C-C, and C=O bonds, respectively. The high content of the C-C bond was from
the CNTs.
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Figure 2. (a) Raman spectra of the α-MoO3/CNTs composite and pure α-MoO3. (b) TG and DTG curve
of the α-MoO3/CNTs composite. (c) Survey XPS spectra of the α-MoO3/CNTs composite and pure
α-MoO3. (d) The high-resolution XPS spectra of the C 1s region of the α-MoO3/CNTs composite.
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Due to the addition of CNTs in the hydrothermal reaction, some oxygen defects were
introduced during the synthesis of α-MoO3. The α-MoO3 had a larger interlayer spacing
but still maintained the nanobelt structure in the α-MoO3/CNTs composite. If the content of
CNTs is increased, the [MoO6] octahedra structure will be more distorted and the nanobelts
will be broken during the synthesis process. The α-MoO3/CNTs composite synthesized by
adding a small number of CNTs in a one-step hydrothermal process is quite different from
the microstructure of pure α-MoO3 and will have a greater effective effect on the energy
storage process.

2.2. Electrochemical Analysis

To further study the effect of CNTs onα-MoO3 as a cathode material for lithium-ion bat-
teries, the first three galvanostatic charge/discharge measurements of the α-MoO3/CNTs
composite cathode and the pure α-MoO3 cathode were performed at a current density of
50 mA/g between the potential of 1 and 3.25 V. The results were contrasted with cases
from the other work, as shown in Table 1. From the galvanostatic charge/discharge curves
of the α-MoO3/CNTs composite cathode in Figure 3a, it can be seen that there was a dis-
charge voltage plateau at about 2.75 V in the first cycle. The plateaus corresponded to Li+

intercalated in α-MoO3 to form a LixMoO3 solid solution, and these discharge plateaus dis-
appeared in the subsequent cycles. The Li+ were reversibly intercalated and deintercalated
in the α-MoO3/CNTs composite cathode, corresponding to the discharge voltage plateau
at 2.25 V and the charging voltage plateau at 2.60 V, respectively. The initial discharge-
specific capacity was 296 mAh/g, and the initial coulombic efficiency (ICE) reached 85%.
The energy storage was primarily carried out by inserting and extracting Li+ by α-MoO3
in a composite cathode. In addition, the capacity of the pure α-MoO3 cathode without
CNTs constantly decayed from Figure 3c, indicating that the α-MoO3/CNTs composite had
better electrochemical performance. At the same current density, the first discharge-specific
capacity of the pure α-MoO3 cathode was 268 mAh/g, but the first-coulomb efficiency
was only 68%, which is probably the reason that the structure of pure α-MoO3 was ir-
reversibly destroyed during the intercalation of Li+ [11,31]. In contrast, the structural
failure of the α-MoO3/CNTs composite was caused by the volume expansion of α-MoO3
during Li+ storage [20]. Because of the embedding of CNTs, the α-MoO3 nanobelt in the
α-MoO3/CNTs composite had a larger interlayer spacing, which provided more active
sites of Li+ intercalation and deintercalation. Comparing the irreversible Li+ storage part
of the α-MoO3/CNTs composite cathode with that of pure α-MoO3 by the galvanostatic
charge/discharge curves, the lithium storage process of α-MoO3 by the Li+ intercalation
and deintercalation of the [MoO6] octahedral inter-layers and intra-layers positions, as
well as the irreversible Li+ storage, can be attributed to the Li+ intercalated in the α-MoO3
intra-layer positions, which could not be completely reversibly extracted [13,24]. The
α-MoO3/CNTs composite cathode corresponded to only irreversible 0.23 Li+/Mo, while
pure α-MoO3 corresponded to irreversible 0.45 Li+/Mo. The pure α-MoO3 corresponded
to more irreversible Li+ ion intercalation, which further verifies the improvement of CNTs
on the reversible Li+ ions storage part of α-MoO3. Comparing the cyclic voltammetry
curves of the first three cycles at a scan rate of 0.2 mV/s of the α-MoO3/CNTs composite
cathode with the pure α-MoO3 cathode, Figure 3b shows that the reduction peaks of the
α-MoO3/CNTs composite cathode appeared at 2.7 and 2.2 V. However, the reduction peak
at 2.7 V disappeared in the subsequent cycle, which was caused by the irreversible interca-
lation of Li+ into α-MoO3 in α-MoO3/CNTs composite cathode and the generation of the
interface phase between the composite cathode and the electrolyte. The results correspond
to the galvanostatic charge-discharge curve. As Figure 3d shows, the reduction peaks of
the pure α-MoO3 cathode appeared at 2.6, 2.25, and 1.95 V, respectively, and then the peak
position shifted significantly in the subsequent cycle, and the reduction peak appeared
only at 2.1 V. These may have been due to the serious collapse of the layered structure of
pure α-MoO3 cathode after the first Li+ insertion, and the reduction and instability of Li+

intercalation active sites between and within layers of pure α-MoO3 [32]. Compared with
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pure α-MoO3, the gap between the oxidation peak and the reduction peak was smaller, and
the peak current was even larger in the CNTs added α-MoO3/CNTs composite cathode,
indicating that the polarization phenomenon was smaller and the kinetic reaction was
faster, respectively.

Table 1. The literature data of the α-MoO3/carbon composite cathode.

Cathode Initial Capacity Rate: Capability/Current
Density Cycling Life Ref.

carbon-coated MoO3 258 mA h g−1 118 mAh g−1/3 A g−1 125 mAh g−1 at 1.5 A g−1 after
500 cycles

[13]

α-MoO3−x plasma etching 224.2 mA h g−1 ≈90 mAh g−1/5 A g−1 67.3 mAh g−1 at 1 A g−1 after
1000 cycles

[33]

α-MoO3/SWCNT-COOH 193.8 mA h g−1 -- 70 mAh g−1 at 0.5 A g−1

after 117 cycles
[22]

α-MoO3/N-CNTs 250 mA h g−1 190 mAh g−1/0.3 A g−1 250 mAh g−1 at 0.3 A g−1 after
50 cycles

[11]

α-MoO3/PEO 352 mA h g−1 -- 124 mAh g−1 at 0.03 A g−1 after
50 cycles

[34]

This work 296 mA h g−1 77.2 mAh g−1/1 A g−1 93 mAh g−1 at 0.1 A g−1

after 150 cycles
This work
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To explore the Li+ storage mechanism of the CNTs added to the α-MoO3/CNTs com-
posite cathode, we characterized the morphology and elemental chemical state of the Li+

ion-intercalated α-MoO3/CNTs composite cathode after the first discharge. Figure 4a
shows the TEM image of α-MoO3/CNTs first discharge to 1 V at a current density of
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100 mA/g. It can be seen that the CNTs were uniformly distributed near the α-MoO3
nanobelts. The intercalation of Li+ during discharge increases the width of the α-MoO3
nanobelts of composite, according to previous studies [35]. It is worth noting that the Li+

intercalation composite cathode did not destroy the α-MoO3 crystal structure, and the
surface remained smooth during the discharge process. This further illustrates that the
lithium storage mechanism is the topological redox reaction, which is different from the
mechanism of the α-MoO3/CNTs composite as the anode for the lithium-ion battery. When
the α-MoO3/CNTs composite was used as an anode electrode for lithium storage in a
voltage window of 0.01–3 V, a clear Li2O crystalline layer was observed on the surface of
the α-MoO3 nanobelts, while no obvious Li2O crystalline layer was observed on the Li+

ion-intercalated α-MoO3/CNTs composite cathode after discharge [10]. Amplifying the
edge position of the nanobelts in the Li+-intercalated α-MoO3/CNTs composite cathode, as
shown in the HRTEM image of Figure 4b, both 3.64 Å lattice spacing corresponding to the
(002) crystal plane of the bent CNTs and 2.07 Å lattice spacing corresponding to the (104)
crystal plane of LixMoO3 (Li1.66Mo0.66O2) can be seen as a consequence of the insertion of
Li+ ions into the α-MoO3 in the α-MoO3/CNTs composite. The element mapping image
of Figure 4c indicates that the Mo and C elements from the α-MoO3/CNTs composite
cathode, from the distribution of P element and EDS dark field image, can be further seen
in the composite cathode Li+ ion storage primarily through the α-MoO3/CNTs composite
cathode of α-MoO3. According to previous studies, when the α-MoO3/CNTs composite
is used as an anode electrode, composite-intercalated Li+ converted into Mo and Li2O,
and the Li+ ions’ deintercalation removed Li2MoO3 amorphous based on the conversion
reaction [10,35,36]. In the subsequent cycle process, the reversible reaction between Mo and
Li2O with Li2MoO3 occurs, which cannot return to the original α-MoO3/CNTs composite
state, and more capacity loss occurs. Therefore, compared with the lithium storage mecha-
nism of the topological redox reaction as the α-MoO3/CNTs composite cathode electrode
of the lithium-ion battery, the first coulomb efficiency is lower when used as the anode
electrode [9]. Figure 4d–f show the XPS images of the α-MoO3/CNTs composite cathode
after the first discharge. Figure 4d XPS survey spectrum signifies the Mo, O, and C elements
in the α-MoO3/CNTs composite, as well as Li, P, and F elements, from the intercalation
of Li+ into the composite cathode during discharge and the generation of the interface
phase between the composite cathode and the electrolyte. Compared with the initial
α-MoO3/CNTs composite cathode, in the Mo3d high-resolution XPS spectrum (Figure 4f),
after Li+ ions intercalation, the Mo 3d5/2 and Mo 3d3/2 of the discharged composites shifted
to a small angle, which is attributed to the reaction:

MoO3 + xLi+ + xe− ←→ LixMoO3, (1)

and to the formation of LixMoO3 [37–39]. Not only that, but the Li 1 s high-resolution XPS
spectrum (Figure 4g), located in 54.9 eV and 56.7 eV, can be attributed to the formation
of α-MoO3/CNTs composite cathode and electrolyte interface phases (CEI) and Li+ ions
intercalation into the α-MoO3 layer of the formation.

The current study conducted cyclic voltammetry tests at different scan rates to explain
the lithium storage mechanism of the CNTs added α-MoO3/CNTs composite cathode.
As shown in Figure 4g–i, the CV curve presented that the redox peak position did not
shift significantly, and the curve shape was almost unchanged as the scan rate increased,
indicating a better rate performance. When the scan rate was greater than 0.6 mV/s,
the charge storage was dominated by the capacitance and less limited by the diffusion-
controlled redox reaction, indicating a greater Li+ transfer kinetic. And when the scan rate
was 1.0 mV/s, the diffusion control was less than 32.7%. The α-MoO3/CNTs composite
cathode will lead to faster reaction kinetics and an improved rate performance.

The rate capability and cycle performance of the α-MoO3/CNTs composite cathode
are shown in Figure 5a,b. When the current density was 100 mA/g, the composite cathode
had an initial specific capacity of 266 mAh/g. The α-MoO3/CNTs composite cathode with
168, 139, 122, 112, and 77 mAh/g of specific capacity at the current density increased to
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200, 300, 400, 500, and 1000 mA/g, respectively, and when the current density returned to
100 mA/g, the composite cathode specific capacity returned to about 180 mAh/g. This
demonstrates that the composite structure was hardly destroyed as the current density
increased. Compared with the pure α-MoO3 cathode, when the current density was up
to 1000 mA/g, the pure α-MoO3 cathode had almost no capacity. Furthermore, when the
current density returned to the initial 100 mA/g, the pure α-MoO3 cathode specific capacity
was much smaller than the initial specific capacity and was only 100 mAh/g. As a cathode
electrode, CNTs hardly store Li+, but they effectively improve the Li+ reversible storage
characteristics of α-MoO3 in the α-MoO3/CNTs composite and greatly improve the rate
performance. Figure 5b shows the cycle performance of the α-MoO3/CNTs composite
cathode and the pure α-MoO3 cathode at a current density of 100 mA/g. After 150 cycles,
the α-MoO3/CNTs composite cathode still had a specific capacity of 93 mAh/g, while
the pure α-MoO3 cathode had a specific capacity of only 34 mAh/g. The rate and cycle
performance tests show that the capacity of the α-MoO3 cathode will decay rapidly during
the initial cycle process, while it will be relatively stable during the subsequent cycles. This
is because the intralayer sites of Li+ intercalation in α-MoO3 cannot be completely reversible
during the initial charge-discharge process. With the gradual occupation of the intralayer
sites, the irreversible storage of Li+ is improved [40]. The improvement of lithium storage
electrochemical performance of α-MoO3 by CNTs in the composite cathode was proved;
the CNTs embedded into nanobelts to enlarge the interlayer spacing of α-MoO3, and the
three-dimensional conductive network of CNTs improved the poor conductivity and the
structural failure caused by volume expansion of pure α-MoO3 during Li+ deintercalation.
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Figure 4. The Li+ ion-intercalated α-MoO3/CNTs composite cathode (a) TEM image, (b) HRTEM im-
age, (c) EDS element images, (d) Survey XPS spectrum, (e) Mo 3d, and (f) Li 1s spectra. (g) CV curves
of the α-MoO3/CNTs composite cathode were obtained. (h) The normalized charge contribution
of the capacitive and diffusion-controlled capacities was extracted. (i) Capacitive charge storage
contribution (blue area) to the total capacity at a scan rate of 1 mV/s.
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Figure 5. (a) The rate capability of theα-MoO3/CNTs composite and pureα-MoO3 at different current
densities. (b) Cycling performance of the α-MoO3/CNTs composite and pure α-MoO3 at 100 mA/g.
GITT curve and diffusion coefficients calculated from GITT curves for (c) the α-MoO3/CNTs compos-
ite cathode and (d) pure α-MoO3 cathode. (e) Nyquist plots of the α-MoO3/CNTs composite and
pure α-MoO3. (f) The relationship plots between Z’ and ω−1/2 in the low-frequency range of the
α-MoO3/CNTs composite cathode.

To further explore the reason why CNTs improve the electrochemical performance of
the α-MoO3/CNTs composite cathode, the Li+ diffusion kinetics of the composite cathode
and pure α-MoO3 cathode during charging and discharging were investigated by the
galvanostatic intermittent titration technique. As shown in Figure 5c,d, the diffusion
coefficient of α-MoO3/CNTs composite cathode was always higher than that of the pure
α-MoO3 cathode, which proves that Li+ diffused faster in the α-MoO3/CNTs composite
cathode. This may have been due to the presence of the CNTs’ three-dimensional conductive
network shortening the ion transport path. Meanwhile, we tested the electrochemical
impedance spectroscopy for both the α-MoO3/CNTs composite cathode and pure α-MoO3
cathode in Figure 5e. It shows that compared to pure α-MoO3, the semicircle diameter
of the α-MoO3/CNTs cathode in the high-frequency region was smaller, corresponding
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to the charge transfer resistance at the interface between the electrode and the electrolyte.
The fitting circuit is shown in the upper left of Figure 5e (Rct = 53.33 Ω), and the enhanced
conductivity indicates that the α-MoO3/CNTs composite cathode had a higher electron
conduction efficiency and faster kinetic reaction. In Figure 5f, compared with pure α-MoO3,
the α-MoO3/CNTs composite cathode had a smaller diffusion resistance (Warburg factor,
Zw) in the low-frequency range, that is, the slope of the fitting curves of Z′ andω−1/2 was
smaller, which further verifies that the Li+ diffusion in the composite cathode was faster.
The Li+ ion diffusion coefficient can be calculated according to the following formula:

DLi =
R2T2

2A2n4F4C2σ2
(2)

In Equation (2), DLi is the diffusion coefficient of Li+ (cm2/s), R is the gas constant
(8.314 J/Kmol), T is the temperature during the experiment (298 K), A is the electrode
material area (cm−2), n is the number of electrons per mole of the active material transferred
in the electrode reaction, F is the Faraday constant (96,500 C/mol), C is the lithium ion
concentration (mol/L), and σ is the slope of Z′~ω−1/2. The DLi = 9.3 × 10−19 cm2/s in the
α-MoO3/CNTs composite cathode. The CNTs were embedded inside α-MoO3 nanobelts
and cross-linked between α-MoO3 nanobelts, which improved the conductivity of the
composite cathode and accelerated the transmission of Li+; it also effectively inhibited the
volume expansion of α-MoO3 during charging and discharging. These tests show that
the α-MoO3/CNTs composite cathode had faster electron and ion transfer rates and faster
reaction kinetics.

3. Conclusions

In summary, the CNTs were added by the one-step hydrothermal reaction to synthesize
the α-MoO3/CNTs composite and thus effectively solve the poor conductivity and cycle
stability of pure α-MoO3. The part of CNTs was embedded inside the α-MoO3 nanobelts,
which made the α-MoO3 have a larger interlayer spacing and provided more active sites
and faster kinetic reaction for lithium storage. Another part of CNTs formed a three-
dimensional conductive network between α-MoO3 nanobelts, enhancing the electrical
conductivity of the composite, accelerating the electron conduction in the energy storage
process, shortening the ion transport path, and alleviating the structural fragmentation
caused by the volume expansion during the α-MoO3 deintercalation of Li+, leading to a
significantly improved rate performance and cycle life of lithium storage.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13152272/s1, Figure S1: XPS spectra of the α-MoO3/CNTs
composite and pure α-MoO3: (a) Mo 3d, (b) O 1s region.; Figure S2: (a) N2 adsorption/desorption
curve and (b) pore size distribution of the α-MoO3/CNTs.
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