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Abstract: The nonlinear optical (NLO) response of photonic materials plays an important role in
the understanding of light–matter interaction as well as pointing out a diversity of photonic and
optoelectronic applications. Among the recently studied materials, 2D-LTMDs (bi-dimensional
layered transition metal dichalcogenides) have appeared as a beyond-graphene nanomaterial with
semiconducting and metallic optical properties. In this article, we review most of our work in studies
of the NLO response of a series of 2D-LTMDs nanomaterials in suspension, using six different NLO
techniques, namely hyper Rayleigh scattering, Z-scan, photoacoustic Z-scan, optical Kerr gate, and
spatial self-phase modulation, besides the Fourier transform nonlinear optics technique, to infer the
nonlinear optical response of semiconducting MoS2, MoSe2, MoTe2, WS2, semimetallic WTe2, ZrTe2,
and metallic NbS2 and NbSe2. The nonlinear optical response from a thermal to non-thermal origin
was studied, and the nonlinear refraction index and nonlinear absorption coefficient, where present,
were measured. Theoretical support was given to explain the origin of the nonlinear responses, which
is very dependent on the spectro-temporal regime of the optical source employed in the studies.

Keywords: electronic optical nonlinearity; thermal optical nonlinearity; bidimensional transition
metal dichalcogenides

1. Introduction

Understanding the light–matter interaction under laser excitation has been an impor-
tant driver for researchers in the field of nonlinear optics and materials science. Beyond the
basic science, technological developments led to a broad range of applications of photonic
materials, from theragnostic to optical communications. Among the myriad of materials
for photonic applications, ultrathin (below 10’s of nm to just a few nm) two-dimensional
(2D) lamellar materials have appeared with appealing applications based on the growth,
characterization, and management of processing methods, as reviewed in [1–4]. On the
other hand, nonlinear optics (NLO) and nonlinear photonics studies in a wide range of 2D
materials have rapidly evolved in the last 5–10 years, as can be seen in the reported reviews
in [5–11].

The NLO basics and techniques to study an optical material response to an incident
field are well-revised in articles [12,13] and textbooks [14,15], and they will not be re-
emphasized or reproduced here.

A very important aspect of the NLO response of a medium is the understanding of
its origin. For that, it is imperative to employ an adequate spectro-temporal regime for
the optical source, as well as the morphological and linear optical characteristics of the
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medium under study. The measurement techniques are also determinant for understanding
the physical processes in the NLO response and may indicate the basis for photonics or
optoelectronics applications. The most studied NLO responses arise from the second- and
third-order nonlinearities, which leads to wave mixing processes as summarized in Table 1.
The second-order polarization leads to second harmonic generation (SHG) and sum or
difference frequency mixing (SFM or DFM, respectively) and optical rectification (OR). The
third-order polarization leads to a myriad of effects, including third harmonic generation
(THG), four-wave mixing (FWM), optical Kerr effect (OKE), saturable absorption (SA),
two-photon absorption (TPA), and stimulated Raman scattering (SRS). It is also worth
reiterating that the third-order susceptibility, χ(3), is a complex parameter with real and
imaginary parts, Reχ(3) and Imχ(3). Those two terms can be described (see one of the
refs. [12–15] for details, or a good summary of all terms in the polarization expansion of
χ(3) in ref. [8]) as being proportional to the intensity-dependent nonlinear refraction (NLR)
index and nonlinear absorption (NLA) coefficient, respectively.

Table 1. Nonlinear polarization and associated wave mixing processes.

Polarization Term Associated Mixing Process

P0 Permanent polarization None

P(1) = ε0χ(1) ⊗ E First-order polarization None

P(2) = ε0χ(2) ⊗ EE
Second-order polarization

(considering incident fields of
frequencies ω1 and ω2)

2ω1, 2ω2, ω1 ± ω2

P(3) = ε0χ(3) ⊗ EEE
Third-order polarization

(considering incident fields of
frequencies ω1, ω2 and ω3).

ω1 ± ω2 ±ω3; 3ωn, n = 1, 2, 3;
2ωm ±ωn (m, n = 1, 2, 3; m 6= n)

Generally speaking, the real part of χ(i) is proportional to the refractive index, ni−1,
while its imaginary part is related to the absorption coefficient, αi−1. In the case of cen-
trosymmetric materials, only the first- and third-order susceptibilities are considered (ne-
glecting higher-order odd terms). The third-order refractive index, n2, and the third-order
absorption coefficient, α2, can be written (in SI units) in terms of χ(3) as

n2 =
3 Re χ(3)

4ε0cn2
0

(1)

and

α2 =
3ω Im χ(3)

2ε0c2n2
0

(2)

In the review article of ref. [8], as well as in ref. [12], an excellent account of the NLO
techniques employed to characterize optical materials is given, and in this review, we
shall not be exhaustive and only describe the techniques that we have employed (see
Section 2). Furthermore, in a recent publication, Vermeulen and co-workers reported on
“post-2000 Nonlinear Optics: Data Tables and Best Practices” [16], where a thorough survey
of NLO in a wide variety of materials, including 1D, 2D, and 3D dimensions, from fibers to
nanostructures to bulk, is described, with insights into physical pictures, techniques, and
the main results.

In Figure 1, we pictorially describe what comes in the remainder of this article, which
mainly reviews some of our own work over the last few years in characterizing the NLO
properties of 2D layered transition metal dichalcogenides (LTMDs) in suspension and
comparing it with some reports in the literature. In Section 2, we describe the preparation
and characterization of the materials, as well as the employed NLO techniques. In Section 3,
we describe the results of intensity-dependent NLO response of 2D LTMDs, particularly
second-order studies, intensity-dependent thermal response, and intensity-dependent non-
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thermal responses, including time-resolved results. In Section 4 we discuss challenges and
opportunities for research in 2D LTMDs.
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2. Material Preparation and Characterization Methods
2.1. LTMDs Synthesis and Characterization

As indicated in refs. [1–4], there have been great advances in the synthesis of 2D
materials, from graphene and beyond, which includes black phosphorous, MXenes, clays,
arsenenes, silicenes, phosphorenes, hexagonal boron nitrite, and the LTMDs family, among
others. The synthesis methods for such materials vary and follow the general classification
of bottom-up or top-down methods. Bottom-up methods, which are excellent for synthe-
sizing high-quality ultrathin nanocomposites with very wide lateral dimensions, include
wet chemical, hydro/solvothermal, template, microwave-assisted, topochemical trans-
formation, chemical and/or physical vapor deposition (CVD/PVD). On the other hand,
top-down techniques include a variety of exfoliation processes such as electrochemical,
ultrasonic, ion exchange, mechanical, and liquid phase exfoliation (LPE). A good review
and well-referenced text on the above bottom-up and top-down methods can be found in
ref. [3]. Figure 2a shows a periodical table highlighting the atoms that can be combined to
form 2D LTMDs and other 2D materials [17], Figure 2b depicts a table exhibiting various
physical properties of 2D materials (including LTMDs) such as magnetism (ferromagnetic
(F)/anti-ferromagnetic (AF)), superconductivity (s) and charge density wave (CDW) and
crystal structures (2H, 1T) [18]. In the table of Figure 2c, other relevant characteristics of 2D
LTMDs are shown [19].

As pointed out in ref. [17], TMDs present strong anisotropy in their electrical, chemical,
mechanical, and thermal properties, as a consequence of the way they crystallize, in a
graphite-like layered structure. TMDs formed from Groups 4–7 (the most studied in this
work) in Figure 2a are predominantly layered, whereas some of the TMDs formed from
Groups 8–10 are generally found in non-layered structures. It is also known that, in layered
structures, the layer typically has a thickness of 6~7 Å, consisting of a hexagonally packed
layer of metal atoms sandwiched between two layers of chalcogen atoms. The inner-layer
M–X bonds are mainly covalent in nature, whereas the sandwich layers are coupled by
weak van der Waals forces, therefore allowing the crystal to readily cleave along the layer
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surface. Several other fundamental features of 2D LTMDs can be found in the indicated
refs. [1–4,17–19].
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permission); (c) electronic character of different 2D LTMDs (from ref. [19], with permission).

In this review, we focus on an alternative LPE method based on a redox exfoliation
mechanism [20,21] to achieve few-to-monolayer yields for MX2 (M = Ti, Zr, V, Nb, Mo, and
W; X = S, Se, Te), covering Groups 4–7 (see Figure 2a) with the feasibility of exceeding 10%
of the starting LTMD powder. The reported selected results employed the nanomaterials
produced by this method. All the nanoflakes were suspended in acetonitrile (ACN),
providing a stable colloid (see Figure 3). A detailed description of the chemical material
acquisition, synthesis, and characterization of the materials is given in refs. [20,21] and only
a summarized description is given here, which is illustrated in Figure 3 (from ref. [21]) for
groups 4–7 LTMDs. The main steps are: (a) a soluble oxidant is added to a heterogeneous
suspension of LTMDs in ACN to form soluble molecular metal oxide precursors (MOPs);
(b) following that, a reductant (also soluble) is added to put together these MOPs to anionic
polyoxometalates clusters (POMs); (c) adsorption of these POMs to the edge, interlayer gap,
or surface of the bulk crystallites triggers sequential delamination via Coulombic repulsion,
and provides colloidal stability to the delaminated sheets. It is important to notice that this
process does not require mechanical agitation of the LTMDs and stirring (via a stir plate)
suffices to start delamination. Furthermore, redox exfoliation appears to be ubiquitous, as
soluble metalates (SoMs = soluble MOPs and POMs) are typical products of Groups IV–VII
LTMD oxidation via hydrolysis. Therefore, as shown in [20,21], redox exfoliation has been
shown to provide stable, colloidal dispersions of all Groups 4–7 LTMDs in a wide range
of solvents (e.g., acetone, acetonitrile, and DMF), as seen in the photographs of Figure 3b.
Because of batch-to-batch variability and an incomplete understanding of the multistep
procedure, its broader utilization has been limited, despite its generality.
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Figure 3. (a) Mechanism of redox exfoliation via POM assembly. (1) Bulk MoS2 powders are treated
with a mild oxidant (cumene hydroperoxide) to generate solution-soluble molecular metal oxide
precursors (MOPs described as red spheres) that exist in a solution−surface equilibrium. (2) The
addition of reductant initiates MOP condensation and assembly into highly charged polyoxometalates
(POMs). These POMs adsorb to MoS2 surfaces and create strong Coulombic repulsion driving
delamination. (3) Exfoliation of few-layer MoS2 from the bulk crystallites exposes fresh surfaces
for further adsorption, assembly, and delamination events until precursors (MOPs) and active
exfoliant (POMs) are exhausted (from ref. [21], with permission); (b) Photographs of the 2D LTMDs
colloids prepared using the technique shown in (a). SM-SC: semimetal-semiconductor; M-FM:
metal-ferromagnetic; M- metal; SC—semiconductor; SM—semimetal (picture from the authors).
(c) Absorbance spectra for the 2D LTMDs in ACN suspension reported in this review. Further details
will be given in the Section 3.

Morphological and optical characterization of the 2D LTMDs were carried out using
different techniques, which shines a light on the main features of the synthesized nanos-
tructures. Again, a detailed account is given in refs. [20,21], and their support information
therein, for all prepared suspensions reviewed in this work. Data showing AFM, TEM,
XPS, and Raman spectroscopy results give the relevant information. Another important
aspect of the materials employed was their stability. Throughout the different experiments,
the material stability was checked visually (for flocculation or decantation) and the ones
where it happened (few samples from all the batches) were not used. Most of the samples
were and still are stable and stored in the refrigerator when not in use, and all experiments
were performed at room temperature for several days or weeks, without any modification
of the sample. Also, extinction/absorption spectra were taken before and after using the
samples for long (weeks) periods to verify that no modification occurred.

2.2. NLO Techniques

NLO techniques have been widely exploited and well-reviewed in the literature for
photonic materials characterization. In particular, refs. [8,12,16] bring the relevant aspects
of the majority of the NLO methods recently employed, particularly for 2D materials [8]. In
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the works whose results will be discussed here (refs. [22–30]), six different methods were
employed, as shown schematically in Figure 4a–f, namely: (a) Fourier Transform Nonlinear
Optics (FT-NLO); (b) Hyper Rayleigh Scattering (HRS); (c) Spatial Self-Phase Modulation
(SSPM); (d) Z-scan; (e) Photoacoustic Z-Scan (PA Z-scan); and (f) Optical Kerr gate (OKG).
A brief description of the basics of all six methods is given. The results will be reviewed
and discussed in Section 3.
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Figure 4. NLO methods employed in the reviewed work. (a) Fourier Transform Nonlinear Optics
(FT-NLO) [23]. For further details regarding blocks A, B, and C, see Ref. [23]. (b) Hyper Rayleigh
Scattering (HRS) [25]; (c) Spatial Self-Phase Modulation (SSPM); (d) Z-scan; (e) Photoacoustic Z-Scan
(PA Z-scan); and (f) Optical Kerr gate (OKG) (Figures reproduced from the indicated references with
permission).
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2.2.1. Fourier Transform Nonlinear Optics (FT-NLO)

Fourier Transform Nonlinear Optical (FT-NLO) spectroscopy is a powerful tool that
enables the resolution of high-order effects based on interferometric measurements of the
signal [23]. To implement this technique, a pulse replica generator (PRG) is necessary to
allow measurements as a function of the delay (∆τ) between the optical pulses. Coherent
(phase-locked) pulses can be obtained by employing a birefringent delay line, as described
in refs. [31,32], and are schematically represented in Figure 4a (bottom setup).

The FT-NLO technique relies on the Fourier transform (FT) of spectrally and time-
resolved interferometric measurements of the NLO signal to retrieve information about
high-order effects [23] and NLO effects of very low intensity, as in the case of resonance
response of individual gold nanorods [33]. The NLO signals of interest are obtained after
focalizing the pulse replicas in the sample by using a converging lens, followed by an
objective lens to collect the signal that will further be filtered before being detected for
analysis (Figure 4a, top setup).

2.2.2. Hyper Rayleigh Scattering (HRS)

HRS is a technique first employed for studies of molecular solutions [34] and can be
used to determine the orientation-averaged hyperpolarizability of molecules by correlating
the intensity of the scattered second harmonic (SH) wave with the molecular concentra-
tion [35]. A typical experimental setup employed for the HRS measurements is shown in
Figure 4b. To determine the first-hyperpolarizability, an external reference method can be
conveniently employed using a known material such as para-nitroaniline (p-NA) as the ref-
erence standard [36]. The theoretical treatment for the HRS data is well-established [34,35],
as is the external reference method [36]. The HRS signal, I(2ω) as a function of laser
intensity for the two-component (suspension with solute + solvent) system studied, can be
written as [37]:

I(2ω) = G
(

Nsol

〈
β2

sol

〉
+Nsolv

〈
β2

solv

〉)
I

2
(ω), (3)

where sol stands for solute (the nanoflakes), solv stands for solvent, and G is a parameter
that includes local field correction and light collection efficiency. The determination of
βc(2ω) by using the reference method will be further discussed in Section 3, with examples
to be given. Other general details can be found in ref. [37].

2.2.3. Spatial Self-Phase Modulation (SSPM)

Among nonlinear optical processes, self-phase modulation of a laser beam occurs
when its intensity is sufficiently high to modify its own properties upon propagation in a
nonlinear medium. For spatial self-phase modulation (SSPM), in particular, a nonlinear
phase that depends on the spatial intensity profile of the beam is acquired, giving rise to
distinct diffraction patterns readily observed in the far field. As a third-order NLO effect,
SSPM is described from a nonlinear correction in the refractive index, regardless of the
origin of the effect, which can be electronic, thermal, or orientational, to cite a few. Therefore,
the examination of the physical mechanism underlying the NLO response becomes crucial
to avoid misconceptions concerning the NLO properties of the materials since, for instance,
intrinsic electronic properties do not bear a relationship with thermal nonlinearities. This
is particularly important in studies of SSPM because, unlike spectral phase modulation,
which requires optical pulses with high peak intensities, SSPM can be observed using both
pulsed and CW lasers. Therefore, with either CW or mode-locked (ML) high-repetition rate
(~MHz) lasers, thermal effects should be considered in the analysis.

Figure 4c is the schematic representation of a typical setup to study SSPM in liquid
suspensions of 2D materials. The vertical configuration is considered to avoid distortions
in the diffraction patterns due to convection [38]. The spatial self-phase modulation of
Gaussian beams, as employed in ref. [26], gives rise to a set of concentric rings in the far-
field, from where one can retrieve n2 based on the number of rings, the incident intensity,
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the effective length of the sample (Leff =
1−e−α0L

α0
, where L is the cuvette length, α0 is the

linear absorption coefficient [26,39]), and the light wavelength [26,40].
Conversely, when using structured light, the nonlinear phase acquired by the optical

beam follows its own spatial intensity profile, which leads to distinct diffraction patterns
in comparison to the SSPM of Gaussian beams. For optical vortex beams (OVBs), for
instance, instead of concentric rings, spiral patterns capable of revealing both the magnitude
(number of distinct spirals composing the pattern) and signal (orientation of the turns) were
observed [41]. We studied SSPM of OVBs with different topological charges (m = 0,±1,
±2, ±3, ±4) after the interaction with liquid suspensions of 2D LTMDs (semiconductor
MoS2, metallic NbS2, and semi-metallic WTe2) [42]. Spectral regions of high (532 nm) and
low linear absorption (790 nm) were employed again. The main results of refs. [26,42]
indicated that thermal effects play a major role and cannot be neglected, as discussed in
Section 3.4. Therefore, care must be taken when inferring the optical properties of materials
based on SSPM experiments, since the main role of flakes may only be to generate thermal
nonlinearities due to the absorbance of the samples.

2.2.4. Z-Scan

The Z-scan method is certainly the most used technique to characterize the third-
order response of optical materials, from bulk to nanoscale. It relies on the analysis of
the wavefront phase distortion of a beam upon propagation through an NL medium in
an excitation intensity regime whereby optical nonlinearity takes place. Experimentally,
as shown in Figure 4d, the Z-scan measurement is carried out by inserting a sample in
the optical path of a focused beam and translating the sample along its axis through the
focal region. When wavefront distortion arises from self-focusing, which occurs when
n2 > 0, or defocusing for n2 < 0, the beam intensity detected through a small aperture
(compared to the beam cross-section) at the far-field changes with the sample position.
Measuring the transmitted intensity through the aperture versus the sample position then
allows the determination of the material’s NL refractive index. Without an aperture in
front of the detector, such that the whole beam is detected, the material’s NLA coefficient
is obtained. The scheme in Figure 4d already shows how these two measurements can be
made simultaneously, and the second detector in each arm provides a normalization to the
intensity fluctuation of the optical source, which can be a continuous wave or pulsed with
a duration from nanosecond to femtosecond, therefore leading to different NLO processes.
The typical signatures of the Z-scan directly give the sign of the NLR or, in the case of NLA,
if it leads to saturated or multiphoton absorption, as shown in Figure 5.
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Quantitatively, it has been shown in the pioneering work of Sheik-Bahae [39] that the
peak-to-valley transmittance variation, ∆Tpv, at a given wavelength, λ, and for a sample of
length, L, in the absence of NLA, is given by:

∆Tpv = 0.406 (1− S)0.25
(

2πL
λ

)
∆n0, (4)

where ∆n0 = n2 I0 (I0 being the irradiance at the focus) is the refractive index change at the
center of the focus when the third-order nonlinearity is dominant. The above equation is
valid for the so-called ‘thin’ samples, and further details can be found in refs. [12,39].

2.2.5. Photoacoustic Z-Scan (PA Z-Scan)

The photoacoustic Z-scan (PA Z-scan) can be seen as an extension of the optical Z-scan,
which detects the generation of acoustic (instead of optical) waves, as an optical pulse is
absorbed by the sample in the nonlinear regime and is converted into sound waves, as
first introduced by [43]. The method relies solely on the material’s absorption, and one
of the advantages of its employment with suspensions of scattering materials is that the
influence of linear or nonlinear scattering is neglected; it can work with opaque samples
and be used with a wide range of excitation wavelengths without the need to change the
detector since the detection is in the acoustic regime. An advanced implementation of this
technique, termed OPA Z-scan, combines an optical Z-scan and PA Z-scan to obtain a better
understanding of the NLA in optical materials [44]. The experimental setup for the OPA
Z-scan is shown in Figure 4e.

2.2.6. Optical Kerr Gate (OKG)

The optical Kerr gate (OKG) is a technique that explores the optical Kerr effect to
measure the time response and the modulus of the third-order nonlinearity of the mate-
rials [12], relying on the polarization rotation of a probe (weak intensity) beam induced
by a pump (strong intensity) beam. Figure 4f shows a schematic representation of the
experimental setup. In the homodyne regime, i.e., when only the nonlinear birefringence is
responsible for the transmitted light after the analyzer, the OKG signal is proportional to
sin2

(
∆φNL

2

)
, which carries direct information about the modulus of n2 through the nonlin-

ear phase acquired by the probe, ∆φNL [45]. Conversely, in the heterodyne regime, even
in the absence of the pump, a portion of the probe leaks through the analyzer either by
linear birefringence, depolarization, or limited extinction of the PBS, and needs to be taken
into account [46]. A common treatment is to retrieve information about | n2| by comparing
the OKG signal of the investigated material to the signal of a known reference. For this
purpose, carbon disulfide (CS2) is usually employed to calibrate the system, serving as a
reference since its nonlinear properties have long been well characterized and recognized
in the literature [47,48]. It is important to emphasize that the properties of the reference
material must have been measured in the same temporal, spectral, and polarization regime
used in the experiments with the materials of interest since the NLO parameters depend on
these attributes, as discussed in ref. [47] for CS2.

3. Intensity-Dependent Nonlinear Optical Response of 2D LTMDs
3.1. Second-Order NLO

For materials with a non-centrosymmetric structure, even-order NLO responses may
be observed after light–matter interaction. For centrosymmetric materials, the observation
of such effects is possible by exploring the interaction of light–matter in regions where
symmetry is broken, as in surfaces, for example. The latter is usually the case when
exploring even-order NLO effects in LTMDs. Second-harmonic generation (SHG), in
particular, is a coherent effect widely explored in thin films of different LTMDs [16,49] (and
refs. therein), but is still limited to distinct structures such as liquid suspensions. In recent
work, Steves et al. used the FT-NLO technique to investigate the SHG of suspended MoS2
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prepared via the redox exfoliation method by employing an 800 nm, 20 fs, Ti:sapphire
oscillator [23]. Figure 6a is the nonlinear emission spectra of the material, showing a
dominant peak at 3.1 eV, corresponding to SHG, and a broad peak around 1.9 eV, which
was attributed to multiphoton photoluminescence (MPPL). Figure 6b,c are the spectrally
resolved interferograms composed of several emission spectra as a function of the temporal
separation between the pulses. The Fourier transform of Figure 6b leads to Figure 6d,
where the inclined lines reveal the coherent character of the signal centered at 3.1 eV
since harmonic generator signals present a correlation between the excitation and detected
frequencies [23]. Figure 6e is the FT of Figure 6c, where the vertical lines indicate the
presence of noncoherent signals as expected for multiphoton photoluminescence (MPPL).

The peaks at different harmonics of the fundamental frequency (ω) in Figure 6d,e
indicate their presence in the NLO response. This is clearer in Figure 7f,g, which corre-
spond to Figure 6d,e integrated over the energy between 2.9 eV–3.3 eV and 1.8 eV–2.0 eV,
respectively, being equivalent to the FT of the interferometric correlation in the time do-
main. The presence of 1ω and 2ω in Figure 6d,f is expected for the SHG signal, but the
presence of higher-order terms is attributed to the presence of POMs, contributing to the
NLO response. As for the MPPL, the FT-NLO technique resolved up to a 10th-order NLO
effect (10ω), as seen in Figure 6g. These high-order effects are not disclosed by the usual
power dependence of the NLO intensity (INLO) as a function of the excitation intensity
(Iexc), i.e., INLO ∝ In

exc (Figure 7a,b, where n is the order of the effect), an indication of how
powerful the FT-NLO technique can be.
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4𝜔 in Figure 6d,f. It also shows an asymmetry in the interferometric pattern (Figure 7d). 
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Figure 6. Experimental NLO responses of MoS2 prepared via redox-exfoliation analyzed via FT-NLO
spectroscopy. (a) Nonlinear emission spectrum of MoS2 excited at 800 nm (corresponding to 1.55 eV in
energy). (b) Spectrally resolved spectrogram centered at 3.1 eV (second harmonic of the fundamental
excitation). (c) Spectrally resolved spectrogram centered at 1.9 eV. (d) Correlation map obtained by
FT along ∆τ of data in graph (b). (e) Correlation map obtained by FT along ∆τ of data in graph (c).
(f) Data in graph (d) integrated over energy between 2.9 eV and 3.3 eV. (g) Data in graph (e) integrated
over energy between 1.8 eV and 2.0 eV (Reproduced from ref. [23] with permission).

The interferometric correlation of the SHG signal shows a decrease around ∆τ = 0
(Figure 7c), which indicates a saturation of SHG associated with the presence of 3ω and 4ω
in Figure 6d,f. It also shows an asymmetry in the interferometric pattern (Figure 7d). None
of these features are observed in the interferometric correlation of the signal associated
with MPPL (Figure 7e,f), which are consistent with the presence of several distinct orders
up to the 10th. As discussed in Section 2.1, the presence of POMs as a byproduct is inherent
to the fabrication of redox-exfoliated samples, which may influence the NLO responses.
For LTMDs fabricated by other methods that are free of POMs, no saturation of the SHG
was reported for the CdSe films investigated by Steves et al. [16,23] (and refs. therein).
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Conversely, a saturation of SHG was observed for redox-exfoliated WS2 and films of CdSe
after the addition of POMs, which confirms the contribution of POMs in the NLO response.
The observation of MPPL with contributions up to the tenth order is also related to the
presence of POMs in the samples. These conclusions are supported by theoretical modeling
of the interferometric signal based on the density matrix approach, as discussed in ref. [23].
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Another technique to explore second-order NLO response is the HRS, as described
in Section 2.2.2. In ref. [24], we employed a polarized-resolved HRS by using an 800 nm,
140 fs, and 80 MHz excitation source to characterize four distinct liquid suspensions of
LTMDs, namely, semiconducting MoS2 and WS2, metallic NbS2, and semi-metallic ZrTe2.
Due to the nanoscale size of the flakes, a direct measurement of the hyperpolarizabilities
was possible in our experiments. Acetonitrile, which is the solvent of the suspensions, was
used as the external reference. Figure 8 shows the HRS intensity as a function of the angle
for vertically (blue) and horizontally (red) polarized light (with respect to the laboratory
frame). As can be seen, the HRS intensity patterns associated with the vertical polarization
present two lobes for all materials, with a deviation that does not exceed 20%. As for
the horizontally polarized light, flattened circular plots appeared for all materials. The
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resulting HRS intensity as a function of the polarization state can be written as [24,25] (and
refs. therein):

IΓ
HRS = aΓcos4 γ+bΓcos2 γsin2 γ + cΓsin4 γ, (5)

where IΓ
HRS is the HRS intensity, Γ corresponds to the H or V polarization state, and the

coefficients aΓ, bΓ, cΓ, which are obtained from the theoretical fits of the experimental
data (black lines in Figure 8), determine the depolarization (DV), the vertical ( ζV), and
horizontal ( ζH) retardation coefficients. The values for all investigated materials are
presented in Table 2.
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Table 2. Depolarization coefficient (DV), vertical (ζV), and horizontal (ζH) retardation coefficients
from polarization plots. Error is about 10% [24].

Sample DV ζV ζH

MoS2 0.35 −0.18 −0.22
WS2 0.49 −0.05 −0.06
NbS2 0.41 −0.03 0.01
ZrTe2 0.45 −0.12 0.04

Acetonitrile 0.28 −0.09 0.02

The expected depolarization ratio for a flat octupolar symmetry nonlinearity is two-
thirds, which is different from the results obtained in ref. [24] (Table 2). A possible ex-
planation is that the POMs adsorbed in the surfaces of the nanoflakes contribute to the
NLO response, as in the case of the FT-NLO study previously discussed [23]. The edges of
the nanoflakes or an octupolar symmetry breaking due to the flexibility of the nanoflakes
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in suspension may also contribute to the deviation of DV in comparison with the value
expected to perfect geometries. As for the retardation coefficients, although they do not
vanish, they indicate weak retardation for all materials, which may be explained by the
strong volume origin of the nonlinearity due to the non-centrosymmetry of the crystal
lattice. A model based on a distribution of local non-polarizable nonlinear dipoles was
introduced to support the findings [24].

In previous work, we focused our attention on the HRS of ZrTe2 suspended in ace-
tonitrile in the nanosecond regime [25]. An Nd:YAG laser operating at 1064 nm, 7 nm,
and 10 Hz was employed as the excitation source, and para-nitroaniline (p-NA) was
used as the reference. The orientation-averaged first-hyperpolarizability measured was
β(2ω) = (7.0± 0.3)× 10−24 esu per ZrTe2 nanoflake, the largest reported to date. An inves-
tigation of the HRS intensity versus concentration of ZrTe2 (in the range between 0.5× 1010

and 4.9× 1010 particles per cm3) revealed a linear behavior, indicating that the second-
harmonic signal is not due to aggregates, but individual nanoflakes. Polarization-resolved
experiments were also performed to identify the origin of the second-order response, in-
dicating an electric dipole origin. The polar plots were similar to the ones presented in
Figure 8, from where the coefficients aΓ, bΓ, cΓ were obtained after theoretical fit by using
Equation (5). Table 3 shows the obtained values together with the depolarization ratio, ρΓ,
and the multipolarity, ζΓ = 1− (a Γ + cΓ + bΓ

)
, for both polarizations employed (vertical

and horizontal). The dipole nature of the NLO response is supported by the relation
presented by the coefficients, i.e., 2aH ≈ 2cH ≈ bH and cH ≈ cV . For a complete discussion,
see ref. [25].

Table 3. Coefficients determined from theoretical fit of the polarization plots of ref. [25] by

using Equation (5). ρΓ = cΓ/aΓ is the depolarization ratio. ζΓ = 1− (a Γ + cΓ + bΓ
)

is the
multipolarity [25].

Coefficient V Polarization H Polarization

a 0.89 0.33
b 1.20 0.74
c 0.27 0.25
ρ 0.30 0.75
ζ 0.03 0.21

3.2. NLR and NLA from Z-Scan and Photoacoustics Z-Scan

The third-order response of LTMD nanomaterials can be studied in different spectro-
temporal regimes, and this sub-section summarizes the results of such responses using
excitation sources in the femtosecond (100–150 fs) or nanosecond (5–10 ns) regime at differ-
ent excitation wavelengths, which could fall in a high absorptive regime of semiconducting
(above optical bandgap) or semimetallic/metallic 2D LTMDs, or a low absorptive regime
(below bandgap for semiconducting 2D LTMDs).

Exploiting the Z-scan method described in Section 2.2 with an optical source from a
regenerative amplifier operating at 100 fs, 1 kHz, and 800 nm, we studied the NLR and NLA
of metallic NbS2 [22], semiconducting MoS2 and WS2 [27], and semimetallic ZrTe2 [28].
Metallic NbS2 was the most interesting 2D LTMD studied among the four materials cited
above. It was the only one to present both NLR and NLA in the intensity range employed
and which would not cause damage to the sample. The main results for the NLR and NLA
in the NbS2 suspension (in ACN) from ref. [22] are shown in Figure 9. It should be clearly
emphasized that all the measured nonlinear coefficients are for the colloidal composite,
and not for a single nanoflake.



Nanomaterials 2023, 13, 2267 14 of 28Nanomaterials 2023, 13, x FOR PEER REVIEW 14 of 28 
 

 

 
Figure 9. (a) Closed-aperture Z-scan curve for ACN at 𝐼 = 70 GW/cm2 (F = 44 mJ/cm2); (b) intensity 
dependence of 𝑛ଶ; and the continuous lines in (a,b) are theoretical fits, see text. Closed-aperture 
measurements for NbS2 (c) below the critical intensity of ∼22 GW/cm2 (F = 34.9 mJ/cm2), (d) above 
the critical intensity, and (e) effective 𝑛ଶ ×  𝐼 plot, showing the critical intensity whereby the sign 
of the NLR changes, 𝐼஼∼25 GW/cm2. NLA measurements for sample NbS2 for (f) 𝐼 = 12.7 GW/cm2 
(F = 8 mJ/cm2), (g) 𝐼 = 65.2 GW/cm2 (F = 41 mJ/cm2), (h) 𝐼 = 96.5. GW/cm2 (F = 60.7 mJ/cm2), and (i) 
125.6 GW/cm2 (F = 79.1 mJ/cm2). (j) Scattered light intensity behavior versus the input laser intensity 
in the NbS2 suspension (Adapted from ref. [22], with permission). 

Initially, as a good practice and control experiment, the solvent (ACN in this case) 
was characterized and its NLR was measured. It can be directly seen from Figure 9a that 
it shows a self-focusing, positive NLR with a measured value of 𝑛ଶ(ACN) = 1.9 × 10−17 
cm2/W. The 𝑛ଶ  ×  𝐼 curve shown in Figure 9b was a constant, therefore indicating that 
third-order NLR was the dominant mechanism (see ref. [12] and refs. therein for basic 
discussions). 

Figure 9c–e for metallic NbS2 show quite different and novel behavior for the NLR. 
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Figure 9. (a) Closed-aperture Z-scan curve for ACN at I = 70 GW/cm2 (F = 44 mJ/cm2); (b) intensity
dependence of n2; and the continuous lines in (a,b) are theoretical fits, see text. Closed-aperture
measurements for NbS2 (c) below the critical intensity of ∼22 GW/cm2 (F = 34.9 mJ/cm2), (d) above
the critical intensity, and (e) effective n2 × I plot, showing the critical intensity whereby the sign of
the NLR changes, IC ∼ 25 GW/cm2. NLA measurements for sample NbS2 for (f) I = 12.7 GW/cm2

(F = 8 mJ/cm2), (g) I = 65.2 GW/cm2 (F = 41 mJ/cm2), (h) I = 96.5. GW/cm2 (F = 60.7 mJ/cm2),
and (i) 125.6 GW/cm2 (F = 79.1 mJ/cm2). (j) Scattered light intensity behavior versus the input laser
intensity in the NbS2 suspension (Adapted from ref. [22], with permission).

Initially, as a good practice and control experiment, the solvent (ACN in this case) was
characterized and its NLR was measured. It can be directly seen from Figure 9a that it shows
a self-focusing, positive NLR with a measured value of n2(ACN) = 1.9 × 10−17 cm2/W.
The n2 × I curve shown in Figure 9b was a constant, therefore indicating that third-order
NLR was the dominant mechanism (see ref. [12] and refs. therein for basic discussions).

Figure 9c–e for metallic NbS2 show quite different and novel behavior for the NLR.
Below a critical intensity of ∼22 GW/cm2, a negative (self-defocusing) NLR response
dominates, which shows an inversion to positive (self-focusing) above this critical intensity.
This is notoriously seen in the Z-scan profiles of Figure 9c,d, which correspond to the closed-
aperture signal of the NbS2 suspension normalized by its open-aperture signal, revealing
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the focusing/defocusing character presented by this material for intensities above/below
the critical intensity of ∼22 GW/cm2. In Figure 9c, the intensity is well below the critical
intensity, to the point of reverting the closed-aperture pattern if compared with the signal of
the pure solvent, which presented a positive n2 for the entire range of intensities employed.
Figure 9d shows the closed-aperture signal for an optical intensity close to the critical,
where the positive character of the nonlinearity can already be seen. It is important to point
out that the measured n2 values from the Z-scan traces of NbS2 in suspension are a resulting
nonlinear refractive index, which contains the contribution of the solvent. The influence of
the solvent at all intensities may be considered to obtain the contribution of the flakes for
the nonlinearity of the sample. The dependence of n2 on the optical intensity disregarding
the nonlinearity of the solvent (based on the formalism of ref. [50]) is presented in Figure 9e.
For intensities above the critical value, the measured n2 is (3.0 ± 0.2) × 10−16 cm2/W. The
NLR coefficient values were calculated using Equation (4), as shown in the fits of the solid
curves, and further details can be found in ref. [22]. The NLA coefficient was also observed
in the NbS2 suspension, as shown in Figure 9f–i. The NLA profile varies as a function of
intensity, changing from two-photon absorption (TPA) to two-photon saturated absorption
(TPSA) at an intensity of I = 65.2 GW/cm2. This behavior is attributed to the change in
the NLR response after saturation is reached, and the nonlinear refractive index changes
accordingly via a nonlinear Kramers−Kronig relation. The solid curves in the NLA results
are theoretical fits from Equation (6) below:

α(I) = α0 +
α2 I√

1 + I2/
I2
S

+ η I, (6)

where α0 is the linear absorption coefficient, α2 is the TPA coefficient, IS is the TPA saturation
intensity, and η is the nonlinear scattering coefficient.

The nonlinear scattering term was introduced in Equation (6) because it has been
observed from the experimental results shown in Figure 9j, which shows the scattering
intensity as a function of input intensity—after a given intensity (around 75 GW/cm2)
the scattering deviated from linear. To properly fit the results for the NLA, it was then
necessary to introduce the NLS (nonlinear scattering) term.

The physical origin of the nonlinearity in NbS2 was qualitatively understood with
the support of the calculated electronic band structure of the monolayer NbS2 2H phase,
as reported in (ref. [22]). Taking into account the conservation of angular momentum, for
one- and two-photon transitions, and considering that the material is doped with electrons,
it was shown that electronic transitions for TPA in a van Hove singularity at the K point
could also occur. It is important to notice that for this van Hove singularity, there is a peak
in the density of states that can increase the optical absorption. It was concluded, from
the DFT calculation, that both one-photon absorption and TPA were allowed and that the
two-photon process could involve a van Hove singularity, which would greatly enhance the
NLA. Furthermore, doping could be invoked to explain, via Pauli blocking, the negligible
absorption at 800 nm (1.55 eV) (see the absorption spectra, Figure 3c). The negative n2
sign for intensities below the critical intensity to induce the NLR sign change is consistent
with the theoretical insights, making the NbS2 nanoflakes an interesting material for NLO
studies and potential applications, whereby control of the optical nonlinearities could
be performed. We have also studied semi-metallic ZrTe2 under the same experimental
conditions, which showed only NLR, whose discussion we defer to ref. [28].

Semiconducting MoS2 and WS2 are certainly the most studied 2D LMTDs regarding
basic understanding and applications, as already pointed out. Figure 10 reproduces the
results of our work reported in ref. [27] for the NLO behavior of WS2 and MoS2 under the
same experimental conditions employed to study NbS2 and ZrTe2. The NLO response for
WS2 (Figure 10b) shows a positive NLR and a constant intensity dependence in the intensity
range studied (shown in Figure 10d). This points to a dominant third-order response, but
no NLA was detected for the intensity range studied. Conversely, MoS2 showed a distinct
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behavior, with a clear manifestation of higher-order contribution which we attribute to
the fifth-order nonlinearity. It can be seen in the Z-scan signature of Figure 10a) that the
different peak-to-valley distance in the z-direction (highlighted by the arrows) is a signature
of higher-order contribution to the NLO response of the medium (see ref. [27] and refs.
therein). The fit (heavy line) agrees well with the experimental data (dots) only when the
fifth-order term is included. Furthermore, in Figure 10c, the intensity dependence of the
nonlinear transmittance is linear, again indicating a higher-order nonlinear contribution.
Therefore, the measured NLR is in fact an effective value including a contribution of third
and fifth-order susceptibilities since the Z-scan methods do not discriminate between each
order. Such discrimination can be obtained by employing an angularly resolved four-wave
mixing setup, as reported in [51,52].
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lines are the theoretical outcomes; (|∆T|/I) dependence on I for (c) MoS2 and (d) WS2. Reproduced
from ref. [27] with permission.

Using the appropriate equations for n2 and n4 (see ref. [27]), the effective NLR indices
for the MoS2 nanoflakes suspension were measured to be n2,eff = (4.8± 0.5)× 10−16 cm2/W
and n4,eff = −(7.6 ± 0.5) × 10−26 cm4/W2. For WS2, the obtained third-order refractive
index was n2,eff = (3.4 ± 0.5) × 10−16 cm2/W. Although the values of the effective NLR
coefficients are quite close for MoS2 and WS2, the fact that the fifth-order NLR manifests
only in the MoS2 was explained based on the morphology of the samples. Taking into
account the extinction spectra (see Figure 3) and the respective nanoflakes’ concentrations of
70 µg/mL for MoS2 and 40 µg/mL for WS2, and their respective atomic weights of 160 Da
and 248 Da for MoS2 and WS2, respectively, the MoS2 colloid had 2.7 times more MoS2
nanoflakes than in the WS2 case. Inasmuch, as the nanoflakes’ average lateral extensions
are 84 nm for MoS2 and 325 nm for WS2, the ratio between the nanoflakes’ areas is 15.
Considering the higher concentration of MoS2, it leads to ~40 times more nanoflakes in the
suspension. As a result, for the same intensity range, the fifth-order response is manifested
in the MoS2 and not in the WS2.

As observed in the study of NbS2 using the Z-scan technique, the effect of nonlinear
scattering may affect the nonlinear loss. One way to measure the NLA effect without the
influence of nonlinear scattering is to employ the photoacoustic Z-scan, as described in
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Section 2.2.5, since it relies only on the absorption of the incident light. The results shown in
Figure 12 reveal the NLA signatures obtained simultaneously in the all-optical conventional
Z-scan and using an acoustic detector, as reported in ref. [29], for MoS2, NbS2, and ZrTe2,
whose experimental setup is shown in Figure 4e. The light source employed was an optical
parametric oscillator operating at 532 nm, 10 Hz, with pulses of 5 ns duration.

For an optical intensity of 0.12 GW/cm2, the normalized transmission curve from
OZ-scan for MoS2 revealed an increase in the transmittance near the focus, as shown
in Figure 11(Ia). This indicates a predominance of saturable absorption (SA) over other
NLA mechanisms, and a small dip around the focus points out a change in the nonlinear
behavior for higher intensities. Indeed, for I = 0.24 GW/cm2, a clear valley inside the
peak at the focus (z = 0) indicates that the reverse saturable absorption (RSA) is promi-
nent (Figure 11(Ib)). RSA may have different origins, such as nonlinear scattering (NLS),
nonlinear multiphoton absorption, or intensity-dependent photogenerated absorption, so
a complementary technique to disclose the physical mechanisms responsible for RSA is
important. For this purpose, we employed the PA Z-scan that is insensitive to scattering
processes, leading to very distinct signals when NLA or NLS is the dominant effect in the
nonlinear losses. For MoS2, PA Z-scan resulted in experimental curves that reassemble a
mirror image of the OZ-scan (Figure 11(Ic,d)), an indication that NLA is dominant. This
conclusion is possible because the photoacoustic (PA) signal is a consequence of acoustic
waves generated due to thermal contraction/dilatation associated with the heating/cooling
of the samples. In this scenario, a more prominent NLA, which leads to a larger drop in the
OZ-scan curves, also leads to acoustic waves of larger amplitude and, therefore, a rise in
the PA Z-scan signal. Conversely, when there is a saturation in the absorption of the sample,
the transmittance of the OZ-scan rises, as in Figure 11(Ia), while the PA signal decreases
(Figure 11(Ic)), explaining why the PAZ-scan curves appear to be a mirror image of the
OZ-scan when the NLA is dominant in the nonlinear losses.

Figure 11(IIa,b) show the OZ-scan results for NbS2, revealing an overall behavior simi-
lar to MoS2, i.e., a SA character followed by an RSA, but the threshold for the observation of
RSA in NbS2 is lower since a bigger dip is observed for similar optical intensities, as notice
when comparing Figure 11(Ia) to Figure 12(IIa). As for semimetallic ZrTe2, Figure 11(IIIa,b)
reveal that, for the range of intensities employed, RSA is already dominant, being attributed
by the authors to the lower linear absorption coefficient, α0, in comparison to that of MoS2
and NbS2 [29]. The band structure of the materials (Figure 11IV) is also considered in the
analysis presented in ref. [29].

In Table 4, we summarize the nonlinear attenuation coefficients (β) for MoS2, NbS2,
and ZrTe2 obtained from the OZ-scan and PA Z-scan experiments at 532 nm, 10 Hz, and
optical pulses of 5 ns. For OZ-scan, we employed a simple model that considers SA (left
term) and RSA as a consequence of third-order nonlinear processes (right term) given by:

α(I) =
α0

1 + I(z)
IS

+ βI, (7)

where α0 is the linear absorption coefficient, IS is the saturation intensity, and β is the
nonlinear attenuation coefficient, which can include contributions due to NLA and NLS,
and I(z) is the optical intensity. As for the PA Z-scan, since the amplitude of the acoustic
signal (P) is proportional to the absorption coefficient in such a way that P(z) = Γα(I)I(z),
where Γ is the Grüneisen coefficient, we considered the following expression:

PN(z) =
IS

IS + I(z)
+

β

α0
I(z). (8)

Knowing that the laser intensity within the sample evolves along the z-optical axis
according to dI(z)/dz = −α(I)I, we can solve it numerically (by considering Equation (7)
for the case of OZ-scan, and Equation (8) for PA Z-scan) to retrieve information about the β
of the samples. The red lines in Figure 11 are theoretical fits by using this procedure, which
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resulted in the values represented in Table 4. Discrepancies between the β from PA Z-scan
and OZ-scan are justified since the former, obtained by Equation (8), is only sensitive to
NLA, while the latter (Equation (7)) can also have contributions from NLS.
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Figure 11. Frame I: OZ-scan and PA Z-scan results for MoS2. (a,b) Open aperture optical Z-scan
signatures for different intensities. (c,d) Respective photoacoustic Z-scan signatures. Frame II: OPA
Z-scan results for NbS2. (a,b) Open Z-scan signatures for different intensities. (c,d) Respective
photoacoustic Z-scan signatures. Frame III: OZ-scan and PA Z-scan signatures for ZrTe2. (a,b) Open
Z-scan signatures for different intensities. (c,d) Respective photoacoustic Z-scan signatures. Frame IV:
Electronic band structure and optical vertical transitions for one-photon absorption and two-photon
absorption at 532 nm: (a) NbS2 monolayer; (b) ZrTe2 monolayer (Adapted from ref. [29], with
permission).
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Table 4. Nonlinear attenuation coefficient for MoS2, NbS2, and ZrTe2 obtained from the OZ-scan and
PA Z-scan experiments at 532 nm, 10 Hz, and optical pulses of 5 ns [29].

Material Technique β (10−7 cm/W) IS (MW/cm2)

MoS2
OZ-scan 0.53 10

PA Z-scan 0.20 11.4

NbS2
OZ-scan 0.42 8

PA Z-scan 0.14 10

ZrTe2
OZ-scan 0.50 7

PA Z-scan 0.24 10.3

3.3. Measurements of Time Response through OKG

We employed the OKG technique to study the third-order optical response of 2D
metallic NbS2 and NbSe2, semiconducting MoS2, and semimetallic ZrTe2, all suspended
in acetonitrile [30]. An ultrafast femtosecond laser (180 fs, 800 nm, 76 MHz) was used to
generate both pump and probe beams. All investigated materials showed a fast response
that followed the temporal width of the optical pulses, Figure 12a, indicating the domi-
nance of electronic nonlinearity ([12] and refs. therein). As for pure ACN, Figure 12b, a
slow decay time of 1.66 ps reveals an orientational contribution that is not present in the
LTMDs, reinforcing that the 2D flakes enhance the nonlinearity of the samples making
the electronic response predominant [46]. The highest NLO response was presented by
NbSe2 with an |n2| = 5.3× 10−18 m2/W, followed by MoS2 with 4.8× 10−18 m2/W, ZrTe2
with 2.7× 10−18 m2/W, and NbS2 with 9.3× 10−19 m2/W. NLA was not observed for any
studied material, even at the maximum available intensity of ~100 MW/cm2.
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Figure 12. (a) Normalized OKG signal as a function of the delay between pump and probe for
(a) metallic NbS2, metallic NbSe2, semiconducting MoS2, and semimetallic ZrTe2. Gray dots con-
nected by a solid line indicate the intensity correlation of pump and probe pulses by using a BBO crys-
tal for SHG. (b) Acetonitrile (ACN), metallic NbS2, and CS2 (Adapted from ref. [30] with permission).

As discussed in Section 3.2, we also used the Z-scan technique to measure refrac-
tive nonlinearities of MoS2 [27], ZrTe2 [28], and NbS2 [22] from which we obtained
n2 = 4.5× 10−20 m2/W, 4.2× 10−20 m2/W, and 3.0× 10−20 m2/W, respectively, one to
two orders of magnitude lower than the ones measured by OKG. However, the intensities
employed in the Z-scan were ~100 GW/cm2, three orders of magnitude larger. From the
analysis of the Z-scan results, a strong intensity dependence of n2 was found, which may
explain the difference when compared with the results from OKG. For NbS2, for instance,
|n 2| exhibits an asymptotic behavior that increases at low intensities [22], which is con-
sistent with the results from OKG, which employed optical intensities of ~100 MW/cm2.
These results are summarized in Table 5. The physical mechanism related to the ultrafast
time response of NbS2, NbSe2, MoS2, and ZrTe2 that considers the nature of the 2D material
is discussed in ref. [30].
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Table 5. NLO parameters for liquid suspensions of NbS2, NbSe2, MoS2, and ZrTe2 obtained from OKG
(intensities ~100 MW/cm2) and Z-scan (intensities ~100 GW/cm2) for the similar spectro-temporal
regime (800 nm, ~100 fs) (reproduced from ref. [30] with permission).

Material Technique |n2| (m2/W) α2 (cm/GW) Ref.

NbS2 OKG (9.3 ± 0.5) × 10−19 Not observed [30]
NbS2 Z-scan (3.0 ± 0.2) × 10−20 2.1 × 10−1 [22]
MoS2 OKG (4.8 ± 0.6) × 10−18 Not observed [30]
MoS2 Z-scan (4.5 ± 0.3) × 10−20 --- [27]
ZrTe2 OKG (2.7 ± 0.3) × 10−18 Not observed [30]
ZrTe2 Z-scan (4.2 ± 0.3) × 10−20 --- [28]
NbSe2 OKG (5.3 ± 0.7) × 10−18 Not observed [30]

CS2 Z-scan (3.1 ± 1.0) × 10−19 1× 10−2 [48]

It is worth noting that the data given in Table 5 (and in Table 6) are dependent on
the suspension concentration, as it is an effective value. In each of the related references,
the absorbance spectra for the particular sample employed are given, and that takes into
account the concentration of that particular sample, making the reported data meaningful.

Table 6. Range of |n2| from SSPM at 790 nm (120 fs, 76 MHz) and from Z-scan experiments at
790 nm in the femtosecond regime. th indicates the thermal origin of the nonlinearity.

Material Wavelength |n2,th| (10−6 cm2/W) |n2| (10−16 cm2/W)

Semiconducting
(MoS2, MoSe2, MoTe2, WS2)

790 nm 0.9–10.1 [26] 3.4–4.8 [27,30]
532 nm 14.6–42.0 [26] ---

Metallic
(NbS2, NbSe2)

790 nm 8.8–4.5 [26] 3.0 [22,30]
532 nm 34.5–36.2 [26] ---

Semi-metallic
(WTe2, ZrTe2)

790 nm 0.9–5.0 [26] 4.2 [28]
532 nm 4.9–34.5 [26] ---

3.4. Thermal Response

As introduced in Section 2.2.3, we performed experiments with eight distinct LTMDs
suspended in acetonitrile, namely, semiconductor MoS2, MoSe2, MoTe2, WS2, semimetallic
WTe2, ZrTe2, and metallic NbS2, NbSe2, to characterize the physical mechanisms responsi-
ble for the SSPM [26]. To obtain a wide picture and have an insight into the NLO responses,
CW and ML (120 fs, 76 MHz) lasers in the spectral regions of low (790 nm) and high (532 nm)
linear absorption of the samples were employed. The spatial self-phase modulation of
Gaussian beams, as used in the experiments of ref. [26], gives rise to a nonlinear radial phase
that follows the Gaussian intensity profile. This phase is responsible for the emergence of
concentric rings in the diffraction pattern, shown in Figure 13, from which one can retrieve
n2 based on the dependence of the number of rings with the optical intensity, the effective
length of the sample, and the wavelength of the radiation [40]. At 532 nm (CW laser), we ob-
tained n2 ranging from 4.9× 10−6 cm2/W to 42.0× 10−6 cm2/W, while it presented values
between 0.9× 10−6 cm2/W and 10.1× 10−6 cm2/W at 790 nm (for both CW and ML laser,
120 fs, 76 MHz). More interestingly, we noticed a clear correlation between the nonlinearity
of the samples and their linear absorption coefficient (α0), an indication that the SSPM is
due to a slow thermal nonlinearity. This became evident after analyzing the ratio (n2/α0)
for all materials, which presented very close values with an average of 1.10 × 10−5 cm3/W
at 790 nm and of 2.54 × 10−5 cm3/W at 532 nm, as illustrated in Figure 14a,b. Therefore, it
is possible to conclude that the role of the 2D flakes is in absorbing the radiation to heat
the suspension, while a thermal lens is established in the liquid environment according
to the thermal properties of the solvent (which is the same for all investigated materials,
explaining why the ratio is so close for all studied materials). Therefore, it is not possible to
measure intrinsic NLO properties of the 2D materials from SSPM experiments by using CW
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or ML lasers with high repetition rate, since the thermo-optic coefficient associated with the
thermal nonlinearity responsible for the effect would be very similar to any material that
presents similar absorbance and thermal properties. The time response of the NLO effect is
also in accord with slow thermal nonlinearities, with an average value of approximately
350 ms, showing no dependence either on the number of rings or on the nature of the 2D
material, as shown in Figure 14c,d.
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790 nm (CW and ML laser, 120 fs, 76 MHz), showing no dependence on either polarization or the
temporal regime of excitation. Optical intensities are indicated. Cuvette: 1 cm (Reproduced from
ref. [26] with permission).

In a subsequent study, we explored the SSPM of optical vortex beams (OVBs) with
different topological charges (m = 0,±1, ±2, ±3, ±4) after interaction with liquid suspen-
sions of 2D LTMDs (semiconductor MoS2, metallic NbS2, and semi-metallic WTe2) [42,53].
Spectral regions of high (532 nm, CW laser) and low linear absorption (790 nm, ML laser,
150 fs, 76 MHz) were employed. As mentioned in the NLO techniques section, for struc-
tured light, the nonlinear phase associated with SSPM follows the beam spatial profile,
giving rise to distinct diffraction patterns when compared to the SSPM of Gaussian beams.
For OVBs, for instance, instead of concentric rings, spiral patterns capable of revealing both
the magnitude (number of distinct spirals composing the pattern) and signal (clockwise
orientation for positive; counterclockwise for negative) of the topological charge are ob-
served [41]. Figure 15a shows representative patterns for MoS2 at 532 nm. In refs. [42,53],
after performing SSPM experiments with OVBs, we observed a clear correlation between
the nonlinearity of the samples and their absorbance spectra (Figure 15a,b are evidence),
which corroborates with ref. [26] for the case of Gaussian beams. It was possible to con-
clude that a slow thermal nonlinearity is the physical mechanism underlying the NLO
response, regardless of the nature of the 2D material employed. In fact, for any material
with similar absorbance and thermal properties, similar SSPM results would be achieved.
This conclusion was supported by the SSPM of OVBs in pure solvents (without the presence
of the 2D flakes), which resulted in similar spiral patterns as long as the experiment was
performed in spectral regions of high absorbance, as shown in Figure 16 for ethanol and
heptane at 1560 nm. The SSPM of both 2D flakes in suspension and pure solvents, for
both OVBs and Gaussian beams, also proved to be independent of the temporal regime of
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the excitation optical beam employed (CW or ML with high (~MHz) repetition rate) and
light polarization, as shown in Figures 13 and 16, another indication that thermal effects
play a major role and cannot be neglected in experiments similar to the ones performed
in refs. [16,42,53]. Therefore, care must be taken to infer intrinsic electronic properties
of materials based on SSPM experiments, especially when CW or ML lasers with a high
(~MHz) repetition rate are employed.
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Figure 14. Ratio n2/α0 for the studied materials at (a) 790 nm (CW and ML laser, 120 fs, 76 MHz) and
(b) 532 nm (CW laser). The average values are 1.10× 10−5 cm3/W at 790 nm and 2.54× 10−5 cm3/W
at 532 nm. The error bar is the standard error of the mean value. (c) The mean value of time for ring
formation considering 6, 9, 12, and 15 rings for each material separately (dots). (d) The mean value of
time for ring formation considering all materials for each number of rings (dots). The average value
(dashed lines) is 344.9 ms (Reproduced from ref. [26] with permission).
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Figure 15. (a) SSPM patterns of OVBs with indicated topological charge (m) at 532 nm (CW laser), a
spectral region of high absorbance. The optical intensity is 16 W/cm2. (b) Experimental results at
790 nm (ML laser, 150 fs, 76 MHz), a spectral region of low absorbance. No SSPM was observed. The
optical intensity is 17 W/cm2. Results for MoS2 are suspended in ACN (Reproduced from [53] with
permission).
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Table 6 brings a summary of the measured |n 2| from the SSPM experiments (ther-
mal nonlinearity), Z-scan, and OKG (electronic nonlinearity) experiments for comparison.
Notice that the difference in magnitude is up to 10 orders, reinforcing that a thorough anal-
ysis concerning the physical mechanism responsible for the effect is important, otherwise
mistaken overestimated electronic properties of the materials could be inferred based on
thermal nonlinearities, which bear no relationship.

4. Challenges and Opportunities
4.1. Fundamentals

This review reported the NLO response of monolayer to a few layers of semicon-
ducting, semimetallic, and metallic 2D-LTMDs suspended in acetonitrile, from which the
nonlinear refraction (NLR) index arises from the thermal origin. Therefore, a high value
of the order of ~10−6–10−5 cm2/W and ~10 of ms time response was inferred, as well
as from electronic origin, whose NLR index was ~10 orders of magnitude smaller, with
a response time of ~150 fs limited by the duration of the laser pulse employed. From
a fundamental point of view, working with the nanosheets in suspensions gives all the
relevant information from the material, but it should be noted that the obtained value of
the nonlinear parameters is indeed for the suspension, and takes into account the value
of the nonlinear response of the solvent and the nanosheets concentration. In our case,
the result for the solvent itself was at least one order of magnitude smaller than for the
suspension, in the case of the non-thermal response, whereas in the case of the thermal
response, it was negligible when compared to any of the employed colloidal suspensions.
Although we emphasized the third-order nonlinear response, some of the reported work
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is related to second-order nonlinearities, which is an important area where several earlier
works have been reported [54–57].

The studies with liquid suspensions of LTMDs will contribute to a better basic knowl-
edge of 2D materials. When contrasting with conventional materials such as silicon,
germanium, and III-V semiconductors, the LTMDs have unique optical, thermal, electrical,
and mechanical properties. For instance, the optical and electronic properties of LTMDs
can be controlled by exploiting the large surface-to-volume ratios of these materials. More-
over, the surface of LTMDs materials is passivated without dangling bonds. As a result,
it becomes easier to combine different structures such as optical waveguides. Currently,
the research on LTMDs is focused on the characterization of nonlinear optical properties
and the proof-of-principle demonstration of basic devices. However, we foresee that future
advances related to the structural modulation of LTMDs will contribute to the fabrication
of optoelectronic and nonlinear optical devices with well-reproduced properties.

Further fundamental studies can give a deeper insight using monolayers (or few
layers) 2D-LTMDs on substrates, whereby the single (or multi) layer nonlinear response
can be directly obtained. This also opens the possibility of employing layers of different
materials, therefore leading to heterostructures [2,58], as well as studying the edge effect or
polarization response, besides angular alignment. All experimental variations may require
novel theoretical approaches, which can lead to potentially new photonic devices.

4.2. Applications

2D-LTMDs have already found a myriad of applications, which includes their uses
in solar cells, energy storage and optoelectronic devices, and sensors [2,5,6]. 2D-LTMDs
have also been pursued as nanomaterials for optical sources, including quantum dots [59]
or as scatterers for random lasers [60]. Other technological advances in rolling 2D-LTMDs
nanosheets have been reported [61], which followed on the demonstration of a photodiode
based on nanosheets of WSe2/MoS2 prepared by nanoscroll integration [62]. Among
the future applications, sensors for healthcare have been at the forefront of research, as
reviewed in ref. [63]. As an important example, reviewed in ref. [64], thermoelectric
materials, which can be flexible, user-friendly, and lightweight, have been fabricated with
2D materials. For instance, exfoliating TiS2 nanosheets and assembling them with carbon
nanocrystal (C60) enabled the development of a new n-type flexible thermoelectric material
by simultaneously decreasing the thermal conductivity while increasing the power factor.
For large-area printing to make flexible thermoelectric devices, the C60/TiS2 solutions are
proposed to be used as an ink.

Due to the tunability and ability to capture biomarkers, 2D materials find applications
in the biomedical field. However, the toxicity of 2D materials remains a concern, even
though an effective reduction in toxicity has been achieved with functionalization.

Another well-known property of certain materials, piezoelectricity, has intrinsic char-
acteristics of TMDs which have recently been explored. In SnS2/SnS-based 2D thin films,
due to a substantial band offset brought on by the creation of the heterojunction, the piezo-
electric response is ~40% higher than that of the pure SnS2 thin film (see [64] and refs
therein). The SnS2/SnS heterostructure can be potentially used to create an adjustable
energy harvesting device, which can also be an attachable, self-powered sensor for tracking
heartbeat and other small displacements in the biological system of humans.

In the electronics field, it has been questioned if 2D-LTMDs can replace silicon, or
if this is hype [65]. For potential commercialization, full control and reproducibility of
materials preparation is of paramount importance as a first step. Regarding applications
in optoelectronics, HS (heterostructures)-based 2D materials are rapidly taking off from
laboratory to industrial scale. The use of vertical integration monolayers (mechanically
isolated) via layer-by-layer transfer process is not a limiting factor on lattice matching, as
discussed in [66], since individual layers can be coupled to each other via vdW interaction.
Therefore, unparalleled freedom to combine different 2DLMs exploring various exotic
functionalities can be performed, which allows us to manipulate features such as layers
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stacking order, mutual rotation, and the application of external fields. Limitations can arise
from interfacial contamination and lack of scalability issues in the 2D transfer process limit.
For large-scale applications, wafer-scale samples with electronic grade quality have been a
challenge for designing high-performance devices. The existing CVD strategies, which are
well-established, need to be revised to obtain precise control over thickness, morphology,
and rotational alignment to explore new physics and new devices.

The above examples show the potential for applicability of 2D LTMDs, and the knowl-
edge of the fundamental light–matter interaction in such nanomaterials is definitively
worth pursuing.
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