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Abstract: This work explores the pivotal role of laser lift-off (LLO) as a vital production process in
facilitating the integration of Micro-LEDs into display modules. We specifically investigate the LLO
process applied to high-performance gallium nitride (GaN)-based green Micro-LED arrays, featuring
a pixel size of 20 × 38 µm on a patterned sapphire substrate (PSS). Scanning electron microscopy
(SEM) observations demonstrate the preservation of the GaN film and sapphire substrate, with no
discernible damage. We conduct a comprehensive analysis of the optoelectrical properties of the
Micro-LEDs both before and after the LLO process, revealing significant enhancements in light output
power (LOP) and external quantum efficiency (EQE). These improvements are attributed to more
effective light extraction from the remaining patterns on the GaN backside surface. Furthermore,
we examine the electroluminescence spectra of the Micro-LEDs under varying current conditions,
revealing a slight change in peak wavelength and an approximate 10% decrease in the full width at
half maximum (FWHM), indicating improved color purity. The current–voltage (I–V) curves obtained
demonstrate the unchanged forward voltage at 2.17 V after the LLO process. Our findings emphasize
the efficacy of LLO in optimizing the performance and color quality of Micro-LEDs, showcasing their
potential for seamless integration into advanced display technologies.

Keywords: GaN-based Micro-LEDs; optoelectrical performance; laser lift-off; Micro-LED display

1. Introduction

Micro-LED display technology have received great attention recently [1]. Numerous
companies and researchers worldwide have conducted extensive studies on Micro-LED
displays since 2000 [2–7]. With China as a frontrunner in electronics development, its Micro-
LED industry is poised for rapid growth in the coming years, driven by the escalating
demand for various applications such as TVs, indoor large-screen displays, small and
medium-sized laptop displays, tablet displays, portable devices, heads-up displays (HUDs),
head-mount displays (HMDs), augmented reality (AR), virtual reality (VR), and other
terminal applications [8–10]. The Micro-LED display technology represents a major trend
in next-generation semiconductor display technology, enabling remarkable advantages,
including ultralow power consumption, ultrahigh current and luminous density, ultrasmall
size, ultrahigh resolution, and fast response speed [11–15].

Sapphire substrate has emerged as the preferred choice for epitaxial growth of GaN ma-
terials in Micro-LED chips due to its low lattice mismatch with GaN and cost-effectiveness.
However, the nonconductive nature and poor thermal conductivity of sapphire substrate
have adverse effects on the luminous efficiency of Micro-LED devices. Additionally, the
brittleness of sapphire hampers the application of Micro-LEDs in flexible and ultrathin
displays [16–18]. Consequently, the separation of the sapphire substrate becomes a critical
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and essential process, where lift-off technology emerges as a viable solution. Among var-
ious lift-off techniques such as chemical lift-off, mechanical lift-off, and ion lift-off, laser
lift-off (LLO) technology offers several advantages, including high energy input efficiency,
minimal device damage, equipment flexibility, and versatile application modes. As a result,
LLO has become a pivotal technology for manufacturing flexible electronic devices [19–23].

In the LLO process, ultraviolet lasers are employed as the photon energy of this light
source surpasses the bandgap of GaN but remains below that of sapphire. This selective
absorption of laser energy by the GaN layer causes a rapid increase in temperature within
the interface region. The localized heating reaches the thermal delamination temperature,
leading to the thermal decomposition of GaN into nitrogen gas (N2) and low-melting-point
gallium metal (Ga). This process occurs within the temperature range of 900 ◦C to 1000 ◦C,
facilitating the separation of the GaN epilayer from the sapphire substrate [24,25].

In this paper, we undertake the design and fabrication of Micro-LED arrays on sap-
phire substrates. The main focus of our study is the separation of GaN from the patterned
sapphire substrate (PSS) using the LLO technique. Additionally, we conduct a thorough
comparison and analysis of the photoelectric characteristics before and after LLO. Specif-
ically, we measure and discuss the light output power (LOP) and external quantum effi-
ciency (EQE) for individual Micro-LED pixels. We also examine and study the difference
in peak wavelength, full width at half maximum (FWHM), and blue shift before and after
LLO. To complement our study, scanning electron microscopy (SEM) was employed to
observe the morphology of the Micro-LED arrays and the cross-section morphology of
GaN and sapphire.

2. Materials and Methods

In this experiment, we utilized a 4 inch PSS substrate epitaxial, where the Micro-
LED array structure consists of multiple layers from bottom to top: sapphire substrate
layer, GaN buffer layer, N-type GaN layer, active layer with multiple quantum wells
(MQWs), P-type GaN contact layer, current spreading layer (CSL) and p-type electrode.
The combined thickness of the epitaxial layers is approximately 6 µm, while the sapphire
substrate thickness measures approximately 450 µm.

The mesa structure was prepared by inductively coupled plasma (ICP) etching GaN
down to the n-GaN layer to facilitate the ohmic contact process of the n electrode. Subse-
quently, a thick layer of SiO2 protection was deposited using plasma-enhanced chemical
vapor deposition (PECVD), and then wet etching was employed to remove SiO2 around
the chip area. The following step involved using ICP to etch GaN onto sapphire substrate,
forming independent pixel units. Afterward, the p and n electrode layers were created by
electron beam evaporation, and a SiO2 passivation layer was deposited via PECVD. The
SiO2 in the n and p electrode regions was etched by ICP. Finally, the contact electrodes of p
and n were made using electron beam evaporation, followed by ultrasonic stripping.

Each individual green Micro-LED chip had a size of 20× 38 µm, with a pixel horizontal
distance of 6 µm and vertical distance of 50 µm between two adjacent chips. Figure 1a
depicts the schematic diagram of Micro-LED, while Figure 1b shows the scanning electron
microscope (SEM) morphology of Micro-LED arrays.

After preparing the Micro-LED arrays, we proceeded to characterize their optoelectri-
cal performance. The current-voltage (I-V) characteristics were measured using a Keysight
B1500 Analyzer. Additionally, we obtained the electroluminescence (EL) spectra, along
with radiometric power measurements, using an Ocean Optics USB 2000+ spectrometer
with a CC-3 cosine corrector.

Once the optoelectrical performance test was completed, the subsequent LLO was
performed to remove the sapphire substrate. The principle behind LLO involves using
short-wavelength laser with photon energy greater than the GaN bandgap but smaller than
that of sapphire to irradiate one side of sapphire. The laser is strongly absorbed by the
surface GaN after passing through sapphire [26]. In this experiment, the photon energy
of the all-solid-state semiconductor laser used was 4.83 eV, falling between the bandgaps
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of sapphire substrate (ES: 9.9 eV) and GaN (EGaN: 3.4 eV), as shown in Figure 2. The laser
absorption occurred at the GaN–sapphire interface, leading to decomposition of undoped
GaN into nitrogen (N2) and gallium (Ga) metals.
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Figure 2. Schematic diagram of physical mechanism of LLO process.

In this experiment, a state-of-the-art ultrafast pulse laser was used. The chemical
reaction occurring at the interface can be expressed as follows [27]:

2GaN (solid)→ 2Ga (liquid) + N2 (gas). (1)

Figure 3 illustrates the LLO process. As shown in Figure 3b, the green Micro-LED
array with the sapphire side facing up was positioned on the laser experimental platform.
As seen in Figure 3c,d, a 257 nm solid-state laser was employed to scan and lift off the
sapphire surface. During the LLO process, GaN underwent decomposition into N2 and
metal Ga, successfully separating from the sapphire substrate. As shown in Figure 3e, a
new blue tape was applied to cover the stripped Micro-LED array, ensuring a more cohesive
arrangement of the Micro-LED chips. Subsequently, as shown in Figure 3f, the original
blue tape was removed.
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3. Results and Discussion
3.1. LLO Results and Discussion

Several factors impact the performance of Micro-LEDs due to the quality of the LLO
process. These factors include delayed N2 pressure, Ga agglomeration, and electrode
shedding [28–30]. Following extensive and thorough verification and comparison, we
opted to directly adopt the following mature LLO parameters: wavelength, 257 nm; power,
0.8 W; fill density, 13 µm; pitch, 13 µm; frequency, 200 kHz; scan speed, 2600 mm/s.

After conducting the LLO, we observed that there was no chip fragmentation or chip
electrode falling off. The all-solid-state semiconductor laser with a wavelength 257 nm
proved to be a highly stable laser source, ensuring a smooth peeling interface with no
accumulation of metal residues. SEM images from different dimensions further confirmed
the success of the LLO process. To demonstrate our accurate control of LLO parameters,
we selected a region without LLO, shown in Figure 4a, where the boundary was clearly
defined, and the separation was complete. Figure 4b exhibits the thoroughness of the LLO
process and the successful transfer. The smoothness and integrity of the PSS interface are
demonstrated in Figure 4c, with no evident epitaxial layer residue at the sapphire interface
after laser stripping. The circle of the SiO2 insulating layer around the Micro-LED chip
remained undamaged by the laser. In Figure 4d, no visible damage can be observed between
the GaN film and the sapphire substrate, indicating the complete removal of the GaN film
after LLO. The UV laser’s highly concentrated light focused on the n-GaN/sapphire surface,
providing sufficient power for the semiconductor to turn into gas. Optimized nitrogen
venting during the process, combined with line-by-line laser scanning, resulted in a smooth
lift-off surface.

3.2. Optical Characterization

Light output power (LOP) and the external quantum efficiency (EQE) values of Micro-
LED arrays before and after LLO were calculated using the following equation [31]:

EQE =
e·P
E·I , (2)
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where E represents the averaged photon energy across the emission peak, while e, P, and I
correspond to the electron charge, radiometric power, and injection current, respectively.
The LOP of different Micro-LEDs was integrated using EL spectra, which were measured
under the same conditions for comparative analysis.

The patterned prism structures on the backside of the lifted off Micro-LED device
remain almost the same, contributing significantly to improve light extraction compared to
the device before the LLO process [32]. Furthermore, the removal of the sapphire substrate
reduces the light absorption, allowing more light rays to be extracted from Micro-LED. As
a result, Figure 5a,b show that the LOP and EQE for a single device after the LLO process
were improved by 18% and 21%, respectively, in comparison to a Micro-LED on substrate.
The EQE reached its peak at a higher injection current (Jpeak) for lifted-off devices. This
notable EQE improvement can also be attributed to the enhanced thermal dissipation of
the device structure, enabling the Jpeak to reach a higher value [33].
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minescence spectrum (EL) with different current before LLO is displayed in Figure 7a, while 
the spectrum after LLO is presented in Figure 7b, encompassing the range of 300–800 nm. 

  
(a) (b) 
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Two probes with a diameter of 0.5 µm were carefully inserted onto the n pad and the p
pad, which were less than 15 µm wide. With higher current injection, the green Micro-LED
device exhibited a more pronounced light output, as shown in Figure 6. The electrolumi-
nescence spectrum (EL) with different current before LLO is displayed in Figure 7a, while
the spectrum after LLO is presented in Figure 7b, encompassing the range of 300–800 nm.
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Figure 6. (a) Luminance photos before LLO at 10 µA, 50 µA and 100 µA, respectively; (b) luminance
photos after LLO at 10 µA, 50 µA, and 100 µA.

Following the LLO process, the Micro-LED exhibited a slight blue shift in the peak
wavelength. This shift can be attributed to the partial release of stress in the epitaxial
layer, resulting in a weakening of the semiconductor band quantum-confined Stark effect
(QCSE), consequently increasing the bandgap and inducing the blue shift in wavelength.
Upon comparing Figure 7a,b, it is evident that the spectral radiation intensity after LLO
significantly surpassed that before LLO. This increase can be attributed to the reduction in
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dislocation density after LLO, and the improvement in the light extraction rate due to the
removal of sapphire.
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Figure 7. (a) Electroluminescence spectrum with different current before LLO; (b) electroluminescence
spectrum with different current after LLO; (c) the peak wavelength and FWHM variation with current.

Figure 7c illustrates the peak wavelength of the green Micro-LED, showing a noticeable
blue shift in the peak wavelength as the current increases. Specifically, before the laser
lift-off (LLO) process, the peak wavelength shifted from 528 nm at 10 µA to 522 nm at
100 µA. Similarly, after LLO, the peak wavelength shifted from 529 nm at 10 µA to 523 nm
at 100 µA. This blue shift can be attributed to the influence of the QCSE, which is further
influenced by the screen effect [34]. The blue shift was not pronounced, possibly due to the
epitaxial layer having better lattice quality and a less spontaneous polarization effect.

The FWHM is shown in Figure 7c, with mean values before and after LLO of 33 nm
and 30 nm, respectively. The strain changes caused the InGaN bandgap to tilt in MQWs,
leading to peak shift. This phenomenon can be attributed to the QCSE [35], caused by the
shrinking bandgap between the valence band and conduction band, as well as changes in
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the electric field. Thermal radiation causes changes in indium spreading in MQWs, with
the laser providing heat in the LLO process.

In this experiment, the FWHM did not perform optimally, possibly due to several
factors influencing it. However, the main reason could be attributed to the natural inhomo-
geneity in the distribution of In in the InGaN quantum well layer. The FWHM improved
after LLO, probably due to the influence of high temperature in the LLO process, which
resulted in a more uniform redistribution of In in the InGaN quantum well, leading to a
smaller gap in the back half height of LLO.

3.3. Electrical Characterization and Uniformity

The I-V characteristics and the semi-log plot of the I-V relation are displayed in
Figure 8a, and data analysis was performed on nine different periodically selected positions.
The forward voltage was measured at 2.17 V with a current of 1 µA before LLO, and the
leakage current was found to be less than 1 nA. After LLO, the forward voltage remained
the same, indicating no significant difference in the I-V characteristics of the Micro-LED
chip before and after LLO. The LLO process had a minimal effect on the optoelectrical
performance of the Micro-LED chips, with highly uniform I-V curves observed in all
selected devices. The leakage current at a reversed voltage of −3 V was smaller than 1 nA,
demonstrating excellent rectified characteristics.
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The EL measurements provided evidence that the Micro-LED after LLO exhibited
comparable quality and stability to the original devices. The distribution maps in Figure 8b
illustrated the normalized EL intensity (at VF = 5 V) of periodically selected pixels. The
root mean square (rms) and standard deviation (σ) values were determined as 0.695 and
0.06292, respectively. Consequently, the devices in the left part of the array conducted a
higher current, resulting in a higher EL intensity. This intensity disparity was tentatively
attributed to the uneven growth of the Al-GaN, multiple quantum well (MQW), and GaN
layers during metal–organic chemical vapor deposition (MOCVD).

4. Conclusions

In conclusion, our study focused on characterizing the electrical properties of green
Micro-LED arrays measuring 20 × 38 µm. The main investigation revolved around the
laser lift-off (LLO) process, which demonstrated no significant damage between the gallium
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nitride (GaN) film and the sapphire substrate. The patterned structures on the backside
of the Micro-LEDs remained intact after removing the patterned sapphire substrate (PSS)
during LLO. Comparing the optoelectrical performance before and after LLO, we observed
notable improvements. The Micro-LED devices exhibited enhanced light output power
(LOP) and external quantum efficiency (EQE) due to improved light extraction and heat
dissipation. We also noted changes in the peak wavelength and full width at half maximum
(FWHM) of the Micro-LEDs, with the FWHM reduced by approximately 10%. However,
the forward voltage remained nearly unchanged before and after LLO, measuring around
2.17 V according to the current-voltage (I–V) curve analysis. This suggests that the LLO
process had a minimal effect on the electrical characteristics of the Micro-LEDs.
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