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Abstract: Percolative memristive networks based on self-organized ensembles of silver and gold
nanoparticles are synthesized and investigated. Using cyclic voltammetry, pulse and step voltage
excitations, we study switching between memristive and capacitive states below the percolation
threshold. The resulting systems demonstrate scale-free (self-similar) temporal dynamics, long-term
correlations, and synaptic plasticity. The observed plasticity can be manipulated in a controlled
manner. The simplified stochastic model of resistance dynamics in memristive networks is testified.
A phase field model based on the Cahn–Hilliard and Ginzburg–Landau equations is proposed to
describe the dynamics of a self-organized network during the dissolution of filaments.
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1. Introduction

To execute neural network algorithms with energy efficiency and interconnectivity
comparable to the brain, it is necessary to emulate synaptic functionality [1,2]. There are
attempts [3] to develop internally brain-like hardware architectures that could support
neuromorphic computing in a more natural way than standard (highly organized) chip
architectures. Self-organizing networks of nanoparticles and nanowires have recently
become promising systems for neuromorphic computing [4–6]. These networks exhibit
critical behavior near metal–insulator transition, scale-free networking that can provide
new brain-like information processing with potentially attractive features such as ultra-low
power consumption [7–9]. Below the percolation threshold, networks consist of groups
of particles separated by tunnel gaps; the applied voltage causes the formation of atomic
scale filaments in the gaps, and observed avalanches of switching events are similar to
potentiation in biological neural systems [10]. In [9], such memristive nanosystems are
called percolation with plasticity systems. The neuromorphic advantages of percolating
nanomaterials with plasticity include multivalued memory, high dimensionality and non-
linearity capable of transforming input data into spatiotemporal patterns, and no need for
array interconnects [9].

Memristive devices demonstrate promising possibilities for data storage and process-
ing, with advantages such as scalability, high speed, and compatibility with complementary
metal–oxide–semiconductor (CMOS) technology [11,12]. Atomic-scale dynamics in memris-
tive percolation networks mimics the “integrate-and-fire” mechanism with leakage peculiar
to biological neurons [8]. Electrical responses from self-organized networks of nanoparticles
exhibit spatiotemporal correlations and criticality of the percolation phase transition similar
to those observed in the brain [10]. In particular, as is shown in [10], the sizes and durations
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of switching avalanches are distributed according to a power law, and the corresponding
power law exponents satisfy strict criticality criteria. The avalanches in memristive per-
colation networks are quantitatively similar to the observed ones in cortical tissue [13],
and they are characterized by correlations necessary for calculations. Further research is
needed to better understand and validate avalanche criticality in memristive nanowire
networks. In recent work [14], the dynamics of switching in a memristive network of
silver nanoparticles coated with an insulating matrix is studied, and the authors point to
the absence of qualitative differences in the critical dynamics and long-term correlations
in networks of nanoparticles with and without a matrix. The use of dielectric coatings
expands the possibilities of practical application of neuromorphic percolation networks.
The insulating coating may increase the threshold voltages for switching to the memristive
state [14].

It is important also to develop stochastic models to describe dynamics of conductance
in memristive systems based on self-organized nanostructures. In recent work [15], a prob-
abilistic model of random resistance jumps in memristive devices is proposed. In [16],
a master equation is considered to analyze the networks composed of probabilistic binary
memristors. The basic theory of percolation networks with plasticity is outlined in [9].

In the present work, percolative memristive networks based on self-organized en-
sembles of silver and gold nanoparticles are synthesized and investigated. Using cyclic
voltammetry, pulse and step voltage excitations, we study switching between memristive
and capacitive states. The observed plasticity can be manipulated in a controlled manner.
The simplified stochastic model of resistance dynamics in memristive networks is testified.
It is assumed that the main principle of operation of the considered memristive systems is
the reconfiguration of conductive filaments in nanoscale switching gaps between nanopar-
ticles in response to an applied external voltage. The process of formation of filaments in
an ensemble of nanoparticles is reversible. According to simple thermodynamic principles,
filaments dissolve over time [17]. In the last section, a phase-field model describing the
dissolution of filaments on a substrate is presented.

2. Arrays of Silver and Gold Nanoparticles

For electrophysical studies, two versions of planar structures with memristive net-
works were fabricated. Two Au electrodes of interdigitated and rectangular geometries
are sputtered on a thermally oxidized silicon substrate with a SiO2 layer of thickness of
H ≈ 100 nm. The topologies of the structures are shown in Figure 1. In one implementation,
the electrodes are of an interdigitated structure (Figure 1b) with pins 12 µm long and 10 µm
wide. The gap between electrodes is 2 µm. In the other implementation, the electrodes are
rectangular in shape (Figure 1c). The length of electrode tape is 800 µm, and the width
is 100 µm. The gap between electrodes is 2 µm. Arrays of Ag or Au nanoparticles were
formed on the surface in the gap between the electrodes (Figure 1d,e).

(a)

(c)

(d)

(b)

(e)

Figure 1. Sample topology (a) with interdigitated (b) and rectangular (c) electrode geometry;
schematic view of nanoparticles array on electrodes in the interelectrode gap (d) with an enlarged
image (e).
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Ensembles of metal nanoparticles were formed by two-stage vacuum-thermal evap-
oration followed by heat treatment after each stage of evaporation. The size of particles
and their density on the surface are determined by the amount of evaporated substance.
The used method of nanoparticle formation is described in detail in [18,19]. The metal
was deposited on the sample surface through a metal mask with a hole in the region of
interelectrode gap, and the mask partially covered the electrodes.

At the first stage, a larger weight portion of metal evaporated. After annealing the
sample, an array of larger nanoparticles formed from the condensate on the crystal surface
in the deposition region. The distance between nanoparticles in this method is directly
proportional to the nanoparticle size [18,19]. To increase the particle density, a second stage
of deposition was carried out. In this case, the evaporated weight portion of the metal
was less than the previous one. After annealing, in the gaps between large nanoparticles
formed at the first stage, small nanoparticles were formed, which led to a decrease in the
distance between particles in the ensemble. Arrays of nanoparticles obtained in a two-stage
process are characterized by a bimodal size distribution of nanoparticles. SEM images and
a histogram of nanoparticle size distribution for the array of Ag nanoparticles are shown in
Figures 2 and 3.

Diameter, nm

N
u
m

b
e
r 

d
e
n
si

ty
, 
m
k
m

-2

(a) (b)
,

��

Figure 2. SEM image (a) and histogram of nanoparticle size distribution (b) for the array of
Ag nanoparticles.

, ,

Figure 3. SEM image of an array of obtained Ag nanoparticles taken at an angle of 52°.

To form arrays of Ag nanoparticles, weighed portions of metal with masses of 4.5 and
2.7 mg were evaporated; for Au, 11.3 and 6.8 mg were used. The distance from evaporator
to deposition surface was 20 cm. Subsequent annealing after evaporation was carried
out in vacuum at a temperature of 230 °C for arrays of Ag nanoparticles and 350 °C for
arrays of Au nanoparticles. The annealing duration was 15 min. For all vacuum processes,
the residual pressure did not exceed 10−5 Torr.
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Depending on the annealing conditions, an array of Ag nanoparticles undergoes
different transformations. The difference manifests itself in the value of predominant
particle size and the type of particle size distribution. In the case of vacuum annealing,
the distribution profile is narrower. Such an array of nanoparticles is characterized by
a smaller spread of sizes relative to the predominant one. For this reason, in further
experiments, during the formation of Ag and Au particles, annealings were carried out in
vacuum. Further studies of the structures with ensembles of Ag and Au nanoparticles were
carried out using an FEI Helios NanoLab 650i DualBeam scanning electron microscope and
a Jeol JSM 6010 PLUS/LA scanning electron microscope.

The resulting arrays of Ag and Au nanoparticles in the process of two-stage vacuum-
thermal evaporation followed by heat treatment demonstrate a similar picture both in terms
of the average particle size and the type of particle size distribution. Figures 4 and 5 show
the SEM images of a planar fragment of the structure with Ag NPs, as well as a histogram
of the size distribution of NPs. The SEM images confirm the high density of particles per
unit surface, which should facilitate the formation of filaments between particles.

(a) (b)

Figure 4. SEM image of the space between rectangular electrodes of a structure with an array of silver
(a) and gold (b) nanoparticles.

Figure 5. SEM image of the space between the electrodes of the interdigitated structure with an array
of gold nanoparticles.

3. Memristive Properties of Nanoparticle Ensembles

Percolative galvanoplastic networks of nanoparticles or nanowires are attractive for
neuromorphic computations because they implement self-organized criticality characteris-
tic of cortical tissue [20]. Experimental recordings of large groups of neurons showed bursts
of activity, the so-called neural avalanches, with size and duration distributed according to
power laws. There is a hypothesis that the collective dynamics of large neural networks
in the brain operates near the critical point of the second-order phase transition (see [20]
for details). Critical dynamics is also observed in percolation systems near the percolation
threshold. The order parameter of the ‘metal–insulator’ phase transition is the conductance
of a system, and the control parameter can be related to the probability p of current flow
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between neighboring nanoparticles. This probability is a dynamic variable because it
depends on the formation of atomic-scale filaments between adjacent nanoparticles. In an
infinite system, the phase transition takes place at the critical point p = pc. In bounded
systems, the phase transition occurs not at the critical point but in the critical region near pc.

Before the stage of stable growth of filaments, the system of nanoparticles is insulating
and can be characterized by a certain capacity. Switching between memristive and capaci-
tive states was studied using cyclic voltammetry and excitation by step voltage. Figure 6
demonstrates the time dependencies of current in the array of silver NPs with rectangular
electrodes after the application of constant voltage U0. The duration of the single measure-
ment is 30 s, then zero voltage was maintained for 2 minutes. After that, voltage U0 is
applied again. In Figure 6a, U0 = 20 V and in Figure 6b U0 = 5 V. Measurement data of
three cycles are demonstrated. At a sufficiently high voltage U0, a power law increase in
current is observed, which corresponds to a similar dependence of conductance G. Power
law exponent is of order 0.2.
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Figure 6. Current responses of cell 1 with rectangular electrodes and Ag nanoparticle array to voltage
steps 20 V (a) and 5 V (b). Numbers 1, 2, and 3 correspond to three consecutive measurements with a
silence interval of θ = 30 s between them.

An increase in conductivity is associated with a growing number of filaments between
nanoparticles in the ensemble. In the case of U0 = 5 V, the conductance dropped sharply,
and the current decreases in successive cycles. This is apparently due to the destruction of
filaments between the nanoparticles.

Similar time dependencies for U0 = 15 V and U0 = 10 V are shown in Figure 7. A
power law trend persists for voltage U0 = 15 V and becomes less noticeable for voltage
U0 = 10 V. The probability of filament formation is reduced, and conductance fluctuations
are more pronounced at smaller voltages.

0.5 1.0 2.0 5.0 10.0 20.0

2
3

4
5

6
7

Time, s

C
ur

re
nt

, n
A

0.5 1.0 2.0 5.0 10.0 20.0

0.
8

1.
0

1.
2

1.
4

1.
8

Time, s

C
ur

re
nt

, n
A

(a) (b)

15 V 10 V
1

2
3
4

5
1

2

5
34

Figure 7. Current responses of cell 1 with rectangular electrodes and Ag nanoparticle array to voltage
steps 15 V (a) and 10 V (b). Numbers 1, 2, 3, 4 and 5 correspond to five consecutive measurements
with a silence interval of 30 s between them.

The small relative fluctuations at 20 V are apparently associated with the functioning
of several conduction pathways and the self-averaging effect. For a voltage of 5 V, a stochas-
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tic dynamics of the conductance is observed, which corresponds to a stationary random
process, and the average value of the conductance and its dispersion remain approximately
constant. This means that when the voltage is reduced by a factor of 3–4, the configuration
associated with a certain distribution of filaments remains the same on average; that is,
the memristive state is preserved and it is supported by a lower voltage. In the absence of
currents, the configuration with the formed filaments is highly nonequilibrial, and the sys-
tem tends to reduce the surface energy due to the dissolution of filaments and distribution
of substance over the surface of nanoparticles.

Figure 8 demonstrates the current in cell 2 with interdigitated electrodes and Ag
nanoparticle array after applying a voltage step of 10 V. In general, the observed dynamics
in the case of interdigital electrode geometry is similar to the case of rectangular electrodes.
However, one can note a decrease in the voltage for switching to the memristive state.
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Figure 8. Current responses in cell 2 with interdigitated electrodes and Ag nanoparticle array to
voltage steps 10 V. Numbers 1–6 correspond to six consecutive measurements with a silence interval
of 30 s between them.

At a low voltage, the field is distributed in a chaotic manner, the dynamic voltages
between nanoparticles are insufficient for the formation of filaments, and the formed atomic
bridges are predominantly destroyed. The transition to the memristive state is associated
with the formation of a percolation cluster connecting two electrodes, but this cluster itself
is apparently unstable and is capable of dynamically rearranging with voltage variations.
It should be noted that the processes of tunneling between nanoparticles are of great
importance during current flow. The observed current values correspond to conductivities
less than the conductance quantum G0 = 2e2/h ≈ 7.748× 10−5 S. This means that the
connectivity parameter is still below the percolation threshold.

Staying in the capacitive mode and switching to the memristive state with voltage
variation is shown in Figures 9–11. Figure 9 demonstrates cyclic voltammograms with
different voltage amplitudes ∆U: 15 V, and 25 V. The duration of a cycle is ∆t = 30 s.
Memristive behavior is observed for interdigital behavior as well (Figures 10 and 11).
Moreover, the voltammograms (Figure 11) demonstrate an intermediate state between
memristive and capacitive behavior. Such an intermediate state persists for a relatively long
time. A series of measurements of voltammograms with an amplitude of 8 V and duration
of 3 min was carried out at three cycles per measurement. During 10 such measurements
in a series, the system retained this intermediate state; when the amplitude decreased by
0.5 V, the system switched to a capacitive state.
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Figure 9. Cyclic voltammograms of a two-terminal system with rectangular electrodes and an array
of silver nanoparticles. The voltammograms correspond to three cycles. Blue points correspond to
the beginning of measurement, and red color points correspond to the end of measurement. Here,
∆U = 15 V (a) and ∆U = 25 V (b).
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Figure 10. Cyclic voltammograms of a two-terminal system with interdigital electrodes and an array
of silver nanoparticles. Blue points correspond to the beginning of measurement, and red color points
correspond to the end of measurement. Here, ∆U = 10 V (a) and ∆U = 8 V (b).
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Figure 11. Cyclic voltammograms of a two-terminal system with interdigital electrodes and an array
of silver nanoparticles. Blue points correspond to the beginning of measurement, and red color points
correspond to the end of measurement. Here, ∆U = 8 V (a) and ∆U = 8 V (b), after θ = 30 s.

In [21], Bai Sun et al. proposed a physical model of a memristor connected in parallel
with a capacitor. This model explains how the nonpinched hysteresis behavior of IV curves
originates from the capacitive-coupled memristive effect. A similar effect is clearly visible
from the voltammograms shown in Figure 11. It is noteworthy that the capacitance
determined from the measurements presented in Figure 9 turns out to be 39.6 pF in the
memristive state versus 5.5 pF in the simple capacitive state. This is apparently due to
the presence of stable filaments in the memristive state, which lead to a decrease in the
distance between charged regions and the involvement of new clusters of nanoparticles in
the formation of capacitance.

Current responses and the voltammogram for cell 3 with interdigital electrodes and a
gold (Au) nanoparticle array are given in Figure 12. It can be seen from these graphs that
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for an array of gold nanoparticles, we observe a similar behavior: a power law increase
in conductance at a constant voltage, switching to a memristive state. However, the latter
occurs at a significantly higher voltage of the order of 50 V.
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Figure 12. Current response (60 V) (a) and cyclic voltamogramm ∆U = 65 V (b) for cell 3 with
interdigital electrodes and gold (Au) nanoparticle array. Black and blue curves in plot (a) correspond
to two consecutive measurements with a silence interval of 30 s between them.

4. Modeling of Resistance Dynamics

In recent work [15], a probabilistic model of random resistance jumps in memristive
devices is proposed. In [16], a master equation is considered to analyze the networks
composed of probabilistic binary memristors. The basic theory of percolation networks
with plasticity is outlined in [9].

To explain the dynamics of conduction in our arrays of nanoparticles, we invoke
ideas previously used to explain the kinetics of transient current in arrays of colloidal
semiconductor nanocrystals [22,23]. In arrays of nanoparticles, the current decay after
application of step voltage U(t) = U0l(t) is often described by power law [24,25]:

I(t) ∝ t−α, 0 < α < 1, (1)

Here l(t) is the Heaviside step function. The exponent α is less than 1, and in the general
case, its value depends on the nanoparticle size and temperature. In [25], the authors
point out that the current (1) is not a bias current, because the integral of Equation (1) is

associated with the charge flowing through the sample Q =
∞∫
0

I(t)dt → ∞. Below the

percolation threshold, the current in our array of nanoparticles is controlled by tunneling
processes between isolated clusters of nanoparticles in channels with the lowest integral
tunneling resistance. It is assumed that filaments have not yet formed between these
clusters. Moreover, we assume that the characteristic time of pulse propagation is much
shorter than the characteristic time of evolution of filaments between nanoparticles.

The observed non-exponential relaxation of current can be explained by the time
dependence of the state of the system. Ref. [26] proposed decreasing the charge flow due
to the suppression of injection from the contact. This suppression arises because electrons
trapped in a nanocrystal prevent the transport of other electrons through this nanocrystal,
and the flow is jammed. Morgan et al. [24] explain the power law decay of current I(t) by
the presentation of non-equilibrium electrons distributed over a nanocrystal array as the
Coulomb glass.

Novikov et al. [25] proposed the model utilizing the Lévy statistics. In their model,
an array of nanoparticles consists of N � 1 identical independent conduction channels
operating in the parallel regime. Each channel opens at random times and conducts
a current pulse. Novikov et al. [25] assumed that these channels are characterized by
the distribution of waiting times T between successful current pulses. In addition, they
postulated that this distribution is a heavy-tailed power law [25],

Ψ(t) = P(T > t) ∝ t−ν, 0 < ν < 1, t→ ∞. (2)
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Such a heavy-tailed distribution leads to the divergence of the mean value; it provides
specific statistical properties of the process, particularly, the presence of memory effects [22].

The distribution of the number of pulses in a channel is

pn = P(N(t) = n) = P(N(t) < n + 1)− P(N(t) < n) = P(Tn+1 > t)− P(Tn > t),

where Tn = ∑n
i=0 Ti. According to the generalized limit theorem (see e.g., [27]),

P(Tn < t) ∼ G+(cn−1/νt; ν), t→ ∞.

Here, G+(t; ν) is the one-sided Lévy stable distribution function. Thus, we have

pn ∼ G+(cn−1/νt; ν)− G+(c(n + 1)−1/νt; ν) ∼ ν−1n−1−1/νct g+(cn−1/νt; ν),

where g+(t; ν) is the Lévy stable density. The current is determined by the expression

i(t) =
d〈Q〉

dt
= eZ

d
dt ∑ npn ∼ eZνc(ct)ν−1

∞∫
0

s−νg+(s; ν)ds =
eZcν

Γ(ν)
tν−1,

for t� c−1, 0 < ν < 1. Here, Z is the number of channels.
Exponent α of power law decay is related to the model parameter ν by relation α = 1− ν.

Current (1) presents the response to a voltage step, so more general voltage signal can
be presented in the superposition form of superposition of steps: u(t) ≈ ∑i ∆ui l(t− i∆t).
Consequently, we have

i(t) ∝ lim
∆t→0

∑
i

∆ui(t− ti)
−α =

d
dt

t∫
0

u(t′)
(t− t′)α

dt′.

It is known that the operator

0Dα
t u(t) =

1
Γ(1− α)

d
dt

t∫
0

u(t′)
(t− t′)α

dt′

is the fractional (0 < α < 1) Riemann–Liouville derivative. Note that the initial time
moment t = 0 implies that u = 0 in the interval (−∞, 0). In a more general case,

i(t) = Kα −∞Dα
t u(t). (3)

When α → 0, this relation represents the Ohm law for a conductor with conductiv-
ity K0; when α→ 1, the relation coincides with the expression for an ideal dielectric with
capacity K1. In a more general case, the dynamics seems to be described by an equation of
variable order. The dependence of the order on time and current can provide the memristive
properties of the system.

The large spread of resistances between neighboring nanoparticles is confirmed by first-
principles calculations. Due to the exponential sensitivity of the tunneling probability to the
distance between neighboring nanoparticles, fluctuations in the positions of atoms in the
gap between nanoparticles lead to a very wide distribution of resistance and conductance.

Using the QuantumATK S-2021.06 software, the simulation of electronic conduction
between silver nanoelectrodes is performed.The system simulating the device is divided
into three regions (left electrode, central part, and right electrode). The implementation is
based on the screening approximation. Within this approximation, it is assumed that the
properties of the left and right electrodes are described by solving the problem for periodic
electrode cells. The approximation is valid when the current through a system is small
enough that the electrodes can be characterized by an equilibrium distribution of electrons.
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In QuantumATK, the transfer matrix is calculated according to the following formula

τnm(E, k) = ∑
`

tn`(E, k)t†
`m(E, k),

where tnk is the transfer amplitude from the Bloch state ψn in the left electrode to the Bloch
state ψk in the right electrode. The matrix t† is a Hermitian conjugate. The transmittance is
defined as the trace of the transmission matrix,

τ(E, k) = ∑
n

τnn(E, k).

Let λα be the eigenvalues of the transfer matrix τnm. From the invariance of the trace
of the matrix:

τ(E, k) = ∑
α

λα(E, k),

where λα ∈ [0, 1] are transmission eigenvalues for each spin channel.
The transmission eigenstates are calculated by diagonalizing a linear combination of

Bloch states, ∑n eα,nψn, where eα,n are vectors of the basis diagonalizing the transmission
matrix:

∑
m

τnmeα,m = λαeα,n.

Figure 13 demonstrates examples of transmission eigenstates. We used the PseudoDojo
Linear Combination of Atomic Orbitals (LCAO) pseudopotential. The exchange-correlation
potential was described by the generalized gradient approximation (GGA) with the Perdew–
Burke–Ernzerhof (PBE) functional. The density cut-off grid was 105 Ha (1 Ha = 27.21 eV).
The Monkhorst–Pack method was used to generate points in the Brillouin zone. For the
simulated system, periodic boundary conditions were set in the transverse direction; the
two outer layers were fixed. The distance between the boundary atoms in the gap between
the nanoparticles is 9.17 Å(Figure 13a). An atom was added on one side (Figure 13b) and
on the other side (Figure 13c), a significant change in the conductance of the system is
observed. Transmission values at the Fermi energy level are τ = 0.000253 (Figure 13d),
τ = 0.0225 (Figure 13e), and τ = 0.347 (Figure 13f). The corresponding conductance values
are found by multiplying by the conductance quantum G0 = 2e2/h.

In the calculations of molecular dynamics, we used the interaction potential from [28]
calculated by the embedded atom method. A typical dynamics of filament dissolution in
simulated systems can be represented as the following stages (Figure 14): (1) at the initial
stage, the shape of the nanowire changes due to thermal vibrations of the system; (2) the
nanowire loses its crystallinity, and the atoms in the filament begin randomly walking
and can pass to the nanoparticles; (3) broadened protrusions are formed at the filament
bases that facilitate the transfer of atoms to nanoparticles; (4) when the filament becomes
sufficiently narrow, mainly in the middle, a break occurs, and then, the protrusions spread
diffusively over the surface of nanoparticles.

Recent results of molecular dynamics modeling of filaments, including taking into
account the graphite substrate, are given in the works [17,29]. The formation of sufficiently
wide filaments during the functioning of the memristive network can contribute to the
subsequent coalescence of nanoparticles, i.e., the nanobridge does not break: it pulls the
nanoparticles together [30]. Undoubtedly, the substrate on which the nanoparticles are
located significantly affects the migration of atoms between nanoparticles, the distribution
of the electric field, and, consequently, the processes of the formation and dissolution of
filaments. Filaments dissolve much more slowly in the presence of a substrate; therefore,
other approaches such as Monte-Carlo algorithms or phase-field models turn out to be
useful, which not only extend the time range but also allow one to simulate the dynamics
of filaments in sufficiently large ensembles of nanoparticles. In the next section, we propose
a phase-field model based on the Cahn–Hilliard and Ginzburg–Landau equations.
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Figure 13. Left: thermal diagram of eigenstates corresponding to transmission coefficients at the
Fermi energy level, at a distance of 9.17 Å (a), with the addition of an atom from one (b) and two
sides (c). The amplitude scale on the heat map is from 0 (minimum—black) to 0.2 eV−1/2Å−3/2

(maximum—white); Right: corresponding transmission spectra; transmission values at Fermi energy
level: τ = 0.000253 (d), τ = 0.0225 (e), τ = 0.347 (f).
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t=0.98 ns t=1.2 ns

t=12.5 ns
t=12.6 ns

(a) (b)

(c) (d)

(e)

Figure 14. Simulation of the temporal stability of silver nanofilaments at 300 K (nanowire
length ≈ 26 Å, width ≈ 7.2 Å): after 0.98 ns (a), 1.2 ns (b), 12.5 ns (c), 12.6 ns (d). The change
in energy over time is shown in plot (e), the breakage of filament is accompanied by a sharp increase
in the energy modulus.

5. Phase Field Model of Thermodynamic Stability of Filaments

Let us consider the problem of filament ensemble stability in a two-dimensional model
system using phase field theory. The system consists of the crystallized particles, which
can be interconnected by filaments, thus forming a percolation structure. These filaments
are prevously formed by the applied electric field or other factors. The free energy density
functional G of the system reads

G = n0

∫
S

(
g(c, η) +

1
2

κc(∇c)2 +
1
2

κη(∇η)2
)

dA, (4)

where n0 is the number of atoms per unit surface of the substrate, g(c, η) is the free energy
density per particle, c ≡ c(~r, t) is the concentration field of atoms, which can be both in
the crystallized phase and form filaments connecting particles, η ≡ η(~r, t) is the order
parameter that determines the distribution of crystallized particles on the substrate, dA is
the substrate surface element, S is the total substrate surface area, and κc and κη are the
gradient energy coefficients. The atomic concentration c and the order parameter η change
from zero to one. Here, η = 1 and c ∼ 1 correspond to crystallized particles, η = 0 and
c ∼ 0 correspond to the matrix, and η = 0 and c ∼ 1 correspond to filaments or formed
particles in the amorphous state.
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The dynamics of the concentration field and the order parameter can be obtained
using the Cahn–Hilliard and Ginzburg–Landau equations:

∂c
∂t

= n0M∇2
[

∂g
∂c
−∇ · {κc∇c}

]
+∇ ·~ξc, (5)

∂c
∂t

= n0L
[

κη∇2η − ∂g
∂η

]
+ ξη . (6)

Here, we introduce the designation of the mobilities M and L, which have constant
values, and also take into account the presence of fluctuations ~ξc and ξη of the concentration
field and the order parameter [31–35].

Assuming that the parameters of interaction between atoms inside the particles and in
the matrix are different, we can write the free energy density in the form:

g(c, η) = gP(c)h(η) + gM(c)
[
1− h(η)

]
+

1
2

Wη2(1− η)2, (7)

where W is the interaction parameter, and gP and gM are the free energy densities in
particles and the matrix, which can be determined in the regular solution approximation:

gP(c) = gPc + ΩPc(1− c) + kBT
(

c ln c + (1− c) ln(1− c)
)

, (8)

gM(c) = gMc + ΩMc(1− c) + kBT
(

c ln c + (1− c) ln(1− c)
)

, (9)

The interaction parameters gP, gM, ΩP and ΩM can be easily related to the interatomic
interaction energies of solutions [36,37], kB is the Boltzmann constant, and T is the tempera-
ture. The approximating function h(η) can be chosen as follows: h(η) = η2(3− 2η) [38,39].
Taking into account expressions (8) and (9), the free energy density (7) is expressed as

g(c, η) =
(

gPh(η) + gM(1− h(η))
)

c +
(

ΩPh(η) + ΩM[1− h(η)
])

c(1− c)+

kBT
(

c ln c + (1− c) ln(1− c)
)
+

1
2

Wη2(1− η)2. (10)

Since the gradient energy coefficient in binary systems is proportional to the interac-
tion parameter (κM,P ∼ ΩM,P) [40,41], a similar approximating dependence on the order
parameter can be used κ(η) = κPh(η) + κM(1− h(η)).

The random fields ξc and ξη introduced in Equations (5) and (6) determine thermal
fluctuations, and they can be specified using the correlation functions:

〈ξci(~r, t)ξcj(~r ′, t′)〉 = 2kBTMδijw(|~r−~r ′|)δ(t− t′),
〈ξη(~r, t)ξη(~r ′, t′)〉 = 2kBTLw(|~r−~r ′|)δ(t− t′),

(11)

where δij is the Kronecker symbol and δ(t) is the Dirac delta function. As the function
w(~r−~r ′), which determines the spatial correlation of the concentration field and the order
parameter, we use the Gaussian function [33]:

w(|~r−~r ′|) = 1
(
√

2πλ)d
exp

[
−|~r−~r ′|2

2λ2

]
, (12)

λ is the correlation length of fluctuations, and d is the dimension of the system (d = 2).
Assuming that the mobility M and L are constant, it is convenient to pass to the

following units of physical quantities used in Equations (5) and (6):

[~r] = l, [gP,M] = [W] = [ΩP,M] = ΩM, [T] = TC,
[t] = n0MΩM/l2, [κη ] = [κc] = ΩMl2, [L] = M/l2,

(13)
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where l is the characteristic length, which can be taken as equal to several interatomic
distances, and TC = ΩM/2kB is the critical temperature in the matrix.

Further modeling will be carried out for the system parameters given in Table 1.
The dependence of the free energy density on the value of concentration c and order
parameter η is shown in Figure 15. This dependence is characterized by three minima
that determine the stable states of the system, which correspond to a homogeneous matrix
without filaments (M), a matrix with a filament or non-crystallized nucleus (F), and a solute-
enriched crystallized particle (P), which is energetically the most favorable. Transitions
of particles between given stable states are characterized by barriers, the height of which
determines the probabilities of transition between them. In this regard, it is expected that
filaments (F), which are characterized by higher energy than particles (P), correspond to
metastable formations and will gradually disappear.

Table 1. Simulation parameters.

Parameter Value

Size of the system 2048× 2048

ΩP 1.2
ΩM 1.0
gP −0.25
gM 0.1
κP 1.2
κM 1.0
κη 0.5
W 10

Figure 15. The dependence of free energy density on order parameter and concentration for the
interaction parameters from Table 1.

An ensemble of particles with circular symmetry was formed as the initial condition.
The initial distribution of particles was specified by solving the Cahn–Hillard Equation (5)
for a regular solution with constant mobility and homogeneous interaction parameters in
the region corresponding to unstable states, where the spinodal decomposition mechanism
is realized (〈c〉 = 0.3, T = 0.6, M = 1, κc = 1.5). Small particles with size R < 1.5w = 12
(w is the filament thickness) were removed from this region. An example of the obtained
distribution of particles is shown by red contours in Figure 16a. For further simulation of
the dynamics of filament rapture, two initial structures were used, obtained at different
times t = 10,500 and t = 25,000, which differed in average size and number of particles
equal to 〈R0〉 = 17, N0 = 969 and 〈R0〉 = 21, N0 = 674, respectively.
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Then, filaments were randomly created between the particles with a probability density

f (r) ∼ exp(−r/r0),

where r is the distance between particles, r0 = 200. The maximum filament length was
limited from above by rmax = 120. All filaments crossing particles or other filaments were
excluded. The initial distribution of the concentration field and the order parameter at the
particle boundary were approximated using the hyperbolic tangent. The formed filaments
had the same width equal to w = 8. At the initial time, the concentrations in the particles,
filaments, and matrix corresponded to the minima of the free energy density: c = 0.9852
(P), c = 0.042054 (M), and c = 0.89038 (F). The temperature is taken to be equal to T = 0.65.

Figure 16 shows the dynamics of the original two-dimensional structure containing
particles interconnected by filaments (Figure 16a). In fact, the considered initial structure
corresponds to a percolation cluster. If we assume that the transport of charge carriers
occurs in regions with an increased concentration of c, then the initial percolation cluster
provides charge transfer. At subsequent time points, the filaments are gradually destroyed
(Figure 16c,d), and the original percolation cluster is fragmented into unbound parts.
The assumed conductivity of the system under consideration vanishes.

Figure 16. The results of simulation of filament rupture during thermal annealing of the initial
structure (a) at different time points: t = 400 (b), t = 1000 (c), and t = 6000 (d). The figures
correspond to the system with the initial average particle size R = 21 and quantity N = 674.

Depending on filament length, two types of rupture were observed. Short filaments
have a single point of discontinuity, which tends to be near the smaller particle. After the
rupture, substance that made up the filament gradually moves to a larger particle, which
leads to an increase in its size. For longer filaments, a break occurs in two places (near
each of the interacting particles), while the remaining substance of the filament forms a
small area with an increased concentration, which gradually tends to circular symmetry.
Particles formed in the matrix during filament rapture are unstable and gradually dissolve,
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and the released substance is redistributed among larger particles due to diffusive transfer.
Particles that have absorbed the substance of filaments also increase in size. Examples of
breaking short and long filaments at different time points are shown in Figures 17 and 18.

Figure 17. Filament break stages corresponding to different times t: (a)—120, (b)—220, (c)—400,
(d)—600, (e)—1020, (f)—1400. The gray areas correspond to the crystallized phase (P). Light areas
correspond to the matrix (M). Transition regions with increased c concentration correspond to
filaments. The figures show areas with a size 200× 200 (300 < x < 500, 300 < y < 500).

Figure 18. Filament break stages corresponding to different times t: (a)—220, (b)—400, (c)—600,
(d)—1020, (e)—1400, (f)—2000. The gray areas correspond to the crystallized phase (P). Light
areas correspond to the matrix (M). Transition regions with increased c concentration correspond to
filaments. The figures show areas with a size 200× 200 (1400 < x < 1600, 900 < y < 1100).

Of interest is the dynamics of average characteristics at the rupture of filaments.
The decay of a percolation cluster can be characterized by the number and size of isolated
clusters or particles. The identification of unbound particles was carried out using the
nearest neighbor method [42,43], which is widely used in the theory of cluster analysis.
The bound particles were determined by the threshold value of the concentration cth > 0.3.
The results of calculating the number of clusters and the average size are shown in Figure 19.
In the decay process under consideration, the number of isolated clusters increases, while
their average size decreases. The decrease in the number of isolated clusters and an increase
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in their size is due to the disappearance of unstable particles formed in the matrix as a result
of the filaments dissolution (Figure 18). An increase in the number density of crystallized
particles leads to a decrease in the average distance between them and, consequently, to a
decrease in the fraction of long filaments, the decay of which leads to the formation of
unstable particles in the matrix (Figure 18). This explains the presence of a longer section of
the decrease in concentration for curve 1 in Figure 19b.

Figure 19. Dynamics of the average equivalent radius (a) and the number (b) of clusters formed
during the rupture of filaments in the initial structure shown in Figure 16. The curves correspond
to systems with different initial number of particles: 1—〈R0〉 = 21, N0 = 674 and 2—〈R0〉 = 17,
N0 = 969.

At the end of the simulation, the percolation cluster is completely destroyed, but the
system still contains particles connected to each other by filaments (Figure 16d). As a
rule, these filaments bind a small number of nearest particles (up to four). Thus, it can be
assumed that the shortest filaments can correspond to a stable (metastable) state, the decay
time of which can significantly exceed the ensemble average value. The proportion of
short filaments increases with the increasing number density of crystallized particles in the
original system, so the number of metastable filaments with longer decay time increases,
which can be detected by the number of unbound particles (N0 − N(t)) at the end of
simulation (Figure 19b).

6. Conclusions

Memristive percolation networks based on two-dimensional arrays of silver and
gold nanoparticles have been synthesized and studied. Switching between memristive
and capacitive states is investigated using cyclic voltammetry and step voltage excitation.
The observed currents correspond to conductivity values less than one quantum of con-
ductance. So, there is no fully formed percolation path in the system, and the conductivity
remains controlled by tunnel junctions. At a constant voltage close to the breakdown
voltage, the conductance grows according to a power law. The resulting memristive arrays
of nanoparticles have the properties necessary for reservoir computing: they perform a
non-linear transformation of input current signals, and they have a short-term memory
(left to itself, the system relaxes to its original state due to the thermodynamic dissolution
of filaments). The stability of the responses of the resulting arrays to the noise of the input
signals requires additional research.

DFT-based simulation of the quantum contact of two nanoparticles confirmed wide
distribution of conductance with variations in the position of single atoms in the gap
between nanoparticles. Wide (power law) distribution of elementary conductances in an
array is related to the Lévy statistics of tunneling conduction channels describing power-law
evolution of current.

Based on the phase field theory, a model for the dissolution of filaments has been
developed. The initial state of systems corresponds to a percolative state. During the
dissolution of filaments, the percolation cluster breaks up into unbound regions. However,
for a long time, the system still contains particles connected to each other by filaments.
As a rule, these filaments bind a small number of nearest particles. It can be assumed that
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the shortest filaments correspond to a stable (metastable) state, the decay time of which
significantly exceeds the ensemble average value.
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1. Marković, D.; Mizrahi, A.; Querlioz, D.; Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2020, 2, 499–510.

[CrossRef]
2. Schuman, C.D.; Kulkarni, S.R.; Parsa, M.; Mitchell, J.P.; Date, P.; Kay, B. Opportunities for neuromorphic computing algorithms

and applications. Nat. Comput. Sci. 2022, 2, 10–19. [CrossRef]
3. Christensen, D.V.; Dittmann, R.; Linares-Barranco, B.; Sebastian, A.; Le Gallo, M.; Redaelli, A.; Slesazeck, S.; Mikolajick, T.; Spiga,

S.; Menzel, S.; et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Comput. Eng. 2022, 2, 022501.
[CrossRef]

4. Diaz-Alvarez, A.; Higuchi, R.; Sanz-Leon, P.; Marcus, I.; Shingaya, Y.; Stieg, A.Z.; Gimzewski, J.K.; Kuncic, Z.; Nakayama, T.
Emergent dynamics of neuromorphic nanowire networks. Sci. Rep. 2019, 9, 14920. [CrossRef]

5. Hochstetter, J.; Zhu, R.; Loeffler, A.; Diaz-Alvarez, A.; Nakayama, T.; Kuncic, Z. Avalanches and edge-of-chaos learning in
neuromorphic nanowire networks. Nat. Commun. 2021, 12, 4008. [CrossRef]

6. Milano, G.; Pedretti, G.; Montano, K.; Ricci, S.; Hashemkhani, S.; Boarino, L.; Ielmini, D.; Ricciardi, C. In materia reservoir
computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 2022, 21, 195–202.
[CrossRef]

7. Heywood, Z.; Mallinson, J.; Galli, E.; Acharya, S.; Bose, S.; Arnold, M.; Bones, P.; Brown, S. Self-organized nanoscale networks:
Are neuromorphic properties conserved in realistic device geometries? Neuromorphic Comput. Eng. 2022, 2, 024009. [CrossRef]

8. Fostner, S.; Brown, S.A. Neuromorphic behavior in percolating nanoparticle films. Phys. Rev. E 2015, 92, 052134. [CrossRef]
9. Karpov, V.; Serpen, G.; Patmiou, M. Percolation with plasticity for neuromorphic systems. J. Phys. Complex. 2020, 1, 035009.

[CrossRef]
10. Mallinson, J.; Shirai, S.; Acharya, S.; Bose, S.; Galli, E.; Brown, S. Avalanches and criticality in self-organized nanoscale networks.

Sci. Adv. 2019, 5, eaaw8438. [CrossRef] [PubMed]
11. Di Ventra, M.; Pershin, Y.V. On the physical properties of memristive, memcapacitive and meminductive systems. Nanotechnology

2013, 24, 255201. [CrossRef]
12. Sun, B.; Guo, T.; Zhou, G.; Ranjan, S.; Jiao, Y.; Wei, L.; Zhou, Y.N.; Wu, Y.A. Synaptic devices based neuromorphic computing

applications in artificial intelligence. Mater. Today Phys. 2021, 18, 100393. [CrossRef]
13. Friedman, N.; Ito, S.; Brinkman, B.A.; Shimono, M.; DeVille, R.L.; Dahmen, K.A.; Beggs, J.M.; Butler, T.C. Universal critical

dynamics in high resolution neuronal avalanche data. Phys. Rev. Lett. 2012, 108, 208102. [CrossRef]
14. Carstens, N.; Adejube, B.; Strunskus, T.; Faupel, F.; Brown, S.; Vahl, A. Brain-like critical dynamics and long-range temporal

correlations in percolating networks of silver nanoparticles and functionality preservation after integration of insulating matrix.
Nanoscale Adv. 2022, 4, 3149–3160. [CrossRef]

15. Slipko, V.A.; Pershin, Y.V. A probabilistic model of resistance jumps in memristive devices. arXiv 2023, arXiv:2302.03079.
16. Dowling, V.J.; Slipko, V.A.; Pershin, Y.V. Probabilistic memristive networks: Application of a master equation to networks of

binary ReRAM cells. Chaos Solitons Fractals 2021, 142, 110385. [CrossRef]
17. Wu, W.; Pavloudis, T.; Verkhovtsev, A.V.; Solov’yov, A.V.; Palmer, R.E. Molecular dynamics simulation of nanofilament breakage

in neuromorphic nanoparticle networks. Nanotechnology 2022, 33, 275602. [CrossRef]
18. Gromov, D.G.; Pavlova, L.M.; Savitsky, A.I.; Trifonov, A.Y. Nucleation and growth of Ag nanoparticles on amorphous carbon

surface from vapor phase formed by vacuum evaporation. Appl. Phys. A 2015, 118, 1297–1303. [CrossRef]
19. Dubkov, S.; Gromov, D.; Savitskiy, A.; Trifonov, A.; Gavrilov, S. Alloying effects at bicomponent Au-Cu and In-Sn particle arrays

formation by vacuum-thermal evaporation. Mater. Res. Bull. 2019, 112, 438–444. [CrossRef]
20. Hesse, J.; Gross, T. Self-organized criticality as a fundamental property of neural systems. Front. Syst. Neurosci. 2014, 8, 166.

[CrossRef]

http://doi.org/10.1038/s42254-020-0208-2
http://dx.doi.org/10.1038/s43588-021-00184-y
http://dx.doi.org/10.1088/2634-4386/ac4a83
http://dx.doi.org/10.1038/s41598-019-51330-6
http://dx.doi.org/10.1038/s41467-021-24260-z
http://dx.doi.org/10.1038/s41563-021-01099-9
http://dx.doi.org/10.1088/2634-4386/ac74da
http://dx.doi.org/10.1103/PhysRevE.92.052134
http://dx.doi.org/10.1088/2632-072X/abb88c
http://dx.doi.org/10.1126/sciadv.aaw8438
http://www.ncbi.nlm.nih.gov/pubmed/31700999
http://dx.doi.org/10.1088/0957-4484/24/25/255201
http://dx.doi.org/10.1016/j.mtphys.2021.100393
http://dx.doi.org/10.1103/PhysRevLett.108.208102
http://dx.doi.org/10.1039/D2NA00121G
http://dx.doi.org/10.1016/j.chaos.2020.110385
http://dx.doi.org/10.1088/1361-6528/ac5e6d
http://dx.doi.org/10.1007/s00339-014-8834-0
http://dx.doi.org/10.1016/j.materresbull.2018.10.003
http://dx.doi.org/10.3389/fnsys.2014.00166


Nanomaterials 2023, 13, 2039 19 of 19

21. Sun, B.; Chen, Y.; Xiao, M.; Zhou, G.; Ranjan, S.; Hou, W.; Zhu, X.; Zhao, Y.; Redfern, S.A.; Zhou, Y.N. A unified capacitive-coupled
memristive model for the nonpinched current–voltage hysteresis loop. Nano Lett. 2019, 19, 6461–6465. [CrossRef]

22. Sibatov, R.T. Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays. Phys. Scr. 2011,
84, 025701. [CrossRef]

23. Uchaikin, V.V.; Sibatov, R.T. Anomalous kinetics of charge carriers in disordered solids: Fractional derivative approach. Int. J.
Mod. Phys. B 2012, 26, 1230016. [CrossRef]
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