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Abstract: Nuclear energy with low carbon emission and high-energy density is considered as one of
the most promising future energy sources for human beings. However, the use of nuclear energy
will inevitably lead to the discharge of nuclear waste and the consumption of uranium resources.
Therefore, the development of simple, efficient, and economical uranium extraction methods is
of great significance for the sustainable development of nuclear energy and the restoration of the
ecological environment. Photocatalytic U(VI) extraction technology as a simple, highly efficient, and
low-cost strategy, received increasing attention from researchers. In this review, the development
background of photocatalytic U(VI) extraction and several photocatalytic U(VI) reduction mecha-
nisms are briefly described and the identification methods of uranium species after photocatalytic
reduction are addressed. Subsequently, the modification strategies of several catalysts used for U(VI)
extraction are summarized and the advantages and disadvantages of photocatalytic U(VI) extraction
are compared. Additionally, the research progress of photocatalytic technology for U(VI) extraction
in actual uranium-containing wastewater and seawater are evaluated. Finally, the current challenges
and the developments of photocatalytic U(VI) extraction technology in the future are prospected.
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1. Introduction

In the context of global climate change, accelerating the transformation of clean and
low-carbon energy became a global development trend [1]. As a mature technology,
nuclear fission can produce stable output and the lowest carbon emissions, making a great
contribution to meet the demand for low-carbon energy in the 21st century [2]. With the
introduction of nuclear energy, the demand for uranium resources will inevitably increase.
In a properly operated nuclear power plant, there should not be a continuous release of
radioactive wastewater, due to the fact that nuclear power plants have multiple layers
of safety measures to prevent the release of radioactive materials into the environment.
The primary source of radioactive wastewater in a nuclear power plant is the cooling
water that circulates through the reactor core to remove excess heat. This cooling water
can become contaminated with trace amounts of radioactive isotopes, but it is carefully
contained and treated within the plant. The treatment of radioactive wastewater in nuclear
power plants typically involves filtration, ion exchange, and other purification processes
to remove radioactive particles and reduce their concentration to safe levels. The treated
water is then monitored for compliance with regulatory standards before being discharged
into the environment. However, it is important to note that while nuclear power plants
strive to operate safely and minimize any potential releases, accidents or incidents can
occur [3,4]. In such cases, there might be a temporary release of radioactive wastewater or
other radioactive materials. These situations are considered exceptional and are subject to
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investigation and regulatory oversight to ensure the protection of public health and the
environment. Overall, the goal of a properly functioning nuclear power plant is to maintain
the highest levels of safety and containment to prevent the continuous release of radioactive
wastewater. Oppositely, the uncontrolled discharge of a large amount of radioactive and
highly toxic uranium-containing wastewater without proper treatment will impose a heavy
burden to human health and ecosystem stability. Moreover, according to records, there are
4.5 billion tons of uranium in the ocean, which is about 1000 times that of the terrestrial
uranium reserves [5]. Therefore, uranium is not extremely rare and is considered to be
relatively abundant in the Earth’s crust. It is estimated that the Earth’s crust contains
about 2.8 parts per million (ppm) of uranium by weight, which makes it more abundant
than elements such as silver, mercury, and platinum. However, when we often refer to
uranium as a “rare” resource, it is in the context of its concentrated and economically viable
deposits. While uranium is widely distributed in the Earth’s crust, the extraction and
processing of uranium ore require significant effort and cost. In fact, the above-mentioned
large quantities of uranium in seawater refer to the fact that uranium is dissolved in very
low concentrations in the Earth’s oceans. However, extracting uranium from seawater is
currently not economically viable on a large scale due to the low concentration levels and
the energy-intensive processes required to extract and concentrate the uranium. Most of
the world’s uranium production comes from conventional mining operations that extract
uranium from high-grade ore deposits. These deposits are relatively rare compared to
the overall abundance of uranium in the Earth’s crust. So, while uranium itself is not
extremely rare, economically viable and easily accessible sources of concentrated uranium
deposits are limited, which affects its availability for various applications, including nuclear
power generation. Hence, developing an advanced approach for the extraction of uranium
from seawater and radioactive uranium-containing wastewater probably plays a vital
role in promoting the development of low-carbon-footprint energy and environmental
remediation [6,7].

Based on data from literature [8], the potential for uranium recovery will reach 1158 tU
or 3.01 million lb U3O8 in 2030. The cost of uranium can vary significantly depending
on factors such as market conditions, production methods, and geopolitical factors. His-
torically, the price of uranium (U3O8) experienced significant fluctuations. At its peak
in 2007, the spot price of uranium reached around USD 136 per pound. However, in
recent years, the price was relatively low, ranging from about USD 20 to USD 30 per
pound [8]. Since 2021, the price started to rise from USD 35.7 per pound to USD 53.6 per
pound in 2022, then slightly decreased to USD 50.4 per pound in 2023 (the data come
from https://www.focus-economics.com/commodities/energy/uranium/, accessed on
1 July 2023). Due to the high toxicity and radioactivity of uranium, exploring an economical,
efficient, and environmentally friendly technology to recover uranium from unconven-
tional resources (such as phosphates) and form wastewater containing uranium is playing a
crucial role. Currently, a variety of uranium extraction techniques were proposed, which in-
clude adsorption [9], photocatalysis [6], electrocatalysis [10], membrane separation [11], ion
exchange [12], and the recently proposed piezoelectric catalysis method [13,14]. However,
current research methods mainly focus on synthetic solutions with known matrices [15],
while seawater and actual uranium-containing wastewater are complex biogeochemical
systems accompanied by all kinds of competing metal ions, organic compounds, high salin-
ity, various microorganisms, and specific pH values [16]. Therefore, the development of
uranium extraction strategies adapted to various natural environments became a significant
research topic in this field [17–19].

In recent years, inspired by the photocatalytic application in heavy metal reduction
and environmental remediation [20–23], photocatalytic uranium reduction technology
was favored by many researchers [24–28]. Compared with the above-mentioned methods,
photocatalytic reduction has the advantages of rich energy driving force, low cost, high effi-
ciency, and green sustainability [29]. However, the catalytic performance of semiconductor
photocatalysts is often limited by the recombination of photogenerated charges, making
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it difficult to achieve ideal energy utilization efficiency [29]. Therefore, it is particularly
important to design superior photocatalysts for reduction through various modification
methods to reduce the recombination of photogenerated electrons and holes and therefore
improve energy utilization efficiency.

More recently, research on photocatalytic uranium extraction increased year by year,
and more catalysts for uranium extraction and related catalytic mechanisms were discov-
ered. It is well known that photocatalytic technology is a new and useful strategy for
uranium extraction from wastewater solution. Photocatalytic uranium extraction from
wastewater is a significant development in the field of environmental remediation and
resource recovery. The pivotal significance embodies the following aspects, (i) uranium
contamination: Uranium is a naturally occurring radioactive element that can be found
in various concentrations in the environment, including wastewater. Uranium contamina-
tion in water sources can pose a significant threat to human health and the environment.
Therefore, photocatalytic technology provides an effective method to remove uranium
from wastewater. (ii) Traditional methods for uranium extraction from wastewater involve
the use of chemical agents such as precipitation, ion exchange, or adsorption onto solid
materials. While these methods can be effective, they often require the use of expensive and
environmentally harmful chemicals, and the resulting uranium-laden waste can pose dis-
posal challenges. The relatively simple photocatalytic extraction of uranium offers a more
sustainable and environmentally friendly alternative. This process utilizes photocatalysts,
typically semiconductor materials, to harness solar energy and activate chemical reactions
that break down and remove uranium from wastewater. The photocatalysts can be easily
regenerated and reused, making the process more economically viable and reducing waste
generation. (iv) One of the major advantages of photocatalytic uranium extraction is that
it is a solar-driven process. By utilizing sunlight as the energy source, it eliminates the
need for external energy inputs, reducing the overall operational costs and environmental
impact of the extraction process. Additionally, the use of renewable solar energy aligns
with the goals of sustainable development and carbon neutrality. (v) Uranium is a valuable
resource that can be utilized for various purposes, including nuclear power generation and
medical applications. Photocatalytic extraction offers the opportunity to recover and recycle
uranium from wastewater for resource recovery, thereby reducing the reliance on tradi-
tional uranium mining and promoting resource sustainability. (vi) In addition to extracting
uranium, photocatalytic processes can also remove other contaminants from wastewater
for water purification. The photocatalysts have the ability to degrade organic pollutants
and inactivate pathogens, contributing to overall water purification and improving water
quality. (vii) The development of photocatalytic uranium extraction from wastewater
opens up possibilities for decentralized treatment systems for future implications. It can be
applied to various wastewater sources, including industrial effluents and mining runoff,
where uranium contamination is a concern. The photocatalytic technology has the potential
to mitigate the environmental impacts of uranium mining and processing industries and
safeguard water resources. Hence, the significance of photocatalytic uranium extraction
lies in its sustainable and solar-driven approach, resource recovery potential, water pu-
rification capabilities, and the potential for mitigating uranium contamination in various
wastewater sources.

Based on these, this review summarizes the proposed photocatalytic U(VI) reduction
mechanism and introduces the identification techniques of uranium species after photocat-
alytic reduction. The various modification strategies of catalysts for photocatalytic U(VI)
reduction are reviewed. The current research progress of photocatalytic U(VI) extraction
processes in real uranium-containing wastewater and seawater is evaluated. Finally, the
challenges faced by the current photocatalytic uranium extraction process and the prospects
for future development are presented.
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2. Mechanism of Photocatalytic Uranium Reduction and Identification of
Reduction Products

The photocatalytic uranium extraction strategy, as an important technology for ura-
nium resource recovery and ecosystem restoration, widely attracted increasing attention.
Only in 2022, there were 67 research articles relevant to the photocatalytic reduction of
U(VI) (Figure 1A), showing a gradually increasing tendency. Current research mainly
focuses on how to improve the catalytic efficiency of photocatalysts, while the forms of
uranium and the conversion processes were rarely investigated [30]. In nature, uranium
species mainly exist in uranium mine wastewater and seawater in four valence states: III,
IV, V, and IV (Figure 1B) [31]. Among them, U(IV) and U(VI) species are the most stable in
a natural water environment, and uranyl ions (UO2

2+) usually participate in migration and
transformation process [16,32,33].
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Figure 1. (A) Research on photocatalytic U(VI) reduction. These data are based on the search results
from “Web of Knowledge” using the keywords “photocatalytic reduction of U(VI)”. (B) Chemical
oxidation states of uranium. (C) The forms of uranium species under different pH conditions.
Reproduced with permission [34]. Copyright (2017) Elsevier. (D) The photocatalytic U(VI) reduction
mechanism.
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U(VI) can exist as all kinds of U species in aqueous solutions, and the types of U(VI)
species change with various acidic and alkaline environments (Figure 1C) [34]. In acidic
solutions, U(VI) species mainly exist in the form of UO2

2+. When pH is higher than 4, UO2
2+

species decrease, UO2OH+, (UO2)3OH5
+, and (UO2)2OH2

2+ species gradually increase,
leading to a complex distribution of uranium species. The distribution of U(VI) species is
greatly influenced by pH. Due to the complexity and diversity of natural water environ-
ments, the photocatalysts used for U extraction must have a relatively wide selectivity for
different U(VI) species to improve uranium extraction efficiency. Herein, we list the studies
on photocatalytic uranium extraction in recent years in Table 1 [35–72].

Table 1. The photocatalytic U(VI) reduction performance over different catalysts.

Photocatalysts CU(VI)
a pH Light RR (%) b

t (min) c Ref.

TiO2/Fe3O4 0.1 mM 4.0 UV light (100 W high-pressure
mercury lamp) 100, 30 [35]

GO/KTO 0.21 mM 6.0–8.0 UV-visible light (500 W Xe lamp) 100, 60 [36]

TiO2 0.2 mM 5.0 UV light (350 W mercury
discharge lamp) 100, 100 [37]

C3N5/RGO 10 mg L−1 5.0 300 W Xe lamp (λ ≥ 425 nm,
3.08 mW/cm2) 94.9, 100 [38]

ZnO/rectorite 5 mg L−1 --- 300 W Xe arc lamp 75, 150 [39]

SrTiO3/TiO2
electrospun nanofibers 100 mg L−1 4.0 400 nm with monochromatic light - [40]

SiO2/C
nanocomposite 100 mg L−1 5.0 UV–vis absorption spectra 94.2, 120 [41]

S-g-C3N4 0.12 mM 7.0 visible light (A 350 W Xe lamp with a
420 nm cutoff filter) 95, 20 [42]

g-C3N4 27 mg L−1 6.0 300 W Xe lamp (λ ≥ 420 nm) 100, 20 [31]

C3N4 20 mg L−1 4.0–8.0 300 W Xe lamp (λ ≥ 420 nm) 92, 60 [43]

Nb/Ti NFs 20 mg L−1 5.0 simulated solar light
(450 W xenon lamp) 90, 240 [44]

CdS/TiO2 50 mg L−1 6.0 solar simulator with a 420 nm
cut-off filter 97, 240 [45]

g-C3N4/GO 80 mg L−1 5.0 300-W Xe lamp - [46]

Fe3O4@PDA@TiO2 50 mg L−1 8.2 --- 73, 300 [47]

ZnFe2O4/g-C3N4 20 mg L−1 5.0 8 W LED light 94.62, 2400 [48]

MoS2/g-C3N4 50 mg L−1 4.5 photocatalytic reaction box
(CEL-HXF 300, Beijing Aulight Co. Ltd.) 81.9, 120 [49]

graphene-like
S-C3N4

0.12 mM 7.0 sodium hydroxide aqueous solution.
A 350 W Xe lamp (λ ≥ 420 nm) 92, 30 [50]

Ti3C2/SrTiO3 0.21 mM 4.0 UV-visible light (wavelength,
320–2500 nm, 300 W Xe lamp) 80, 180 [51]

MoS2/THS 50 mg L−1 6.0 300 W Xe lamp equipped with an
ultraviolet cutoff filter (λ ≥ 420 nm) 98, 80 [52]

bentonite/Portland
cement composite 50 mg L−1 --- --- 96.97, 1140 [53]

g-C3N4/TiO2 0.25 g·L−1 6.9 UV-visible light (wavelength,
320–780 nm, 300 W Xe lamp) ∼80, 240 [54]
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Table 1. Cont.

Photocatalysts CU(VI)
a pH Light RR (%) b

t (min) c Ref.

CuO/CuFeO2 0.000126 mM 8.2

photoelectrochemical method: constant
potential (−0.6 V vs. SCE) + simulated
sunlight (150 W Xenon arc lamp with

an AM1.5 G filter)

100, 90 [55]

TiO2/Fe3O4 13.5–108 mg L−1 3.5–9.3 100 W high—pressure mercury lamp
(λ = 365 nm) 100, 30 [35]

PCN-222 MOF 500 mg L−1 3–11 300 W Xe lamp (λ ≥ 420 nm) 100, 5 [27]

Ti3C2/CdS 25–200 mg L−1 4–10 300 W Xe lamp (λ ≥ 420 nm,
500 mW/cm2) 97, 40 [56]

ECUT-SO 50 mg L−1 4 300 W Xe lamp (λ ≥ 400 nm) 97.8, 60 [6]

Sn/In2S3 16,200 mg L−1 3–9 500 W Xe lamp (λ ≥ 400 nm) 95, 40 [57]

PCB/g-C3N4 100 mg L−1 4 300 W Xe lamp (λ ≥ 400 nm) --- [58]

TiO2 400 mg L−1 5.5 UV light (400 W mercury
discharge lamp) 95, 135 [59]

B-g-C3N4 500 mg L−1 7.0 visible light (A 500 W Xe lamp with a
420 nm cutoff filter) 93, 20 [60]

isotype g-C3N4 0.168 mM 5.32 --- 98, 20 [61]

BiOBr@TpPa-1 30 mg L−1 2.0–7.0 500 W Xe lamp (λ ≥ 420 nm) 91, 540 [62]

g-C3N4/LaFeO3 0.1 mM 5.0 300 W Xe lamp (AM 1.5 G) 94, 120 [63]

BC-MoS2-x 8 mg L−1 5.0 300-W Xe lamp with AM 1.5 G 92, 70 [33]

ZIF-8/g-C3N4 10 mg L−1 --- 300 W Xe lamp (λ ≥ 420 nm) 100, 30 [64]

CdS/CN-33 0.1 mM 6.0 500 W Xe lamp (λ ≥ 420 nm) 100, 6 [26]

SnO2/CdCO3/CdS 50 mg L−1 --- 500 W Xe lamp (λ ≥ 420 nm) 100, 70 [65]

Te/SnS2 8 mg L−1 4.8 300 W Xe lamp with AM 1.5 G filter 98.6, 90 [66]

Ag-doped
SnS2@InVO4

60 mg L−1 6.0 450 W Xe lamp (λ ≥ 400 nm) 97.6, 100 [67]

MIL-53 (Fe) 0.21 mM 4.5 visible light (285 W Xe lamp,
λ ≥ 420 nm) 80, 120 [68]

TiO2 0.21 mM 2.7 15 W black-light fluorescent bulb
(λ = 320∼400 nm) 50, 780 [69]

CdS0.95Te0.05-EDA
nanobelt 10–300 mg L−1 3–9 300 W Xe lamp (λ ≥ 420 nm) 97.4, 80 [70]

graphene aerogel 95.2 mg L−1 5.0 350 W Xe lamp (λ = 420– 800 nm,
160 mW/cm2) 96, 200 [71]

TiO2 0.42 mM 3.0 150 W Xenon arc lamp with an AM
1.5 G filter 80, 240 [72]

Note: a U(VI) concentration. b RR is removal rate and c t is time.

The main purpose of photocatalytic uranium extraction is to convert soluble U(VI)
into insoluble UO2 and (UO2)(O2)·4H2O [73] in order to recover them from solution. In
general, photocatalytic U(VI) extraction includes the following process in the presence of
catalyst. Light is irradiated on the catalyst to generate electron-hole pairs, which are used
directly to reduce the soluble U(VI) to insoluble U species. Previous studies showed that
uranium reduction may involve three different mechanisms of electron transfer [7,74]. The
specific mechanism is shown in Figure 1D.
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The first proposed mechanism is a two-step single-electron transfer process, where
U(VI) is first reduced to U(V) by accepting an electron (U(VI) + e−→U(V)) and then further
reduced to U(IV) by accepting another electron (U(V) + e− → U(IV)) [75–78]. Furthermore,
U(V) can undergo disproportionation under certain conditions to form both U(IV) and
U(VI) (U(V)→ U(IV) + U(VI)) [69].

The second mechanism involves a two-electron reduction process, where U(VI) accepts
two electrons and is directly reduced to U(IV) (UO2

2+ + 2e− → UO2) [37,79].
The third mechanism involves the reaction of U(VI) with one electron and four protons

to produce U(IV) and two water molecules in acidic solution (UO2
2+ + 4H+ + e− → U4+ +

2H2O), or the reaction of U(V) generated from the first mechanism with one electron and
four protons to produce U(IV) and two water molecules (UO2

+ + 4H+ + e−→ U4+ + 2H2O).
In addition, in some specific photocatalytic systems, excess electrons at the conduction
band (CB) position will react with dissolved oxygen to generate ·O2

− (O2 + e− → ·O2
−),

which can also reduce U(VI) via UO2
+ + O2

− → UO2 + 2O2 [72].
Obviously, the photocatalytic reduction of U(VI) involves various electron transfer

processes. Suitable band structure and high carrier mobility are key factors in the design of
photocatalysts. In general, when the redox potential of a target substance falls between the
valence band maximum and the CB minimum of a catalyst, the substance may undergo a
redox reaction. For the semiconductor itself, a CB potential higher than the U(VI) reduction
potential (+0.41 V) is required to facilitate electron transfer [80]. Based on semiconductor
photocatalysts, cadmium sulfide (CdS) received wide attention due to its narrow bandgap
relative to visible light response and suitable CB position [81]. Qin et al. synthesized
NiS@CdS interface Schottky heterojunction photocatalysts with different Ni/Cd molar
ratios. The simulated removal efficiency of U(VI) in U-containing wastewater was as high
as 99% under 90 min under solar light irradiation. This result is attributed to their good zeta
potential and optical properties, narrow bandgap, and the high stability of the composite
material [82].

The effective adsorption sites on the photocatalyst surface are very pivotal for pho-
tocatalytic uranium reduction, due to these sites determining the interaction between the
catalyst and uranium species and the triggering of the reduction reaction [35]. Moreover,
the final product of photocatalytic uranium extraction is mainly adsorbed on the surface of
the catalyst, hence the type of product U species can be identified by various characteri-
zation methods, such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS),
Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM),
and X-ray absorption near edge structure (XANES) [29]. For instance, Chen et al. [83]
use TT-POR COF-Ni as a photocatalyst to remove uranium (Figure 2A). After photocat-
alytic reaction, the form of uranium was characterized by XPS, FT-IR, and PXRD. The
high-resolution O 1s XPS indicated three different oxygen species, attributable to U-Operoxo,
U = Oaxial, and H2O, respectively (Figure 2B). While the high-resolution U 4f XPS showed a
characteristic peak that corresponded to U 4f7/2 in UO2(O)2·2H2O at 381.9 eV, implying
no change in the valence state of uranium (Figure 2C). Moreover, the PXRD pattern also
appeared at some new diffraction peaks at 2θ = 16.8◦, 20.2◦, 23.4◦, and 25.1◦ (Figure 2D),
which can be attributed to metastudtite phase (UO2(O)2·2H2O, and the characteristic peak
of UO2 at 2θ = 28.1◦ was not found (Figure 2E). In addition, the appearance of peaks
at 902 cm−1 assigned to the uranyl group and at 3460 cm−1 belonged to O-H vibration
from H2O in the FTIR spectra after light irradiation (Figure 2F) further corroborated the
formation of (UO2(O)2·2H2O.
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Additionally, to identify the uranium-containing products of the photocatalytic experi-
ments, U LIII-edge XANES spectroscopy, Fourier transform extended X-ray absorption fine
structure spectroscopy (FT-EXAFS) and wavelet transform (WT) contour maps were mea-
sured [84]. The U LIII-edge XANES spectra (Figure 3(Aa)) of the photocatalyst used were
similar to that of the UO2 reference sample, indicating the formation of U(IV) species dur-
ing the photocatalytic reaction. The FT-EXAFS spectra (Figure 3(Ab)) of both compounds
showed peaks at ~1.42 Å and 1.97 Å, attributed to the presence of U-O bonds. WT contour
plots further confirmed the formation of reduced products (Figure 3(Ac)) and showed a
maximum value of 6.2 Å−1 in k space and 1.34 Å in R space, well matching with UO2
reference powder. When the immobilized TiO2 nanotube arrays (TNAs) were used as pho-
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tocatalyst to extract and recover uranium from solution [25], the flake-like structure on the
catalyst surface was observed by TEM image (Figure 3(Ba) left), and the EDS (Figure 3(Ba)
middle, right) elemental mappings confirmed a relatively uniform distribution of U and
O on catalyst. In addition, crystal lattice fringes of 0.257 nm and 0.182 nm, which are
attributable to the (210) and (163) lattice planes of UO3 and UO3·H2O, respectively, were
visible from high-resolution TEM images (Figure 3(Bb,Bc)). After photocatalytic reaction,
recovered U product on filter paper was orange yellow (Figure 3(Bd)).
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3. Photocatalysts for Uranium Recovery from Solution

In the past decade, photocatalytic uranium extraction was regarded as a simple, ef-
ficient, and environmentally friendly method to solve U(VI) contamination in water. In
general, TiO2 is the most widely used photocatalytic material in recent years for solving
U(VI) pollution problems [24,37,72,85–89]. However, TiO2 as a photocatalyst indicated
some potential disadvantages for the removal of U(VI): (1) recombination of photogen-



Nanomaterials 2023, 13, 2005 10 of 29

erated electron-hole pairs in TiO2 leads to the decline in photocatalytic efficiency [90];
(2) an artificial UV light source is required, and it is difficult to achieve U(VI) removal
using sunlight, which demands high energy consumption [91]. With development of
hybrid nanocomposite and heterojunction-structured catalysts, the separation efficiency
of photogenerated carriers was remarkably improved and therefore promoted photocat-
alytic performance [36,54,79]. In addition, the surface structure of the photocatalyst itself
including defects, vacancies, and heteroatom doping often influences catalytic activity.

3.1. Semiconductor Heterojunction Structure

A heterojunction represents the interface between two different semiconductors with
unequal band structure, which can result in band alignments [92]. The energy level
difference in semiconductor heterojunction drives the effective separation and migration
of photogenerated charges, and therefore improves the photocatalytic ability for water
pollution treatment and the degradation of organic pollutants [92,93]. In recent years,
heterojunction materials were widely used in the photocatalytic extraction of U(VI) [94,95].

According to the relative positions of the band structures of photocatalysts, binary het-
erojunction photocatalysts can be divided into three types, type I (straddling gap alignment,
Figure 4A), type II (staggered gap alignment, Figure 4B), and type III (broken gap align-
ment, Figure 4C) [80]. Among them, the II-type heterojunction attracted extensive attention
due to its unique band structure arrangement, ensuring effective separation of photogen-
erated charge carriers [96,97]. For example, g-C3N4/TiO2 binary heterojunction showed
high U(VI) reduction ability compared with single g-C3N4 or TiO2 during photocatalytic
extraction of uranium [54]. The g-C3N4/TiO2 with II-type heterojunction arrangement
has a lower recombination rate of photogenerated electrons and holes and higher charge
transfer efficiency, which was confirmed by the photoluminescence spectroscopy (PL),
photocurrent response, and electrochemical impedance spectroscopy, revealing the origin
of the enhancement of the photocatalytic activity (Figure 5A–D). For a niobate/titanate
(Nb/TiNFs) heterojunction prepared using a one-step hydrothermal method [44], electrons
generated on titanate migrate to the CB of niobate due to their CB offset, which greatly
suppresses the recombination of electron-hole pairs. The I-type heterojunction structure
of the titanate and niobate composite materials compensates for the low photocatalytic
activity of the monomer materials in U(VI) extraction (Figure 5E,F). Moreover, composite
materials, such as MoS2@TiO2 [52], MoS2@g-C3N4 [94], ZnS@g-C3N4 [98], CuS/TiO2, and
so on, were used as excellent photocatalysts for U(VI) reduction.
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reduction in U(VI) mechanism by Nb/TiNFs. Reproduced with permission [44]. Copyright (2018)
Elsevier.
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The direct Z-scheme heterojunction and type II heterojunction have a similar energy
band structure arrangement, but the direct Z-scheme heterojunction involves the recom-
bination of electrons from the CB of semiconductor A and holes from the valence band
of semiconductor B (Figure 4D). This unique internal charge transfer mechanism allows
the direct Z-scheme heterojunction to maintain both high oxidation and reduction abilities.
Liu et al. [99] recently reported a ZnS/WO3 Z-type heterojunction photocatalyst with excel-
lent visible light photocatalytic reduction performance for U(VI). When the two materials
come into contact, electron transfer causes negative charge accumulation on the WO3 side
and consumption of negative charge on the ZnS side, resulting in the formation of an inter-
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nal electric field at the material interface (Figure 6A). The internal electric field can serve as
a one-way electron channel from WO3 to ZnS. Under illumination, the accumulated e− in
the CB of WO3 migrates to the contact interface and recombines with the photo-induced
h+ in the VB of ZnS, resulting in a long separation lifetime of e− (Figure 6B). This greatly
enhances the photocatalytic performance of the catalyst.

Note that when a metal/semiconductor forms a Schottky junction, the metal will
accumulate a large number of electrons or holes. The resulting Schottky barrier will
prevent electrons and holes from transferring to the semiconductor, ensuring single one-
way transfer of electrons and holes, promoting the separation of photo-generated electrons
and holes, and correspondingly improving the photocatalytic performance. Qin et al. [82]
synthesized a NiS/CdS composite photocatalyst and demonstrated the existence of an
interface Schottky junction between CdS and NiS, boosting spatial charge separation
through density functional theory (DFT) calculations for highly efficient photocatalytic
reduction in U(VI) (Figure 6C–F). The resultant U(VI) extraction efficiency reached 99%
within 90 min from the uranium-containing solution. Dai et al. [100] first synthesized a
magnetic graphene oxide-modified graphitic carbon nitride (mGO/g-C3N4) nanocomposite
material, which can effectively catalyze the reduction in U(VI) from wastewater under
visible light irradiation from LEDs, achieving a U(VI) extraction efficiency as high as 96.02%.
Wan et al. [101] used S-injected engineering to functionalize the atoms into the TiO2/N-
doped hollow carbon sphere (TiO2/NHCS) heterostructure to form Schottky junctions
for spatially separating photogenerated electrons and optimizing the TiO2 energy level
structure. The results show that the reduction efficiency of U(VI) within 20 min exceeded
90% and the removal rate per unit mass reached 448 mg g−1.

3.2. Defective Semiconductors

In photocatalysis, defect is a vital parameter to be pre-considered for the design of
photocatalysts and catalytic performance. Crystallographic defects, which often occur at
where the perfect periodic arrangement of atoms or molecules in the crystalline materials
is disrupted or broken, inevitably lead to the imperfection of perfect crystal structure
and therefore widely exist in all photocatalytic materials and increase active sites and
greatly promote photocatalytic performance [102]. For semiconductors, the band structure
can be improved by adjusting the defects, and thereby improving their light absorption
capacity [29]. In addition, surface defect centers can also act as reactive sites, increasing
the effectively active surface area. As one of the most common defects in semiconductor
materials, vacancies can improve the photocatalytic performance by adjusting the elec-
tronic structure and light absorption capability [103,104]; for example, oxygen vacancy-rich
tungsten oxide nanowires (WO3-x) have a narrower bandgap energy and higher charge
carrier separation efficiency compared to regular WO3 [105]. DFT calculations further
demonstrated that the introduction of oxygen vacancies (OVs) in WO3-x resulted in the
spin-polarized state of W 3d electrons in WO3-x, greatly suppressing the recombination
of photogenerated electrons and holes (Figure 7A). Compared to WO3, WO3-x exhibited
higher photocatalytic performance in U(IV) reduction. Hydrothermal reaction of a car-
bonized bacterial cellulose (BC) with thiourea and sodium molybdate dihydrate afforded a
heterojunction-structured BC-MoS2, followed by H2/Ar mixed plasma treatment to gen-
erate S-vacancies (SVs) in MoS2 and form BC-MoS2-x heterojunction containing Schottky
junction and SVs, which were used as photocatalysts for efficient uranium reduction. The
resultant removal rate of uranium over a wide range of U(VI) concentrations was up
to 91% [33]. Li et al. constructed an oxygen vacancy (OVs)-rich g-C3N4-CeO2-x hetero-
junction [106], kinetic characterization, and DFT calculations show that photogenerated
electrons were transferred from g-C3N4 to a CeO2-x heterojunction through the built-in
electric field generated by the heterojunction and were captured by shallow traps created
by surface vacancies, and thereby achieving spatial separation (Figure 7B). The separation
rate and lifetime of photoinduced carriers were significantly increased, and photocat-
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alytic activity for U(VI) reduction was significantly enhanced (39 times higher than that
of g-C3N4).
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2+ into materials and EDD

image for (001) plane of (a) WO3 and (b) WO3-x. (c) The proposed mechanism of U(VI) adsorption
and photoreduction over the WO3-x. Reproduced with permission [105]. Copyright (2023) Elsevier.
(B) Structure model of (a) CeO2, (b) CeO2-X, and (c) CN-CeO2-x. Ce, O, C, and N atoms as shown in
green, red, pink, and purple. Charge energy difference of (d) CeO2-x and (e,f) CN-CeO2-x. Reproduced
with permission [106]. Copyright (2022) Elsevier.

3.3. Elemental Doping of Semiconductors

Doping can modify the surface structure, light absorption, defects, charge density,
and carrier separation efficiency of photocatalytic materials [107]. In recent years, element-
doped materials received extensive attention in the field of photocatalytic U(VI) reduction.
As shown in Figure 8A, Wang et al. [108] used non-metallic-doped photocatalysts and
carbon-doped boron nitride (BN) BCN nanosheets for photocatalytic uranium reduction.
By optimizing composite, calculations of energy gap and density of state of BCN, and
experimental date, the results show that the doping in the form of carbon rings could
regulate the bandgap and electronic structure by manipulating carbon amount. The intro-
duction of carbon rings improved the surface structure and light absorption capacity of
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the catalyst, and the extraction rate of U(VI) reached 97.4% under visible light irradiation
for 1.5 h. For the Ag-doped CdSe (Ag-CdSe) nanosheet, the doping of Ag resulted in an
increase in the density of photogenerated carriers and a narrowed bandgap, while also
suppressing the recombination of photogenerated electrons and holes [109]; 3% Ag-CdSe
nanosheets reached a removal rate of U(VI) of 96%, which is 1.9 times higher than that of the
original CdSe nanosheets (50%). As shown in Figure 8B, to achieve higher photocatalytic
efficiency in the extraction of U(VI), up-conversion Er-doped ZnO nanosheets were used
as a photocatalyst [110]. Er doping induced up-conversion properties and suppressed
recombination of photogenerated carriers, therefore enhancing light absorption capacity
and accelerating U(VI) extraction. At an initial U(VI) concentration of 200 mg L−1, 4%
Er-doped ZnO reached a high extraction efficiency of uranium at about 91.8% within 3 min.
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band structures, and (f) corresponding density of states of BCN models. Reproduced with permis-
sion [108]. Copyright (2021) Elsevier. (B) (a–d) The photoreduction performance of U(VI) by ZnO,
Er0.02-ZnO, Er0.04-ZnO, and Er0.06-ZnO, and (e) the proposed mechanism of U(VI) photoreduction by
Er-ZnO. Reproduced with permission [110]. Copyright (2022) Elsevier.

3.4. Other Strategies

The band structure, light absorption, and carrier separation efficiency of photocat-
alysts are some key factors in affecting the photocatalytic performance. However, since
the photocatalytic extraction of U(VI) occurs on the surface of the catalyst, optimizing
the surface structure of the catalyst is another important method for improving photo-
catalytic performance. To further enhance the U(VI) extraction ability of carbon nitride
photocatalysts, a one-step molten salt method was adopted to prepare a new bifunctional
carbon nitride material (CN550) (Figure 9A) [111]. Compared with g-C3N4, CN550 has
a high surface area, good adsorption capacity, and a high photocatalytic activity. More
recently, various porous framework materials, such as metal–organic frameworks (MOFs),
covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs),
were regarded as the state-of-the-art materials for photocatalytic uranium extraction due
to their high surface area and more active sites. Li et al. [27] proposed a new uranium
extraction strategy based on post-synthetically functionalized MOF PCN-222, which is
an extremely robust MOF, composed of Zr6(µ3-O)4(µ3-OH)4(H2O)4(OH)4 clusters and
photoactive meso-tetra(4-carboxyphenyl)porphyrin (TCPP) linkers. PCN-222 was treated
with aminomethylphosphonic acid and ethanephosphonic acid to afford PN-PCN-222 and
P-PCN-222, respectively (Figure 9(Ba)). The uranium uptake results show that PN-PCN-222
can completely remove uranyl ions in an extremely wide uranyl concentration range in
solution and reach a very high absorption capacity at about 1289 mg g−1, breaking the
maximum adsorption capacity of previously reported MOF materials (Figure 9(Bb)). Under
visible light irradiation, the photo-induced electrons in the PN-PCN-222 matrix reduce the
U(VI) pre-enriched in PN-PCN-222, producing neutral uranium species that disperse the
MOF structure, exposing more active sites to capture more U(VI) (Figure 9(Bc)). Overall,
the development of photocatalytic strategies for efficient U(VI) extraction is recognized as
an efficient, environmentally friendly, and cost-effective approach, while rational design
and optimization of photocatalysts made significant progress in photocatalytic technol-
ogy. At present, many articles describe the design of photocatalysts and the principles
of photocatalytic systems in detail, and researchers can obtain more inspiration from
them [29,112,113].
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(PTI) structure and SEM images for both materials, (b) the variation in relative UO2

2+ concen-
tration vs. illumination time of 0.2 g L−1 CN 550 and 1 g L−1 g-C3N4 as photocatalysts, (c) ura-
nium extraction from spiked seawater using SUPER method with initial uranium concentrations
of 330, 170, 100, 70, and 10 mg L−1. Reproduced with permission [111]. Copyright (2021) Elsevier.
(B) (a) Schematic representation of SALI (P: bottle green; C: Cambridge blue; N: blue; O: red; and
Zr: green), (b) photocatalytic uranium extraction performance under different conditions, and
(c) schematic illustration of selective enrichment and photocatalytic reduction in U(VI) based on
PN-PCN-222. Reproduced with permission [27]. Copyright (2019) Elsevier.

4. Photocatalytic U(VI) Extraction from Uranium-Containing Wastewater and Seawater

Unlike seawater and groundwater, the composition of actual uranium mining wastew-
ater is very complex. It often contains various metal salts, organic matter, and microor-
ganisms [114,115]. Although some advanced photocatalysts indicated good selectivity
for the photocatalytic reduction in U(VI) in the presence of multiple ions and organic
compounds, the concentrations of interfering ions and organic compounds in the simulated
uranium-containing wastewater used in the laboratory are at the milligram level. In the
actual uranium-containing wastewater, the concentrations of interfering ions and organic
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compounds are thousands or even tens of thousands of times higher than those of the sim-
ulated uranium-containing wastewater. The development of highly efficient photocatalysts
for the extraction of U(VI) from actual uranium mining wastewater became a challenging
research topic. To develop an efficient photocatalyst for U(VI) extraction from rare earth
tailings wastewater, Liu et al. constructed a SnS2-covalent organic framework van der
Waals heterojunction (SnS2COF) (Figure 10(Aa)) [28]. Experimental results show that the
removal rate of U(VI) by SnS2COF reached 1123.3 mg g−1 under the conditions without
a protective atmosphere, and the removal rate of U(VI) in rare earth tailings wastewater
reached 98.5% (Figure 10(Ab,Ac)). This provides a designable approach to address uranium
pollution problems in real water environments.

The concentration of uranium in seawater is about 3.3 µg·L−1 [16]. Although this
concentration is very low, the total uranium content in seawater is 4.5 billion tons, which
is approximately 1000 times that of the uranium reserves on land [116]. Given the rapid
development of nuclear energy, uranium reserves in seawater alone are sufficient to sustain
nuclear energy consumption for thousands of years even without considering any recycling
of radioactive waste [117]. However, due to the extremely low uranium concentration in
natural seawater and the presence of potential competing ions, it is still challenging to
develop efficient photocatalytic technology for uranium extraction from seawater [118].
To realize the photocatalytic uranium extraction from seawater, Yu et al. designed and
synthesized two new donor–acceptor conjugated microporous polymers (CMPs), ECUT-CO
and ECUT-SO with perylene as donor and alternating acceptors (9H-fluoren-9-one and
dibenzo [b,d] thiophene 5,5-dioxide) (Figure 10(Ba)) [6]. Nitrogen adsorption isotherms
and pore size distribution curves were used to demonstrate the microporous structural
characteristics of all CMPs (Figure 10(Bb,Bc)), and the larger specific surface area and
pore structure provide more reactive sites for photocatalytic reactions. The experiments of
extracting U(VI) from real seawater showed that uranium in seawater can be completely
removed within 60 min, and the photocatalytic uranium reduction activity of ECUT-SO
did not decrease significantly after three cycles, indicating the excellent practical value
(Figure 10(Bd–Bf)). Although significant contributions were made in recent years to the
development of photocatalytic materials for uranium extraction from seawater, it remains a
challenge to develop a comprehensive photocatalytic system that meets the requirements
for uranium extraction from seawater [119,120]. To develop more efficient photocatalytic
materials for uranium extraction from seawater, the selective adsorption ability of catalysts
for uranium in seawater should be regarded as an important factor. According to current
studies, porous organic framework materials such as COFs and MOFs exhibit excellent
adsorption capacity and anti-biofouling ability for photocatalytic uranium extraction in
seawater, and can maintain a good U(VI) reduction effect in seawater [113,121,122].

Although uranium extraction from seawater and uranium-containing wastewater
by photocatalytic reduction made some great progress, the extremely low uranium con-
centration in seawater and uranium-containing wastewater poses a major challenge to
the extraction process. To effectively design the photocatalytic U(VI) reduction process,
both the initial concentration of uranium and the amount of photocatalyst must be con-
sidered. Li et al. investigated the influence of different initial U(VI) concentrations on
U(VI) reduction efficiency and found that with increasing the initial concentration of U(VI),
the adsorption amount during the dark reaction remained almost constant and the rates
of the photocatalytic reactions became similar, implying the direct correlation between
adsorption amount and photocatalytic kinetics processes [37]. To investigate the effect of
catalyst dosage on the performance of photocatalytic U(VI) reduction, Liang et al. studied
the U(VI) reduction performance with different catalyst dosages [123]. The results show
that the U(VI) reduction efficiency decreased when the catalyst dosage exceeded a certain
threshold (> 0.4 g/L), revealing a shielding effect, where an excess of suspended catalyst
reduced the penetration of light in solution, thereby reducing the light utilization efficiency.
Especially for nanocatalysts, it is often necessary to determine an optimal catalyst dosage
to avoid a decline in catalytic performance, due to the shielding effect. Additionally, the
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initial concentration of U(VI) also needs to be further investigated. Note that too low a
concentration is not conducive to the capture of the catalyst, while too high a concentration
may result in the slow release of U(VI) photocatalytic reduction products adsorbed on
the catalyst surface, thereby hindering the exposure of active sites. Hence, photocatalytic
uranium extraction technology can be used for all wastewater containing uranium, no
limitation is required for the concentration range of uranium in wastewater, and only
uranium extraction efficiency will be influenced, indicating a poor or an excellent extraction
efficiency for uranium.
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5. Current Challenges and Perspective

Although significant progress was made in photocatalytic uranium extraction tech-
nology in recent years, the commercialization of the results is still in its infancy. More
breakthroughs are needed to develop a green, energy-saving, and environmentally friendly
comprehensive system for photocatalytic uranium extraction. Herein, the current chal-
lenges and the future development direction from the perspectives of catalysts, environ-
mental systems, and catalytic processes are discussed.

5.1. Recovery and Regeneration of Catalysts

The performance evaluation of uranium extraction by photocatalysis is usually based
on kinetic models of reaction time and removal rate [51,94,120,124,125]. However, the kinet-
ics of U(VI) extraction is not the only criterion for performance evaluation in practical pro-
cesses. The recyclability and reuse of catalysts should also be considered. According to cur-
rent reports, the catalysts used in photocatalysis are usually powder materials [70,126,127].
When these powder materials are dispersed into the water environment, they may cause
secondary pollution, which greatly limits the practical application of photocatalytic technol-
ogy. The separation and recovery of these powders became a major challenge. The current
separation methods include centrifugal separation, membrane separation, etc., but these
separation and recovery methods are expensive and have strict conditions, which are not
conducive to popularization. Therefore, it is necessary to develop efficient, pollution-free,
and easy-to-recycle photocatalysts, and to study the separation and recovery methods
of powdered catalysts in water environments. Li et al. [35] developed a magnetically
collectable TiO2/Fe3O4 and its graphene composite, and systematically studied the effects
of initial uranium concentration, pH of solution, ion strength, wastewater composition, and
organic pollutants on the removal of U(VI) by TiO2/Fe3O4. This provides a new design
concept for the separation and recovery of uranium from radioactive wastewater.

Generally, the photo-reduced U(IV) is adsorbed on the surface of photocatalysts, which
is detrimental to the exposure and sustainability of active sites [35,111,123,128]. To main-
tain the recycling performance of photocatalysts, catalyst regeneration technology must be
used to desorb U(IV) adsorbed on the surface of the photocatalysts. Currently, the most
commonly used catalyst regeneration methods include acid washing [27,50,111], carbonate
solution washing [13,31,51,129], and air re-oxidation [130]. Although these methods can
restore some catalytic performance, there are still some issues. Pickling requires the use
of strong acids, which is expensive and causes environmental pollution, while carbonate
washing and air re-oxidation are time-consuming. In addition, the performance of the cata-
lysts declines significantly after repeated use. Therefore, it is of great significance to develop
environmentally friendly, efficient, and sustainable methods for catalyst regeneration.

5.2. Photocatalytic U(VI) Extraction under Sunlight

Currently, various photocatalytic semiconductor materials were reported for photocat-
alytic U(VI) extraction. However, most of these materials only exhibit some photocatalytic
U(VI) extraction ability under simulated light sources under laboratory conditions, which
is uneconomical and environmentally unfriendly. The best energy source for photocatalysis
should be real sunlight, not simulated light sources in the laboratory. Unfortunately, the
actual sunlight has long wavelengths, and the short wavelengths (ultraviolet light) account
for less than 10% of the energy spectrum, severely limiting the efficiency of photocatalysis.
In addition, the intensity of sunlight varies with weather and seasons, which has a signifi-
cant impact on the photocatalytic performance of the catalyst. Therefore, the development
of semiconductor catalysts that can achieve full-wavelength light absorption is of great
significance for the photocatalytic extraction of U(VI) under sunlight. Elemental doping,
defect engineering, and heterojunctions can significantly enhance the light absorption
ability of semiconductors and suppress the recombination of photogenerated holes and
electrons, providing a good strategy for catalyst design.
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5.3. Coupling of Photocatalytic Technology with Other Techniques

Traditional photocatalytic technologies face challenges such as weak light absorption
ability, recombination of photogenerated charge carriers, and difficulties in catalyst recov-
ery. As we summarized before, various attempts were made to address these issues. If
photocatalysis is combined with other catalytic technologies, can it overcome some limita-
tions in the photocatalytic process and improve the efficiency? For instance, Dai et al. [131]
fabricated a g-C3N4/Sn3O4/Ni (CSN) electrode supported on nickel (Ni) foam and em-
ployed it as an anode material for photoelectrochemical U(VI) reduction (Figure 11A). Due
to the excellent light absorption ability and enhanced charge carrier transfer efficiency
of the g-C3N4/Sn3O4 heterostructure, the photocatalytic U(VI) reduction in air by the
CSN electrode is as high as 94.28%. Furthermore, the mechanistic analysis revealed that
the exceptional photoelectrocatalytic performance of the CSN electrode towards U(VI)
was mainly attributed to its enhanced visible light absorption, facilitated charge carrier
separation of photo-generated electrons and holes, and reduced bandgap caused by the
combination of the g-C3N4/Sn3O4 heterojunction with an applied voltage. Due to the spa-
tial separation of the anode and cathode in the photoelectrochemical cell, the photocathodic
reduction process and photoanodic oxidation process are separately conducted, thereby
minimizing the interference of reactive oxygen species (ROS) generated by photo-generated
electrons and holes. In addition, U(VI) was reduced to U(IV) and immobilized on the cath-
ode surface. When the catalyst is used as an anode material, the reusability and operational
lifespan of the catalyst can be greatly improved. Despite reports demonstrating the relative
advantages of photoelectrocatalysis over conventional photocatalysis in U(VI) extraction,
the development of anode catalysts is significantly constrained and the understanding of
the catalytic mechanism remains limited. This field requires further research.
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In recent years, piezocatalysis emerged as a promising approach for the efficient con-
version of mechanical energy, demonstrating potential applications in energy crises [133],
environmental remediation [134], biomass conversion [135], CO2 reduction [136], and water
splitting [137]. Photocatalysis, as an advanced oxidation technology, is widely employed
for efficient pollution control. However, the purification efficiency of environmental photo-
catalysis is constrained by the rapid recombination of photogenerated electron-hole pairs.
Therefore, it is proposed to generate an internal built-in electric field through the piezo-
electric effect to enhance the separation efficiency of photogenerated charge carriers and
achieve better photocatalytic performance [132] (Figure 11B). For example, Yuan et al. [138]
synthesized chlorine-doped ZnO nanotubes and first proposed the adjustment of piezo-
electric properties to enhance the coupling system in photocatalytic degradation of or-
ganic dyes. The migration process of charge carriers is optimized by utilizing the radial
piezoelectric field and the high-speed electron flow along the axial direction. Meanwhile,
Chen et al. [139] achieved efficient recovery of gold from thiosulfate solution by employing
defect-rich MoS2 nanoflowers (DR-MoS2 NFs) as a piezo-photocatalyst for the reduction
in Au(I). Due to the reduced Schottky barrier at the interface and enhanced piezoelectric
potential, DR-MoS2 NFs enable rapid separation of photoinduced charge carriers, resulting
in ultrafast reduction in Au(I) under indoor light irradiation with the assistance of ultra-
sound treatment. Although some recent studies demonstrated the superior performance of
piezo-photocatalytic coupling systems compared to traditional photocatalysis, there is still
a significant knowledge gap in the rational application of piezoelectric photocatalysis for
environmental remediation [132]. Particularly, there is a lack of relevant research on piezo-
photocatalytic U(VI) extraction. Furthermore, whether it is a stand-alone photocatalytic
system or a coupled system with other catalytic technologies, the current major challenges
lie in the deployment of catalytic systems and the stability of catalysts.

5.4. Engineering Aspects of Scaling up Experiments in Real Water Environments

The ultimate goal of photocatalytic uranium extraction is to solve the engineering
challenges of large-scale uranium extraction in real water environments and achieve stable
and economically viable uranium recovery. Up to now, although there were successful
cases of uranium extraction from real uranium mine wastewater and seawater, there are
still many bottlenecks in expanding the experimental scale in real water environments.
Substantial breakthroughs are still needed to address these challenges. Before carrying out
the uranium extraction engineering in the actual water environment, it is crucial to have
a comprehensive understanding of the water environment, because there is a significant
difference between the real water environment and the laboratory-simulated environment.
It would be valuable to study the solvation structure of dominant uranium species and the
interactions between uranyl complexes and ligands in real water environments with specific
pH and high salinity. At the same time, the effects of water temperature, flow rate, and
other coexisting pollutants need to be evaluated in order to determine the optimal location
and conditions for conducting experiments. Specifically, water pollution is a major and
unavoidable challenge for engineering experiments in real water environments. Carious
competing ions, microorganisms, and organic pollutants exist in real water environments,
which seriously affects the efficiency of uranium extraction and catalyst regeneration. In
this sense, an in-depth study of these effects is necessary if large-scale uranium extraction
experiments are to be performed in real water environments.

Another major challenge comes from the deployment of photocatalytic systems. In
practical industrial applications, the selection of appropriate reactor type and size can
ensure efficient photocatalytic reactions and maximize the utilization of light energy, which
is crucial to obtain cost-effective uranium products. In addition, the light source and lighting
conditions are crucial for exciting photocatalytic reactions and important parameters in the
process conditions. In a real water environment, immobilizing the catalyst can improve
its reusability and prevent secondary pollution caused by the catalyst. Engineering issues
require a comprehensive consideration of knowledge in various fields, such as materials
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science, chemical engineering, and environmental engineering to achieve the feasibility
and effectiveness of photocatalytic technology in practical applications. Comprehensive
assessments of these aspects were not conducted in previous research reports. Therefore,
further efforts are needed to facilitate the deployment of large-scale photocatalytic systems.

5.5. Cost Evaluation

Notably, photocatalytic uranium extraction methods were never fully demonstrated
on a commercial scale. Therefore, there are certain risks in the scaling up and commercial-
ization of this technology. This review provides a preliminary cost estimation comparison
for photocatalysis, ion exchange, and solvent extraction methods. It is worth noting that
the solvent extraction method was successfully commercialized, with only an estimated
operating cost of USD 32 per pound for U3O8. Additionally, according to literature reports,
the preliminary estimated operating cost of the ion exchange method is USD 33–54 per
pound of U3O8 [140]. If photocatalytic uranium extraction is conducted from seawater with
a uranium concentration of approximately 3.3 mg/t, it would require extracting 1 pound
for U3O8 from approximately 137,452 t of seawater [16]. Assuming a catalyst price of USD
10 per kilogram, considering the regeneration and consumption of the catalyst, as well as
the layout of the catalytic system and equipment loss, the operating cost of photocatalytic
uranium extraction needs to be kept within USD 33 per pound for U3O8. Moreover, the
price of uranium must remain stable at or above USD 44–61 to meet the economic require-
ments of this investment. The total cost per unit is affected by the uranium concentration in
the seawater. Every 10% (or 20%) decrease in uranium concentration increases the overall
cost by USD 2–3 (or USD 5–6) per pound for U3O8. Conversely, a 10% (or 20%) increase in
uranium concentration reduces the total unit cost by USD 1–2 (or USD 3–4) per pound for
U3O8 [140].

Hence, cost-effectiveness is a key factor in realizing the large-scale industrial appli-
cation of photocatalytic U(VI) extraction technology. However, current studies lack a fair
comparison of the cost-effectiveness analysis of different catalytic processes and catalysts.
It is recommended that future research on photocatalytic U(VI) extraction includes an asso-
ciated economic evaluation of the catalysts used and catalytic process. Although these cost
estimates may differ from industrial-scale applications, they can still reflect the application
potential of a catalyst or catalytic process, or provide a reasonable basis for comparison
with other studies. This review recommends a cost–benefit analysis based on: (1) synthe-
sis of the catalyst; (2) deployment of the catalytic system; (3) external energy required;
(4) consumption during the catalytic process; and (5) catalyst regeneration.

6. Conclusions

Significant progress was made in photocatalytic U(VI) extraction technology. Sum-
marizing the existing work will help to overcome technical bottleneck and deepen the
understanding of photocatalytic technology, thereby promoting the development of pho-
tocatalytic U(VI) extraction technology. This article provides an overview of the current
research status of photocatalytic U(VI) extraction technology, including the reaction mecha-
nism, catalyst design, and research progress in the extraction of uranium from real water
environments. Furthermore, the main challenges encountered in photocatalytic U(VI)
extraction and future directions in this field are highlighted. We hope this review can serve
as inspiration for researchers working in this field and contribute to the advancement of
this field.
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