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Abstract: Due to the increase in new types of cancer cells and resistance to drugs, conventional
cancer treatments are sometimes insufficient. Therefore, an alternative is to apply nanotechnology to
biomedical areas, minimizing side effects and drug resistance and improving treatment efficacy. This
work aims to find a promising cancer treatment in the human colorectal adenocarcinoma cell line
(HT-29) to minimize the viability of cells (IC50) by using carbon nanotubes (CNTs) combined with
different drugs (5-fluorouracil (5-FU) and two repurposing drugs—tacrine (TAC) and ethionamide
(ETA). Several CNT samples with different functional groups (-O, -N, -S) and textural properties
were prepared and characterized by elemental and thermogravimetry analysis, size distribution, and
textural and temperature programmed desorption. The samples that interacted most with the drugs
and contributed to improving HT-29 cell treatment were samples doped with nitrogen and sulfur
groups (CNT-BM-N and CNT-H2SO4-BM) with IC50 1.98 and 2.50 µmol·dm−3 from 5-FU and 15.32
and 15.81 µmol·dm−3 from TAC. On the other hand, ETA had no activity, even combined with the
CNTs. These results allow us to conclude that the activity was improved for both 5-FU and TAC
when combined with CNTs.

Keywords: carbon nanotubes; tacrine; ethionamide; 5-fluorouracil; HT-29; drug repurposing; colon cancer

1. Introduction

Over the years, there has been an increase in the number of patients with new types of
cell cancer [1]. In 2020, almost 10 million people died worldwide, including 1.80 million
deaths from lung cancer and 916 thousand deaths from colorectal cancer. In addition,
new cancer cases appeared, with breast cancer in first place, lung cancer in second, and
colorectal cancer in third, with 1.93 million [2].

During growth, humans develop certain “normal” cells that undergo structural, mor-
phological, and functional modifications, which can induce the proliferation of malignant
cells with cell cycles. This cellular modification is called extracellular modification transition
(EMT), i.e., it describes a cellular transition of the epithelial tissue—one of the four types
of human tissues—at which point the cells gradually lose their epithelial characteristics,
leading to the onset of cancer. These cellular changes may be related to the environment,
such as the pollution associated with pathogenic infections and exposure to ultraviolet
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(UV) radiation, as well as unhealthy habits, such as smoking, food deficit, daily stress, and
lack of physical activity [1,3–7].

With technological advances, treatments to combat tumor cells were discovered,
highlighting chemotherapy, radiotherapy, surgery, targeted therapy, and immunotherapy.
However, these therapies have some limitations, such as high cytotoxicity for “normal” cells,
low specificity, possible drug resistance, short half-life, low solubility, and potential drug
resistance [8–10]. Despite these limitations, it has been possible to study other alternative
methods, such as combination treatments and conjugation with nanomedicine, which
are based on the use of nanomaterials (with a size between 1 and 1000 nm) applied in
health care, in different functions such as molecular imaging, biomarker mapping, direction
and diagnosis, drug delivery, target therapy, and gene delivery [4,6,8,10–13], whereas
some of the most used nanomaterials are polymeric nanoparticles, liposomes, solid lipid
nanoparticles (SLN), metallic nanoparticles, magnetic nanoparticles, and carbon nanotubes
(CNTs) [4,8,10,12,13].

CNT can result in two different structures depending on their growth conditions
during the synthesizing process, such as single (SWNT) or multiwalled (MWNT) graphene,
and can be distinguished by their high specific surface area; greater mechanical strength,
highlighting SWNTs, which provide higher thermal conductivity; and chemical stabil-
ity compared to other nanoparticles usually used as nanocarriers [8,9,12–14]. However,
their use brings some challenges, such as low solubility, the release of possible toxic ions
during synthesis [15], the strong hydrophobicity of CNTs that leads to aggregation and
precipitation in aqueous solutions, and increased viscosity. Two possible strategies to
surpass challenges are using pure CNTs, which avoids the release of toxic metals in a
biological environment, and functionalizing the CNTs, which improves their solubility
and stability [8,10,12–15]. A study by Sayes et al. [16] revealed that chemically functional-
ized CNTs were less cytotoxic than non-functionalized ones. Therefore, functionalization
and textural modification of CNTs favor their dispersion, can decrease their size, and, by
modifying their surfaces, can induce biocompatible groups, reducing their toxicity [13–15].
In contrast, very small sizes can also lead to toxicity due to their high surface area, i.e.,
although the contact area with cell membranes is high, the probability of adsorbing toxins
also increases [8,10,14,17]. When the drugs are adsorbed onto CNTs and administered into
the system, they must have high cell specificity, good biocompatibility, and adequate size
so that they can overcome biological and physiological (cell membranes), or mechanical
and physicochemical (enzymes) barriers [6]. CNTs generally enter cells via an endocytosis
mechanism (pinocytosis or phagocytosis) or by passive diffusion, as with functionalized
CNTs [18,19]. The selection of the mechanism of cellular action is affected by several factors
depending on the physicochemical properties of CNTs (size and shape; surface charge; and
hydrophobicity) and cell type, highlighting the surface of nanoparticles, which must be
hydrophobic to increase the affinity and favor their adsorption in cells [18,19]. According
to an article by Elidamar Lima et al. [19], the biocompatibility of CNTs can be improved
when functionalized with acids.

Drug repurposing is a recent strategy increasingly used in cancer therapy research [20]
involving drugs that the Food and Drug Administration (FDA) has already approved, i.e.,
disused drugs or new ones that may have better activity when combined with nanomate-
rials. Since these drugs were already approved, the process is faster and less costly than
when using new drugs, making it more advantageous [5,21,22].

In this study, CNTs with different modifications, chemical and textural, were com-
bined with individual drugs, 5-fluorouracil (5-FU), a reference drug already used in the
treatment of HT-29 cells, Figure 1A, and two repurposed drugs (tacrine (TAC) used to
treat Alzheimer’s disease, Figure 1B, and ethionamide (ETA) used in the treatment of
tuberculosis, Figure 1C) and applied to the human colorectal adenocarcinoma cell line
(HT-29). This combination consisted of a dispersant solution of CNTs, to which the drug
was added at a 1:1 ratio for 48 h via the adsorption mechanism. These nanomaterials have
been overtaken by others due to the above-mentioned characteristics, and many researchers
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have worked on metallic and organic nanoparticles, with these materials being the most
used in the treatment of tumor cells, setting aside CNTs. Despite this, the general idea is
to improve their specificity and encapsulation of drugs by functionalizing them, focusing
on the innovative part of the work, which is the repurposing of drugs in the treatment of
HT-29 cells.
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To date, studies in which drugs are combined with CNTs for treating HT-29 cells are
scarce. Some studies have reported graphene oxide (GO) combined with 5-FU for cancer
treatments. In a study by Zhang et al. [24], 5-FU was encapsulated in GO functionalized
with sodium alginate and tested in HT-29 cells. The results were satisfactory, with loading
capacity and efficiency of 24.40% and 32.53%, respectively, and the activity was identical in
both situations; however, 5-FU/GO was able to inhibit metastasis effectively and signifi-
cantly suppress tumor growth. The repurposing drugs have not yet been connected to CNTs
and tested in HT-29 colon cells; however, both were associated with other nanoparticles.
For example, TAC is commonly used to treat brain disease, and it was tested with CNTs,
lipid-based nanoparticles, etc. [25–28], and ETA is related to the treatment of lung disease,
and it was tested with polymeric nanoparticles, lipid-based nanoparticles, etc. [29–31]. Due
to the lack of results involving CNTs connected to these drugs in treating HT-29 cancer cells,
research in this direction can be a great innovation and make a difference in the future.

2. Materials and Methods
2.1. Sample Preparation

Commercial CNTs (MWCNTs, Nanocyl—NC3000) with a purity of 95% (CNT sample)
was used as a starting material. According to the supplier, these nanotubes have an average
diameter of 9.5 nm and an average length of 1.5 µm. A sample with different textural
properties was prepared using a ball milling approach by milling the CNT sample for 4 h
at 15 s−1 (CNT-BM sample) [32].

A N-doped sample was prepared by mixing a mass of commercial CNTs ≈ 0.6 g with
≈0.39 g of C3H6N6 (ALDRICH Chemistry, 99%, St. Louis, MO, United States), which
functions as a nitrogen precursor, in a ball mill (Retsch MM 200) for 4 h at 15 s−1. Next,
the sample was subjected to heat treatment in an oven at 600 ◦C for 1 h with a ramp of
10 ◦C·min−1 and a N2 flow rate of 100 cm−3·min−1 (CNT-BM-N sample) [32].

O or S-containing samples were obtained by oxidation in the liquid phase of the
commercial CNTs with a 7 mol·dm−3 solution of HNO3 (Supelco, 65%) with a volume
of 300 cm−3 or with H2SO4 solution (VWR BDH CHEMICALS, 95%, Radnor, PA, USA)
with a volume of 150 cm−3. The solution with HNO3 was boiled at reflux, heated on a
heating mantle for 3 h, and then cooled to room temperature, whereas the solution with
H2SO4 was subjected to reflux, heated at a temperature of 50 ◦C for 4 h, and subsequently
cooled to room temperature. Both were then washed with distilled water until reaching a
neutral pH and finally dried in an oven at 100 ◦C for at least 24 h (CNT-HNO3 and CNT-
H2SO4 samples). The sample with HNO3 was subjected to heat treatment to remove some
functional O-containing groups in an oven at 600 ◦C for 1 h with a ramp of 10 ◦C·min−1

and a N2 flow rate of 100 cm3·min−1 (CNT-HNO3-600 sample) [32].
All samples were mechanically treated and milled for 4 h at 15 s−1 (CNT-HNO3-600-

BM, CNT-HNO3-BM, and CNT-H2SO4-BM samples) [32].
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2.2. CNT Characterization Techniques

The material’s size was characterized using laser scanning confocal microscopy (LSCM)
on a Coulter LS230 (Beckman Coulter, Inc., Brea, CA, USA). LSCM consists of a beam of
light passing through the pinhole, where there is an adjustment in the wavelength to excite
the electrons/molecules in the sample. Then, the visualization is captured by the scanner,
and the length of the nanoparticles is determined.

The textural characterization was based on N2 adsorption isotherms at −196 ◦C
performed on a Quantachrome NOVA 4200e (Boynton Beach, FL, USA). The samples were
degassed at 120 ◦C for 3 h. In this way, it was possible to determine parameters such as
the specific surface area (SBET) and the total pore volume (VpT). The distribution of pore
size was calculated using non-local density functional theory (NLDFT) [32]. For each of
the parameters, different models were applied. In the determination of SBET, the Brunauer,
Emmett, and Teller (BET) model was used, which describes the physical adsorption in type
II isotherms at relative pressures between 0.05 and 0.3. The VpT was determined through
the adsorption of N2 at P/P0 = 0.95 [32].

Thermogravimetric analysis (TGA) is a qualitative analysis that evaluates the thermal
stability of the sample passing through three phases: dehydration, burning of Volatile
compounds (VCs), and burning of fixed carbon. It was performed by heating the samples
from 50 to 900 ◦C, with a heating ramp of 10 ◦C·min−1; passing, at the final temperature, a
nitrogen current for 7 min; and then an air current for 13 min, using STA 409 PC/4/H Luxx
NETZCH equipment (Selb, Germany) [32].

Elemental analysis (EA) was carried out to quantify carbon, hydrogen, nitrogen, and
sulfur by combustion of the materials at 1050 ◦C, using Elemental GmbH MICRO equip-
ment in CHNS mode, whereas oxygen analysis was determined by pyrolysis of the materi-
als at 1450 ◦C utilizing OXY equipment from Elemental GmbH (Kalkar, Germany) [32].

The oxygen-containing groups were characterized by temperature programmed des-
orption (TPD) with AMI 300 characterization apparatus (Altamira Instruments, Pittsburgh,
PA, USA) connected to a Dymaxion Dycor mass spectrophotometer (Ametek, Pittsburgh,
PA, USA). The samples, weighing 0.1 g, were placed in a U-shaped quartz tube located
inside an electric furnace and heated to 1100 ◦C at 5 ◦C·min−1 with a constant helium flow
rate of 25 cm3·min−1. The amounts of CO and CO2 released during thermal analysis were
monitored, and these gases were calibrated at the end of each analysis [32].

2.3. Drugs

The drugs studied were 5-FU, TAC, and ETA. 5-FU (C4H3FN2O2, Sigma-Aldrich,
≥99%, St. Louis, MO, USA), with a molecular weight of 130.08 g·mol−1, is soluble in
methanol and water and insoluble in benzene and chloroform, is a stable compound, and
has a pKa of 8.02 [33]. TAC (C13H14N2-HCl-xH2O, Sigma-Aldrich, ≥99%), with a molar
mass of 234.72 g·mol−1, is soluble in methanol and has a pKa of 9.8 [34]. ETA (C8H10N2S,
Sigma Aldrich) is a thioamide-derived antibacterial with a molecular molar weight of
166.24 g·mol−1; is soluble in methanol, ethanol, and propylene glycol; and has a pKa of
4.49 [35].

2.4. Study of the Adsorption of Drugs in CNT

To better understand the adsorption of each drug in the different samples, a kinetic
assay was performed for 48 h. The methodology consisted of weighing 2.0 ± 0.1 g of each
CNT sample, in Eppendorf tubes and putting them in contact with a solution of each drug,
individually, at 250 mg·dm−3 with methanol (CH3OH, VWR CHEMICALS, ≥99.9%) for
[0:00; 0:15; 0:30; 1:00; 2:00; 4:00; 18:00; 24:00; 47:00] h. The Eppendorf tubes were put on a P
SELECTA ROTABIT shaker at 130 rpm. Each Eppendorf tube was removed and placed in a
VWR MicroStar12 centrifuge at 30 rpm for 15 min. Finally, ≈0.8 cm−3 of the supernatant
was removed and placed in vials, which were then read using an analytical method, high-
performance liquid chromatography (HPLC). HPLC methods were optimized for each
drug based on the literature [36–38] and performed in equipment (Hitachi Elite LaChrom
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HPLC, Tokyo, Japan) equipped with a UV detector and a C18 column (YMC Hydrosphere,
250 mm × 4.6 mm). Thus, the method selected involved a ratio of 20% sodium phosphate
buffer solution monobasic monohydrate at 0.05 M (H2NaO4P-H2O, SIGMA-ALDRICH,
≥98%) and 80% acetonitrile (CH3CN, VWR CHEMICALS, ≥99.95%); an injection volume
of 10 µL in TAC and 20 µL in ETA and 5-FU; at 1 mL·min−1; and wavelengths for TAC,
ETA, and 5-FU of 243, 254, and 266 nm, respectively.

2.5. Cell Lines and Cultures

The HT-29 cells (ATCC HTB-38, American Type Culture Collection, Manassas, VA,
USA) were grown in McCoy’s 5A Modified Medium with 10% fetal bovine serum (FBS)
at 37 ◦C in a humidified atmosphere with 95% air and 5% CO2 [39]. Cell growth took
place in 25 cm2 t-flasks with adherent polymer together with the respective medium. The
cells were maintained every 3 days, and trypsinization was performed after reaching cell
concentrations between 70% and 80% [5]. Initially, the medium was removed, and 4 mL of
phosphate-buffered saline (PBS) was used to remove the remaining medium. Next, 500 µL
of 0.25% trypsin-EDTA was added and left in the oven at 37 ◦C for 5–8 min to disaggregate
the cells from the polymer. After disconnecting from the polymer, 3 mL of the respective
medium was added to inactivate the trypsin enzyme. In a new t-flask, 5 mL of the new
medium was placed, and 100 µL cells were added [5].

2.6. Cell Treatment

The drugs were dissolved in the solvent dimethyl sulfoxide (DMSO) (Merck, Rahway,
NJ, United States) with concentrations that ranged from 0.1 to 100 mM. The DMSO was
diluted 1000× in culture medium so that the DMSO was at a concentration of 0.1% in the
cells and was not toxic to them [5]. The maximum drug concentration tested in the cells
was 100 µM.

2.7. CNT Dispersion

The CNT dispersion methodology was applied to the samples alone and in combi-
nations with the drugs. This required the addition of a dispersing agent to ensure the
dispersion of the nanoparticles and prevent their aggregation. Various dispersants can
be used in CNTs, such as Pluronic F-127 [40–44]. F-127 is characterized as a non-ionic
polyether surfactant or copolymer and is widely used to disperse hydrophobic nanopar-
ticles in suspension [45]. A solution of F-127 of 160 µg·cm−3 was prepared with distilled
water. Individual CNT samples were prepared with F-127 at concentrations of [2.5; 5; 10;
20; 40; 80] µg·cm−3, sonicated for 10 min, and stirred in the solution [45]. After selecting
the best sample concentration, each sample was combined with each drug at different
concentrations of [1; 10; 50; 100] mM, at a 1:1 volume ratio, obtaining final drug concen-
trations of [0.5; 5; 25; 50] mM. Then, the solution was sonicated for 10 min, stirred, and
diluted in 500× culture medium. The dispersion of the individual and combined samples
should be prepared on the day of cell treatment of the MTT (3-4,5-dimethylthiazol-2-yl-2,5-
diphenyltetrazolium bromide) assay because, even with the action of the surfactant and
ultrasound, the CNTs are not dispersed for long periods [42].

2.8. MTT Assay

After maintaining the cells and before placing them in new t-flasks, on day 1 the cells
were plated in 96-well plates. For this, a cell count was carried out in which trypan blue dye
was added to the cells at a 5:1 ratio. The count was performed for ×5 and ×1000 culture
media. Next, ≈10,000 cells per well were plated. Finally, the cells were incubated for 24 h
at 37 ◦C in a humid atmosphere with 95% air and 5% CO2. On day 2, the medium was
aspirated, and the cells were treated with a solution of drug or drug combined with CNTs
by adding 200 µL in each well. After 48 h, on day 3, the medium in each well was removed,
and 100 µL of MTT was added. The plates were protected from light and placed at 37 ◦C
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for 3 h. After 3 h, 100 µL of DMSO was added to dissolve the crystals formed, and the
absorbance was then read in a plate reader at 570 nm [5].

2.9. Cell Morphology Visualization

Cells were observed and photographed after each treatment, using Leica DMI6000
B Automated Microscope (Leica, Wetzlar, Germany) and using a Leica LAS X software
(v3.7.4) [5].

2.10. Data Analysis

The results of the textural characterization were analyzed in NovaWin software (ver-
sion 11.02, Quantachrome Corporation, Boynton Beac, FL, USA), and those of the TPD
were analyzed in OriginPro 8.6 32Bit software, in which the determination of the area of
the peaks was used to quantify the amounts of CO and CO2. The experimental cell data
were analyzed in GraphPad Prism 8 software (GraphPad Inc. software, San Diego, CA,
USA) with one-way analysis of variance (ANOVA). To analyze the evolution of cell viability
along the concentrations, a method was developed where the intervals of the mean had
95% confidence intervals, and the differences were considered significant at p < 0.05. After
this, the viabilities of treated cells were normalized with the viability of control cells, and
afterwards cell viability fractions were plotted as a function of drug concentration on a
logarithmic scale, where least-squares regression was applied to determine IC50.

3. Results and Discussion
3.1. Characterization Techniques

The textural properties of each sample were analyzed by determination of particle
size (d) and nitrogen adsorption–desorption isotherms at −196 ◦C to determine parameters
such as the specific surface area (SBET) and the total pore volume (VpT) in Table 1 and pore
size distribution as presented in Figure 2.

Table 1. Textural properties of the prepared samples.

Sample d (µm) SBET (m2·g−1) VpT, P/P0=0.95 (cm3·g−1)

CNT 262.8 188 1.49
CNT-HNO3 239.1 193 1.68

CNT-HNO3-600 261.1 192 1.49
CNT-H2SO4 261.8 173 1.65

CNT-BM 98.9 275 0.81
CNT-BM-N 123.7 186 0.93

CNT-HNO3-BM 50.4 267 0.77
CNT-HNO3-600-BM 36.1 281 0.73

CNT-H2SO4-BM 57.3 246 0.82

Concerning the sample size, d (µm), it is important to emphasize that these values
correspond not to the dimensions of individual CNTs but to the agglomerates. Thus,
comparing the CNT and unmilled samples (CNT-HNO3; CNT-HNO3-600; CNT-H2SO4)
with the milled samples (CNT-HNO3-BM; CNT-HNO3-600-BM; CNT-H2SO4-BM) exhibits
a decrease in size to half and quarter, due to the milling process to which they were
subjected, leading to higher SBET and a smaller pore volume. In the case of the oxygenated
samples (CNT-HNO3; CNT-HNO3-600), in the first sample, a reduction in size and an
increase in surface area characteristic of purification of the nanotubes occurs, while in the
second sample, as functional groups were removed due to the heat treatment, compared to
CNT-HNO3, there was an increase in their size and consequently a decrease in area since
the surface functional groups could promote some agglomeration of the tubes and block
the access of nitrogen to inner cavities. Finally, in the CNT-BM-N sample, the addition
of nitrogen groups caused a decrease in its area and thus could block nitrogen access
to the pores [32,46]. As expected, the micropore volume was 0 cm3·g−1 in all samples,
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since CNTs are classified as mesoporous materials with pore size < 50 nm and >2 nm and
characteristically exhibit type II isotherms [47]. Finally, Figure 2 shows a higher intensity of
pore size below 10 nm in milled samples (CNT-BM; CNT-HNO3-BM; CNT-HNO3-600-BM;
CNT-H2SO4-BM) and a higher intensity of pore size near 10 nm in unmilled samples (CNT-
HNO3; CNT-HNO3-600; CNT-H2SO4), which is in line with abovementioned findings,
highlighting the reduction in size after milling [48]. Moreover, the reduction in their size
was revealed to be an important parameter in the delivery and treatment of tumor cells [32].
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EA, TGA, and TPD characterization techniques were used to analyze the chemically
functionalized samples. The only difference between milled samples (CNT-HNO3-BM;
CNT-HNO3-600-BM; CNT-H2SO4-BM) and unmilled (CNT-HNO3; CNT-HNO3-600; CNT-
H2SO4) samples is the mechanical treatment that they underwent, so this aspect was not
analyzed. To quantify the chemical elements nitrogen (N), sulfur (S), and oxygen (O) in
each sample, EA was used. According to Table 2, the CNT-BM-N sample showed the
highest value of N at 4.3%. A study by Soares et al. [49] determined the amounts of each
element and obtained 3.5% N, like this work. The CNT-H2SO4 sample contains 0.2% S and
1.4% O, corresponding to sulfonic groups. As for the oxygenated samples, CNT-HNO3
and CNT-HNO3-600, they contained 1.2 and 0.5% O. The TGA evaluates the thermal
stability of the samples. In Table 2, the CNT-BM-N sample presents the highest value
of volatile compounds (VCs) due to the introduction of N-groups. Samples CNT-HNO3,
CNT-HNO3-600, and CNT-H2SO4) also present a high quantity of volatile compounds due
to the presence of oxygenated groups in these samples. TPD analysis allows the amounts of
CO and CO2 released from the samples to be quantified, which is related to the oxygenated
groups each sample may contain, according to the temperature at which these groups are
released. In Table 2, the values of the amounts of CO and CO2 in the CNT sample were
334 and 176 µmol·g−1, while in the CNT-HNO3 and CNT-HNO3-600 samples they were
1002 and 440 µmol·g−1 and 900 and 360 µmol·g−1, respectively, revealing the presence of
oxygenated groups in the different samples such as carboxyl, lactone, phenol, carbonyl,
anhydride, ether, quinone, and pyrone [50]. Because of the heat treatment at 600 ◦C, on the
sample CNT-HNO3-600, some of the groups were eliminated, such as carboxyl, lactone,
anhydride, and some of the phenol group, which caused a lower number of oxygenated
groups compared to the CNT-HNO3 sample. Hence, the amounts of CO and CO2 in the
CNT-HNO3-600 sample were lower than in the CNT-HNO3 sample [50].
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Table 2. Chemical properties determined by EA, TPD, and TGA.

Sample EA (wt.%) TPD (µmol·g−1) TGA (wt.%)

N S O CO CO2 VCs Ash

CNT 0 0 0.2 334 176 4.1 10
CNT-HNO3 0 0 1.2 1002 440 9.2 3.0

CNT-HNO3-600 0 0 0.5 900 360 4.9 3.5
CNT-H2SO4 0 0.2 1.4 n.d. n.d. 7.9 0.9
CNT-BM-N 4.3 0 1.2 n.d. n.d. 12.9 1.9

n.d.—not determined.

3.2. Assay for Drug Adsorption on CNTs

The aim of the adsorption assay was to study the adsorption kinetics of each drug in
the different samples over 48 h. This study was qualitative and was intended to evaluate
the behavior of each sample with each drug before starting the biological tests.

The functionalized samples can be connected to drugs by chemical interaction. 5-FU is
an aromatic compound containing C=O, N-H, and C-H bonds that bind to -COOH and -OH
groups of the functionalized CNTs (CNT-HNO3; CNT-HNO3-600; CNT-H2SO4), forming
hydrogen bonds with stronger interactions than hydrophobic ones [51]. The same occurs
with samples containing N-groups (CNT-BM-N), whose interactions lead to the formation
of -CN groups. According to a study by Kamble et al. [52], the encapsulation efficiency of
5-FU in CNTs with functional groups is higher than with CNTs without functionalization.
TAC consists of three hexagonal cycles with an amine (NH2) and many C=C bonds, so
there is a more significant interaction with CNTs via hydrophobic bonds [25]. While 5-FU
can connect mostly by hydrogen bonds, hydrophobic bonds are weaker. As a result, TAC
had more difficulty connecting to the samples than 5-FU. ETA has an amine group and
sulfur, such that it behaves identically to TAC. However, since TAC has three aromatic
rings and ETA only one, the former can interact more than the latter.

The milled samples without functionalization had more contact with the drugs in the
ball mill because of mechanical treatments, where the nanotubes are broken at their ends,
managing to adsorb the drugs onto the graphene sheet layers due to their hydrophobic
interactions [52–54].

Since, in the second situation, the milled samples adsorbed the drugs better, it was
decided to mill functionalized samples to favor their interaction (CNT-HNO3-BM, CNT-
HNO3-600-BM, and CNT-H2SO4-BM). These samples were then tested in the cells. Another
advantage of using milled samples in biological assays is that they are smaller in size,
facilitating their penetration into the cells [8,18,19,55,56].

3.3. Cell Assays

At first, the activity of the different free drugs in HT-29 cells was evaluated, as detailed
in Section 3.3.1. Then, the toxicity of the samples was studied, as outlined in Section 3.3.2,
and finally, each sample was combined for a given concentration, with each drug at different
concentrations, as shown in Section 3.3.3.

3.3.1. Cell Treatment of Free Drugs

Each drug was studied at different concentrations over 48 h to determine the IC50.
It is expected that 5-FU has cellular activity since it is widely used to treat HT-29 cells,

as demonstrated in Figures 3 and 4. The same happened to TAC; although it had better
activity only for higher concentrations—50 and 100 µM—it did not show a decrease in cell
viability in the remaining concentrations, unlike the first drug. Finally, ETA showed the
opposite behavior; besides not having any cellular effect, it possibly favored growth in
tumor cells.
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Figure 4. The effects of drugs on HT-29 cells. Cells were cultured in the presence of increasing
concentrations of each drug, and after 48 h, the MTT assay was performed to measure the cellular
viability. Values are expressed in percentage of control and represent means ± SEM. Each experiment
was conducted three times independently (n = 3); ** statistically significant vs. control at p < 0.01.
*** statistically significant vs. control at p < 0.001. **** statistically significant vs. control at p < 0.0001.

In Table 3, even though TAC also had activity, only 5-FU obtained a value of IC50 of
6.10 µM. Duarte et al. [57] studied the activity of 5-FU in the same HT-29 cells and obtained
an IC50 of 3.79 µM, close to that obtained in this work.

Table 3. Cytotoxicity of 5-FU, TAC, and ETA in HT-29 colon cancer cells, in which DMSO was used
as a solvent. IC50 values are given as the mean.

Sample 5-FU (µM) TAC (µM) ETA (µM)

No sample 6.10 >100 >100

3.3.2. Toxicity Study of CNTs

Before combining the drugs with the samples, it is important to ensure that CNTs are
not toxic, so as not to influence future results and to ensure safe conditions for normal cells.
As with other nanomaterials, the CNTs can be toxic depending on the synthesis/textural
modification, shape, size, and cell type [10,58–61], so it is necessary to evaluate them
individually in the cells under study. Initially, an intermediate study was performed on
a few samples with different concentrations, from 2.5 to 80 µg·cm−3, to select the best
concentration, which was 40 µg·cm−3.
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The dispersing agent is not cytotoxic, according to Figure 5. However, it can cause
some coloration, without a specific reason, influencing the absorbance values. Therefore,
care was taken to present results under the same conditions. Figure 5 compares all the
samples with the dispersing agent control, and there is no significant difference between
them, which means that no sample is cytotoxic. The increased effect on cell viability might
be due to the effect of the dispersing agent, as explained above.
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these IC50 values to free 5-FU—6.10 µM, almost all samples improved their activity, except 
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Figure 5. The effects of different samples of CNTs on HT-29 cell viability. Cells were cultured in the
presence of increasing concentrations of each drug, and after 48 h, the MTT assay was performed to
measure the cellular viability. Values are expressed in percentage of control and represent means ±
SEM. Each experiment was conducted three times independently (n = 3).

3.3.3. Cell Treatment of Drug/Sample Combinations

First, it was decided to combine the drugs with each sample at a 1:1 ratio, with different
drug concentrations, to determine the IC50 and compare their activity individually.

CNTs without any functionalization were subjected to mechanical treatments (CNT-
BM) in the ball mill. The nanotubes were broken at their ends and could adsorb the drugs
onto the graphene sheet layers due to their hydrophobic interactions, while functionalized
CNTs contain functional groups on the surfaces that interact with the drugs.

5-FU was the only free drug that had an IC50 of 6.10 µM. This drug has one aromatic
ring with ketones (C=O) and amine groups (N-H), so it is expected to have a more significant
interaction (especially involving hydrogen points with the functionalized samples with
-COOH, -OH groups, and nitrogen groups) and, consequently, an improvement in the IC50.
According to Figure 6A, a gradual reduction in cell viability can be seen in all samples with
identical behavior as before. In Table 4, the samples with the best activity were CNT-BM-N,
CNT-H2SO4-BM, and CNT-BM, with better IC50 values. Contrary to expectations, the
oxygenated samples did not significantly interact with 5-FU. Compared these IC50 values
to free 5-FU—6.10 µM, almost all samples improved their activity, except CNT-HNO3-BM,
which again denotes an advantage in using nanomaterials. A study by Sharma et al. [62]
evaluated the activity of 5-FU encapsulated in polymeric nanoparticles in HT-29 cells
and obtained an IC50 of 3.7 µM. Another study by Udofot et al. [63] combined 5-FU with
different ratios of liposomes, obtaining IC50 of 0.41, 6.26, and 8.15 µM. According to these
studies, there is an advantage in combining 5-FU with CNTs, which shows a lower IC50, as
in CNT-BM-N, CNT-HNO3-600-BM, CNT-H2SO4-BM, and CNT-BM samples.
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Figure 6. (A) The effects of 5-FU on cell viability. (B) The effects of TAC on cell viability. (C) The 
effects of ETA on HT-29 cell viability. Cells were cultured in the presence of increasing concentra-
tions of each drug, and after 48 h, the MTT assay was performed to measure the cellular viability. 
Values are expressed in percentage of control and represent means ± SEM. Each experiment was 
conducted three times independently (n = 3); * statistically significant vs. control at p < 0.05. ** sta-
tistically significant vs. control at p < 0.01. *** statistically significant vs. control at p < 0.001. **** 
statistically significant vs. control at p < 0.0001. 

Figure 6. (A) The effects of 5-FU on cell viability. (B) The effects of TAC on cell viability. (C) The
effects of ETA on HT-29 cell viability. Cells were cultured in the presence of increasing concentrations
of each drug, and after 48 h, the MTT assay was performed to measure the cellular viability. Values
are expressed in percentage of control and represent means ± SEM. Each experiment was conducted
three times independently (n = 3); * statistically significant vs. control at p < 0.05. ** statistically
significant vs. control at p < 0.01. *** statistically significant vs. control at p < 0.001. **** statistically
significant vs. control at p < 0.0001.

Although 5-FU did not bind strongly with the oxygenated samples, an improvement
is denoted when combined with CNTs, as shown in Figure 7. These results and the fact that
they are better than some other studies make these combinations an alternative application
for future work due to the use of low amounts of the drug. Even so, some ways to improve
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these results are to optimize the drug/sample ratio, which favors its activity, minimizes the
IC50, and adds other oxygenated groups, providing better binding with 5-FU.

Table 4. Cytotoxicity of combining each sample with each drug (5-FU, TAC, and ETA) in HT-29 colon
cancer cells. IC50 values are given as the mean.

Sample 5-FU (µM) TAC (µM) ETA (µM)

CNT-BM 2.87 19.73 >100
CNT-BM-N 1.98 15.32 >100

CNT-HNO3-BM 6.74 23.31 >100
CNT-HNO3-600-BM 3.13 25.72 >100

CNT-H2SO4-BM 2.50 15.81 >100
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Figure 7. Microscopic cellular visualization of HT-29 cells after 48 h of incubation with a combination
of 5-FU at different concentrations of [1–100] µM and the different samples. (A) Control. (B) CNT-BM.
(C) CNT-BM-N. (D) CNT-HNO3-BM. (E) CNT-HNO3-600-BM. (F) CNT-H2SO4-BM.
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The combination between samples and TAC improved activity in all samples, as
shown in Figures 6B and 8, where the concentrations of 50 and 100 µmol·dm−3 reached
very significant values in all samples. However, the CNT-BM-N, CNT-H2SO4-BM, and
CNT-BM samples stand out from the lowest concentrations, which, compared with Table 4,
denotes much lower IC50 values for these samples. This is to be expected since the TAC
contains in its molecular form two aromatic rings, one benzene and one amine group, and
several C=C bonds, where there is greater interaction with the CNTs via hydrophobic bonds,
especially van der Waals forces, that can interact with the different samples. Compared
to the activity of TAC alone, this combination indicates a great improvement in general,
since it was possible to determine the IC50 in this assay. The combinations showed a
reduction in cell viability for lower concentrations (1 and 10 µM), unlike previously; even
at concentrations of 50 µM, the activity improved in all samples. Since there are no studies
combining TAC with other nanomaterials, it is impossible to compare the IC50 values,
making this work interesting and promising. Still, two possibilities to improve their
activity and, consequently, reduce the IC50 values to those of 5-FU, are to optimize the
drug/sample ratio, which may provide a better binding between both, and try another
method of functionalization into CNTs.
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Figure 8. Microscopic cellular visualization of HT-29 cells after 48 h of incubation with a combination
of TAC at different concentrations of [1–100] µM and the different samples. (A) Control. (B) CNT-BM.
(C) CNT-BM-N. (D) CNT-HNO3-BM. (E) CNT-HNO3-600-BM. (F) CNT-H2SO4-BM.
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In Figure 6C, some instability in the percentage of cell viability can be seen. The ETA
previously showed a gradual increase rather than a decrease in the number of tumor cells.
However, in this case, the combination improved its activity; as did the CNT-H2SO4-BM
sample, which stood out the most in these results, as shown in Figure 9. However, this
improvement was not enough to determine IC50 values. Since ETA is a 1-benzene molecule
with one amine group and a few C=C bonds, little interaction with the samples is expected
compared to the other drugs. When comparing ETA with TAC, the former has lower
hydrophobic forces, which results in less adsorption in the samples. This is in contrast
to 5-FU, which despite having lower forces than TAC, can still form stronger forces than
hydrophobic forces. Since the combination caused a slight improvement in activity, a
possible solution is to optimize the ratio of drug to sample. However, the low activity
might be related to the potential weak interaction with the samples, so to better understand
its behavior, another solution would be to combine it with other functionalized samples.
As mentioned for TAC, no studies have combined other nanomaterials treated in HT-29
cells for this repurposing drug, so comparing the IC50 with other studies is impossible.
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4. Conclusions

The aim of this work was to combine functionalized CNTs with different drugs for
application in HT-29 cells. The functionalization procedures with H2SO4 (CNT-H2SO4)
and melamine (CNT-BM-N) were successful, presenting values of 0.2% S and 4.3% N-
groups, respectively. Regarding the amounts of CO and CO2, in the CNT sample, 334
and 176 µmol·g−1 were obtained; in the CNT-HNO3 sample, 1002 and 440 µmol·g−1 were
obtained; and in the CNT-HNO3-600 sample, 900 and 360 µmol·g−1 were obtained, confirm-
ing the introduction of oxygenated groups on the surface of CNTs. When combined with the
CNTs, the reference drug—5-FU—improved its activity, with the samples CNT-BM-N, CNT-
H2SO4-BM, and CNT-BM presenting an IC50 of 1.98, 2.50, and 2.87 µM, respectively. TAC,
being a repurposing drug, greatly enhanced cell activity in which the samples CNT-BM-N,
CNT-H2SO4-BM, and CNT-BM, obtaining values of IC50 of 15.32, 15.81, and 19.73 µM,
respectively. On the other hand, ETA had no activity, even combined with the CNTs. The
samples that interacted most with the drugs and contributed to improving cell treatment
were CNT-BM-N and CNT-H2SO4-BM. Our work demonstrated that some CNTs combined
with 5-FU improved their activity, even compared to other studies in treating HT-29 cells,
which indicates the potential for future development of this work. In the repurposing drugs,
compared to their activity in free form, only TAC improved its activity when combined
with CNTs, which shows how beneficial it is to work with repurposing drugs.
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