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Abstract: Tandem solar cells are widely considered the industry’s next step in photovoltaics because of
their excellent power conversion efficiency. Since halide perovskite absorber material was developed,
it has been feasible to develop tandem solar cells that are more efficient. The European Solar Test
Installation has verified a 32.5% efficiency for perovskite/silicon tandem solar cells. There has
been an increase in the perovskite/Si tandem devices’ power conversion efficiency, but it is still
not as high as it might be. Their instability and difficulties in large-area realization are significant
challenges in commercialization. In the first part of this overview, we set the stage by discussing
the background of tandem solar cells and their development over time. Subsequently, a concise
summary of recent advancements in perovskite tandem solar cells utilizing various device topologies
is presented. In addition, we explore the many possible configurations of tandem module technology:
the present work addresses the characteristics and efficacy of 2T monolithic and mechanically
stacked four-terminal devices. Next, we explore ways to boost perovskite tandem solar cells’ power
conversion efficiencies. Recent advancements in the efficiency of tandem cells are described, along
with the limitations that are still restricting their efficiency. Stability is also a significant hurdle in
commercializing such devices, so we proposed eliminating ion migration as a cornerstone strategy
for solving intrinsic instability problems.
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1. Introduction

Any viable approach to lowering CO2 emissions and preventing another rise in
average temperature would have to include alternative sources at its cornerstone, since
fossil fuels constitute approximately 80% of the world’s energy consumption [1]. As a result,
solar photovoltaic (PV) technologies have garnered enormous levels of societal attention:
market forces are fast growing their investments in PV, despite continued attempts by
research organizations to examine the principles of converting solar energy to electricity
to push efficiency restrictions. Regarding producing electricity, PV is leading the pack
regarding growth rate. There was a dramatic drop in manufacturing costs, installation, and
maintenance of solar systems in the last decade. The restricted power conversion efficiency
(PCE) and the project’s capacity, which remains significantly elevated compared to the
expenses associated with non-renewable energy sources, suggest that this technology may
not be the most widely used primary grid energy source. Even so, this technology could
become a source of energy in the coming decades [2].

Silicon crystalline material single-junction solar cells (SCs) dominate the market,
used in producing commercial solar modules because of their low production prices
and the outstanding dependability of their materials and manufacturing technologies [3].
Crystalline silicon solar panels, with a maximum PCE of 26%, have dominated the PV
industry because of their efficiency and reliability. These devices’ efficiency is close to
the theoretical maximum limit of 33.3%, according to Shockley–Queisser’s (SQ) detailed
balance model for ideal p–n junction [4]. A key limiting factor not accounted for in the
SQ model is the Auger recombination of free carriers that occurs under illumination.
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Taking this into account for silicon, the efficiency limit for monocrystalline Si SC with
an optimized thickness (110 µm) was calculated to be 29.4% [5,6]. The two primary
problems limiting single-junction solar cell performance are thermalization losses and the
non-absorption of low-energy photons that fall under the bandgap. Several strategies have
been implemented to effectively meet the Shockley–Queisser (SQ) limit and collect the
maximum number of photons possible. The concept of intermediate-band solar cells has
been proposed to achieve a conversion efficiency of 63% [7]. Quantum dots have been
considered one of few materials systems to form intermediate bands for intermediate-band
solar cells [8]. The process of carrier multiplication, in which a single photon generated two
(or more) electro-hole pairs can enhance the photocurrent of SCs [9]. Metallization at the
nanoscale is also a method that can be used to improve SCs’ efficiency [10]. Incorporating
absorber materials into a multi-junction arrangement is one of the approaches that can
be taken. These materials should have different band gaps. The amalgamation of a
material possessing a significant bandgap and one with a low bandgap on top of one
another is referred to as a tandem configuration. Since the SQ criteria constrain single-
junction solar cells, integrating subcells with varying bandgaps is the quickest and easiest
route to surpassing the SQ limit of single p–n junction [11]. Studies have revealed that
compound semiconductors, such as InP and GaAs, are used during the construction of
III–V multi-junction solar cells, and they are exceptionally efficient. The six-junction tandem
solar cell has established an impressive 39.2% one-sun efficiency, constructed using III–V
compound semiconductors [12]. Nevertheless, the significant production of such materials
is problematic because of the high costs and the complicated manufacturing procedures.

The advancement of tandem devices utilizing III–V semiconductor materials and
silicon has been considerably influenced by the lattice distortion and thermal expansion
coefficient discrepancies between the two materials. In addition to the high capital and
operating costs, tandem devices struggled with these issues [13]. Utilizing the advantages
of perovskite materials—known for their direct bandgap, high absorption coefficient, and
superior charge transport properties—researchers have been designing and optimizing
tandem solar cells. These perovskite tandem solar cells typically consist of a perovskite top
cell paired with a bottom cell, often composed of silicon or another perovskite variant. This
configuration broadens the solar spectrum coverage, thereby amplifying overall efficiency.
Moreover, advancements have been made in improving the stability of these cells, with
notable progress in encapsulation techniques and tweaks to perovskite composition that
significantly reduce degradation over time. Despite these strides, challenges persist in
areas such as large-scale manufacturing, consistency in the fabrication of thin films, and
long-term stability, among others. However, the potential of perovskite tandem solar cells
continues to drive substantial research and commercial interest. The basic idea of the article
is provided in Figure 1.

Recent research has shown that greater PCEs can be obtained using organic–inorganic
hybrid halide perovskite materials (CH3NH3PbI3) instead of Si single-junction cells with
advanced PV technology. For this reason, hybrid metallic halide perovskite materials, which
are both organic and inorganic, share the benefits of both types of compounds. Because
their performances increase higher than silicon-based PV technology, the newly developed
perovskite solar cell (PSC) has been recognized as something that might drastically change
the PV market. PSCs have captured significant interest in the solar world due to the higher
efficiency, minimal cost, process compatibility, and adjustability of their bandgap. With their
widely-accepted bandgap of 1.1 eV, high open-circuit voltage (VOC) of up to 750 mV, cheap
manufacturing due to their supremacy in the industry, and exceptionally high efficiency,
crystalline silicon solar cells are almost perfect for use in these tandem cells [5,14]. Locating
a suitable wide-bandgap (WB) component is far more complicated. Due to their enhanced
efficiency and adjustable bandgap, III–V solar cells have been frequently reported upon.
Recent research has shown a mechanically stacked four-terminal tandem cell that has a
demonstrated efficiency of 32% [15].
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Nevertheless, the widespread use of III–V solar cells’ expensive manufacturing pro-
cesses prevents them from being used for practical uses. The advancement of perovskite-
based PV technology provided a viable solution to the need for inexpensive high-efficiency
solar panels [16]. The potential PCE produced using tandem solar cells (TSC) increases with
the number of light absorbers exhibiting diverse bandgaps. One example is the current
PCEs of 32.9%, 37.9%, and 39.2% for III–V multi-junction solar cells with a non-concentrator
and 2, 3, or 6 connections, respectively [17]. The high price of tandem cells may be reduced
using metal halide perovskite solar cell technology. The excellent absorption coefficient [18],
exceptional bandgap tunability [19], the extended range of charge carrier diffusion [20],
and minimal binding energy for excitons [21] are only a few of the optoelectronic qualities
exhibited by metal halide perovskites that make them ideal for producing high PCEs in
solar cells. The relatively lower crystallization temperatures and solution processability
contribute to the low fabrication costs, making this material not only economically viable
but also marketable [22] With 25.2% PCE, solution-processed single-junction metal halide
PSCs outperform standard c–Si solar cells. The compositional engineering of the A, B, and
X sites allows the bandgap of ABX3 metal halide perovskites to be tuned, making them
suitable for deployment as an upper cell on any bottom cell. At this point, A indicates
a monovalent cation, while B represents a divalent metal cation and X denotes a mono-
valent halogen anion. Furthermore, the bottom cell is much less likely to be damaged
because of the low-temperature fabrication procedure—various solution process deposition
methods, including spin coating [23] or slot-die coating [24]. In addition, vacuum-based
methods, such as thermal evaporation or chemical vapor deposition [25], are reported as
manufacturing protocols for PSC.

2. Halide Perovskite Materials for Solar Cells

Inorganic–organic halide solar cell researchers have become very interested in PSCs
due to a striking rise in device efficiency from 3.8% [21] to 25.8% [22] since 2009. Considering
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an all-time high efficiency of around 26.7%, silicon PV systems hold most of the market
share; perovskite has attracted much interest [26]. Given that certain materials have the
potential to be employed in both photovoltaic PSCs and organic solar cells, this small
efficiency difference has recently caught the attention of researchers, particularly those
with expertise in dye-sensitized solar cells (DSSCs) or organic solar cells. The DSSC device
architecture is where PSCs display advantages over silicon-based devices, as seen in [27],
which require labor-intensive and expensive high-vacuum deposition procedures. Based on
the accounts of efficacious cell production on flexible substrates, further promise exists in
that the extensive roll-to-roll fabrication of PSCs could be implemented in various industrial
sectors [28,29]. In 1839, German mineralogist Gustav Rose discovered a calcium titanate
crystal structure. The nomenclature “perovskite” was assigned to this structure in honor
of Lev Perovski, the Russian mineralogist who initially unveiled it; since then, the name
“perovskites” has been used to describe all materials that share calcium titanate’s crystal
structure. The general formula for the perovskite light absorption layer is ABX3, where A
is an organic cation (CH3NH3

+), B is a metal cation (Pb2+), and X is a halide anion (I−).

2.1. Crystal Structure

In Figure 2a–c, we can observe that molecular structure of the organic halide perovskite
is of the ABX3 type, where A and B are cations (with A being bigger than B) and X is
the anion. The A cation (methylammonium, CH3NH3

+, MA+, or formamidinium, CH3
(NH2)2

+, FA+) in a perovskite’s unit cell is surrounded by 12 X anions (Cl−, Br−, or I−,
or a coexistence of multiple halogens) to form a cuboctahedron. The octahedral position
of X is occupied by the B cation (Pb2

+, Sn2
+, etc.) The octahedra of the B cation and X

anion are connected to create a stable three-dimensional network structure [30–32]. For
CH3NH3PbX3, as the size of the halide grows from X = Cl to Br, the unit cell parameter
grows from 5.68 to 5.92 and then to 6.27 Å. Mixing halides makes it easy to adjust the cubic
phase’s lattice characteristics; for example, CH3NH3PbBr2.3l0.7, CH3NH3PbBr2.07I0.93, and
CH3NH3PbBr0.45I2.55 all displayed a = 5.98 Å, 6.03 Å, and 6.25 Å, respectively. The cubic
perovskite structure of CH3NH3SnBrxl3−x (x = 0–3) crystallized unit cell parameters are
reported as follows: a = 5.89 Å (x = 3), a = 6.01 Å (x = 2), and a = 6.24 Å (x = 0). Some
Sn-based perovskite compounds showed conducting capabilities in contrast to Pb-based
perovskite materials [33,34].
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A dimensionless value termed the Goldschmidt tolerance factor (t), which measures
the crystal’s stability and its structure’s deformability, is used to predict the formability of
different kinds of perovskites.

t =
rA + rx√
2(rB + rx)

(1)

where the radius of cation A is rA, the radius of cation B is rB, and the radius of anion X
is rX. For perovskite composed of a transition metal cation and an oxide anion, t = 1 is
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projected to result in a cubic structure, while t < 1 is predicted to result in octahedral defor-
mation. Additionally, at t < 1, symmetry is lost, which impacts the electrical characteristics.
Perovskite formability for alkali metal halides is anticipated to be 0.813 < t < 1.107 [35,36].
Cubic structures have tolerance factors between 0.89 and 1, with values greater than 0.89;
due to the instability of B–X bonding in 3D, a transition to a 2D layer structure may occur.
In contrast, a tetragonal (β phase) or orthorhombic (γ phase) structure may form if the
tolerance factor is less than 0.89 [37]. The octahedral factor (µ), provided by Equation (2), is
another component for perovskite formation.

µ =
rB

rx
(2)

Perovskite stability and distortion can be assessed through its utilization. The per-
ovskite can have an octahedral factor between 0.45 and 0.89 without losing stability. Methy-
lammonium lead trihalide (MAPbI3, where X is the halide, could be Cl, Br, or I) is the most
widely utilized absorber substance for PSC. As the size of the halide atom grows from Cl to
Br to I, the unit cell characteristics rise from 5.68 to 5.92 to 6.27 Å. However, the increased
size and aspherical shape of methylammonium (MA) cause the network to distort, which
causes a phase change and a drop in temperature. The orthorhombic structure is present
for T < 160 K, the tetragonal structure for T > 162.2 K to T < 327.4 K, and the cubic structure
for T > 327.4 K. The bandgap of methylammonium lead halide typically ranges from 1.5 to
2.3 eV; MAPbI3 has a direct bandgap of roughly 1.55 eV, whereas MAPbBr3 has a relative
WB of 2.3 eV for 600 nm absorption started. FAPbI3 (where FA is formamidinium) exhibits a
NB of 1.48 eV as the absorber layer, indicating greater current extraction. However, this ma-
terial has demonstrated lesser stability. The type of halogen atom employed also affects the
structural characteristics of methylammonium lead halide. Lead halide perovskites have
an octahedral crystal structure, as illustrated in Figure 3a. The B cation (typically Pb but
sometimes Sn) is octahedrally coupled to six halide ions. There is a shared corner between
these octahedra, and the A cation lies between them [38,39]. The A cation of lead halide per-
ovskites is either an organic molecule (methylammonium, MA, CH3NH3

+) or an inorganic
cation (usually Cs+), leading to the further categorization of lead halide perovskites as either
organic–inorganic (hybrid) or all-inorganic. One can manipulate perovskites’ optical and
electrical characteristics by changing the proportions of formed halide ions and, to a lesser
extent, the cations [40]. Like traditional metal chalcogenide semiconductors, perovskites’
optical characteristics and object tuning can be achieved by adjusting their dimensions and
size. Perovskites exhibit a pronounced inclination towards the creation of stratified two-
dimensional (2D) and quasi-two-dimensional architectures (as depicted in Figure 3c), even
though their dimensional range can be altered from three-dimensional to zero-dimensional
by manipulating the synthetic parameters employed (Figure 3b) [41,41,42,42,43]. Numerous
recent investigations have demonstrated the excellent photoluminescence quantum yields
of colloidal perovskite nanocrystals. Furthermore, when their dimensional changes are
reduced from 3D to 2D, they exhibit significant quantum confinement effects, allowing for
the further customization of optical characteristics [44,45]. A good number of applications,
such as solar cells and lasers, LEDs, and PV, have demonstrated the immense potential
of perovskite.
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2.2. Electronic Structure

Here, by considering the perovskite material’s electronic characteristics to understand
its layered perovskite structure. Density functional theory (DFT) computer simulations
were used in several theoretical investigations on the density of states (DOS) of perovskites,
correlating the composition of the bands with the DOS. We may learn more about where
those remarkable optoelectronic capabilities of perovskite materials come from and how
they can be optimized with the help of the DFT calculations performed on metal halide
perovskites. The valence band results from the overlap between the M-site cation’s ns
orbitals and the X-site anions’ np orbitals. In contrast, the conduction band is formed by
combining the np orbitals of the M cation and the X anions [18,46]. It is well established
that there is an antibonding feature between the valence band maximum (VBM) and the
conduction band minimum (CBM) because of the orbital overlap among the filled ns of
M and np of X [47,48]. As depicted in Figure 4, the ionic nature of bonds expands, and Eg
increases when the composition shifts from I to Cl because the energy difference between
ns and np halogen atomic orbitals widens.
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M metals have a less noticeable impact on the band structure. The final band structure
is influenced by phenomena such as ns2 lone pairs, the relativistic stabilization of the 6s2

level in Pb2+, and the composition of M–X bonds (degree of covalence). Considering all
these characteristics, the Eg of these materials can be precisely tuned by altering their
compositions or making alloys. In addition, the absence of electron–phonon coupling in
perovskites’ straight bandgap makes electronic transitions more likely. Since the electron’s
quantized wave motion in a periodic crystalline lattice is connected to its crystal momentum
(vector k), the VBM and CBM in direct bandgap materials are coplanar about this axis.
Yin et al. computed the band structure and DOS of the cubic phase MAPbI3 using DFT–
PBE computation, as illustrated in Figure 5. The band structures of the tetragonal and
orthorhombic phases of MAPbI3 are very close to those of the cubic phase, according to a
subsequent investigation by the same group. According to the experimental findings, in the
tetragonal and cubic phases, the bandgaps are expected to be 1.55 and 1.57 eV, respectively,
and the UV-vis measurement of FASnI3 is illustrated in Figure 5c [49,50]. Since the VBM
and CBM coincide at the same point of the Brillouin zone, cubic MAPbI3 is a direct bandgap
semiconductor (Figure 5a). The two MAPbI3 phases, tetragonal and orthorhombic, are
direct bandgap semiconductors exhibiting values that are nearly close to one another. The
comparison between the experimental UV-vis spectrum of MAPbI3 (red line) and the SOC–
GW calculated spectrum (blue line) is depicted in Figure 5d [49,51]. Figure 5b displays
the effects of MA, Pb, and I on the DOS of MAPbI3. The Pb p orbital dominates the CBM,
while I p states, through a minor addition from Pb s states, dominate the VBM. Given
its position well below the VBM, the MA cation’s partial DOS does not make any direct
electronic contributions to the CBM or VBM. MAPbI3’s remarkable electrical properties
can be traced back to a lone pair of s orbital electrons in the Pb cation. While the outer s
orbitals of most metal cations are empty, Pb possesses an occupied 6s orbital just under the
valence band [18,52].
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2.3. Structure of Perovskite Solar Cells

Efficient PSCs could be the most fantastic solution for commercial solar technology
manufacturing. PSC products are likewise separated into two categories for a good reason,
namely normal and inverted, as shown in Figure 6 [53]. The hole transport layer (HTL) or
the electron transport layer (ETL) should be placed first; there are two distinct methods for
fabricating PSCs. Semiconducting p-type polymers create an inverted structure, such as
PEDOT:PSS, while the standard structure uses n-type semiconductors, such as TiO2. The
first ETL employing titanium oxide (TiO2) was built in 2009, and it was the predecessor
of the current structure. A PIN-type product based on the organic HTL poly(3,4-ethylene
dioxythiophene)-co-polystyrene sulfate (PEDOT:PSS) was released four years later. These
two architectures currently have highest PCEs reported [27,54–57]. By employing growth
methods, the fabrication temperature for n–i–p structured flexible PSCs could be kept
to a minimum. However, an n–i–p structure device requires an excessive temperature
method to develop a compact TiO2 coating. Plastic is not a suitable surface for this [53]. The
mesoporous TIO2 film was initially employed as a scaffold for the initial PSCs fabricated
from dye-sensitive solar cells (DSCs); as a result of sintering nanoparticles (NP), a porous
TiO2 layer developed, with the self-assembled perovskite absorber providing the filler. A
typical arrangement of such PSCs is shown in Figure 6a.
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It is easier to transfer electrons between the FTO electrode and the perovskite absorber,
and a perovskite coating was formed on mesoporous TiO2 [58]. Perovskite NPs work to
progressively strip the photoexcited pigment of its electrons, enabling it to serve mainly as
a light absorber in place of the molecular sensitizer it formerly was. However, the finding
that organic–inorganic halide perovskite could independently conduct electrons and holes
encouraged the creation of future devices. The mesoscopic variant’s perovskite capping
layer extends well beyond the nanostructure thanks to the semiconductor oxide scaffold’s
thoroughly infiltrated pores. The planar structure was researched to facilitate fabrication.
Planar metal oxide ETL fabrication typically occurs at temperatures below 200 ◦C without
impairing the perovskite devices’ functionality. The standard structure is thus receiving
a great deal of attention for further research [59,60]. Such a lower temperatures solution
technique might result in the fabrication of the ETL, so the p–i–n-type arrangement has
gained even greater notoriety.

Along with the electron-transporting material (ETM) layer, a hole-transporting mate-
rial (HTM) layer was also applied; perovskites were suited for hole transport. This has been
a major component in manufacturing p–i–n-structured solar cells. HTLs are well-suited
for adaptable perovskite optoelectrical devices, since their production often does not need
a high-temperature annealing procedure [61,62]. HTM is also an air- and water-resistant
alternative for PSCs. To prevent leakage, the objective of producing planar p–i–n on a
uniform transparent conductive oxides (TCO) electrode is to manufacture a perovskite
layer without pinholes by utilizing a one-step spin-coating procedure. Results from cells
produced from a 1:1 molar PbI2/CH3NH3I solution are inferior to those from the 1:3 molar
PbCl2/CH3NH3I solutions. The annealed perovskite film still exhibited pores and poor
crystallinity since no scaffold had been used at 100 ◦C [63,64]. These findings prove that
the perovskite layer’s appearance and crystallinity are critical to the device’s performance.
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3. Perovskite Materials for Tandem Solar Cells

In perovskite-based tandem devices, perovskites with compositionally maintained
bandgaps are frequently used. These perovskites have a wide-bandgap of >1.55 eV and
a narrow-bandgap of less than 1.35 eV. Hybrid perovskites exhibit a direct bandgap, pos-
sess a high degree of optical absorption, demonstrate balanced and small active area for
both electrons and holes, exhibit a high degree of tolerance for defects, display extended
carrier lifetimes and diffusion lengths, feature low exciton binding energies, and exhibit
completely innocuous grain boundaries [20,65–67]. The distinct electronic structure of ma-
terials composed of perovskite is the reason for their exceptional optoelectronic properties,
contributing to the excessive Voc and efficiency of PSCs. The combinations of A-site cations
(such as methylammonium (MA), formamidinium (FA), caesium, and rubidium), B-site
cations (such as lead and tin), and X-site anions could be used to accurately control the
bandgap of the perovskite absorber to a certain level (such as iodide, bromine, and chloride).
Subcells that perfectly fill the bandgap may be fabricated using this bandgap-engineering
method [40,68–71]. Hybrid perovskite components are abundant and inexpensive. In
addition, it may be manufactured on flexible substrates using a solution technique at lower
temperatures, allowing for cost-effective large-scale manufacturing [72].

3.1. Wide-Bandgap for Perovskite Top Cell

The typical symbol for the crystal structure of metal halide perovskite (MHP) is ABX3.
The impact of A-site cations on the bandgap is attributed to their ability to induce lattice
distortion in MHP, which impacts the bond length and angle of the B–X sites, ultimately
influencing the bandgap. Since B-site cations connect angles within the BX6 octahedron,
the bandgap decreases with increasing angle. The band gap was shrunk by increasing the
X-site halogen anions’ ionic radius and decreasing the B–X bonds’ valence level [17]. The
compositional engineering of methylammonium (MA), formamidinium (FA), caesium (Cs),
and rubidium (Rb) as A-site cations, lead (Pb), tin (Sn), and germanium (Ge) as B site cations,
and iodine (I), bromine (Br), and chlorine (Cl) as the X site anion allows for the fine-tuning
of the bandgap in ABX3 [40,73]. Figure 7 shows that the bandgap of MHPs can be adjusted
from the infrared area (~1.1 eV) to the ultraviolet region (~3.0 eV). In combination with NB
cells, this shows that MHPs provide high flexibility. Due to the processing temperature
below 150 ◦C, MHPs allow monolithic configurations to be fabricated without harming
the bottom cell. Shallow trap sites, long carrier diffusion distances, excessive dielectric
constants, fewer exciton binding energies, and significant absorption coefficients are further
benefits [72,74–76]. MHPs have been recommended as the top cell’s light-absorbing layer
in various TSCs. WB perovskites are extensively employed, surpassing other materials
in terms of usage in TSCs; MAPbI3 has attained extraordinarily high efficiencies. This
demonstrates the versatility of MHPs when used with NB cells, starting with a low 13.4%
efficiency using a MAPbI3/silicon heterojunction (SHJ) 4T tandem structure, MAPbI3-based
tandem devices grew to 27.0% efficiency after extensive tuning, outperforming even the
most efficient crystalline silicon solar cells (which achieve 26.7% efficiency) [5,77,78]. It is
conceivable that the use of MAPbI3 perovskite affected the development of TSCs based
on perovskites. However, when subjected to atmospheric factors, including oxygen, heat,
light, and moisture, MAPbI3 undergoes a chain reaction that includes chemical reactions,
phase transitions, phase segregation, and other forms of degradation. The bandgap in
MAPbBr3−xIx could be controlled chemically within the range of 1.55 to 2.3 eV, with x
changing from iodide to bromide. Top subcells in a tandem arrangement can achieve 1.70–
1.85 eV bandgaps. However, it has been established that when the bromide concentration
is too high, light instability results in photo-induced halide segregation in MAPbBr3−xIx,
which lowers the achievable voltage and reduces the functionality and dependability of
mixed-halide perovskite devices [40,79,80].
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3.2. Narrow-Bandgap Perovskites for Bottom Cells

High efficiency can be achieved with all-perovskite tandems while retaining the ad-
vantages of low price, low-temperature manufacturing, and the potential for both subcells
in the structure to have light, flexible form factors. Substituting tin Sn for Pb is a feasible
method for decreasing the perovskite bandgap. The optical bandgap in Sn-based per-
ovskites is narrower than in Pb-based perovskites, but the isoelectronic configuration is the
same [81]. It has been found that SnPb-alloyed perovskites are the sole method capable of
achieving an Eg as low as 1.2 eV, which maximizes the solar spectrum’s use in conjunction
with wide-Eg perovskite resulting in exceptionally efficient all-perovskite tandem cells. At
a 60% Sn ratio, the bandgap in perovskite materials is the narrowest due to the bowing
effect of the bandgap [82].

Conversely, perovskites containing Sn exhibit characteristics of semiconductors, in-
cluding a notable intrinsic carrier density resulting from the spontaneous oxidation of
Sn2

+ ions and a short carrier lifetime caused by a significant trap density [83]. Snaith et al.
initially reported on fabricating PSCs utilizing methylammonium tin iodide (CH3NH3SnI3)
and deposited it on glass substrates in 2014. The bandgap of CH3NH3SnI3 has been de-
termined to be 1.23 eV through absorption measurements [83]. The production energy
of Sn2+ vacancy in Sn-based perovskites is low, and these materials have a propensity
for oxidation to Sn4+ and are limited in their ability to exhibit n-type conductivity rather
than the more common p-type [84]. The compound FA0.6MA0.4Sn0.6Pb0.4I3, wherein MA
denotes methylammonium and FA denotes formamidinium, has demonstrated superior
performance as a single-junction cell featuring a narrow-gap perovskite. With a bandgap
of 1.25 eV, it has a PCE of 17.8% and a 4T tandem of 21% efficiency [85]. There have been
reports of perovskites with even smaller bandgaps (MASn0.8Pb0.2I3 with 1.19 eV). They
have not yet, however, created solar cells with a PCE of greater than 10% [73]. To obtain
the ideal bottom cell bandgap for a 2T tandem, using perovskites with smaller bandgaps is
preferable. It also makes it possible to employ more stable, smaller bandgap perovskites
for the top cell, as mentioned above. According to Freeman et al., the optical bandgap of
MASnxPb1−xI3 perovskites is approximately ~1.25 eV, despite the absorption starting at
1060 nm, indicating a minimum bandgap of 1.17 eV [86]. The bandgap of the perovskite
may also be adjusted through modifications to the lattice structure by varying the radius
of the A-site ion. The MA+ replacement also impacts the bandgap with FA+ and Cs+ at
A-site. FA+ can be introduced at the A-site to produce a NB perovskite, presumably due to
FA+ having a slightly greater ionic radius than MA+ [87,88]. By adding various concentra-
tions of FA+ to MAPb0.75Sn0.25I3, Jen and coworkers achieved enhanced stability without
compromising the excellent NB PSCs efficiency on an Sn basis [67].

3.3. Optical Absorption and Bandgap Tuneability

Low-dimensional perovskites’ wider range of optoelectronic properties compared to
their 3D counterparts is attributed to their structural diversity [89,90]. The optical bandgap
of low-dimensional materials can be readily adjusted through dimensions and composi-
tional engineering alterations. This characteristic proves advantageous in extending both
emission and absorption wavelengths [43]. The ability to control the optical bandgap by
changing the perovskite composition is essential for tandem applications. Compound
engineering a just the bandgap from 1.2 to 2.3 eV [91,92]. The pure 2D perovskites, such as
PEA2PbI4 (2.36 eV) and BA2PbI4, exhibited a significant bandgap (2.24 eV) [93,94]. Quasi-
2D PEA2MAn−1PbI 3n+1 with n = 40 has a bandgap of 1.52 eV, which is very close to 3D
MAPbI3 (1.57 eV), as shown in Figure 7b [95].
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This highlights how the structure of quasi-2D materials can mimic that of 3D per-
ovskites when the number of layers is sufficiently high. The projected drop in bandgap
with increasing n for BA2MAn−1PbnI3n+1 The findings in Figure 7c align with outcomes
observed in PEA-derived perovskites, wherein the energy levels range from 2.24 eV (n~1)
to 1.52 eV (n~∞) [94,97]. The optical bandgap of 1D GAGeI3 (2.7 eV) is comparatively
higher than that of 3D MAGeI3 (1.9 eV) in germanium-based perovskites. This is due to the
weakened orbital overlap caused by the gradual spatial separation of inorganic frameworks
due to the replacement of MA with GA [98]. The thickness of the perovskite absorber layer
is another significant component in determining the maximum achievable photocurrent in
the top cell. For a monolithic structure, the ideal perovskite layer thickness is depicted in
Figure 7d, depending on the bandgap of an upper cell. The optimal perovskite layer thick-
ness for a 1.73 eV bandgap is ~1 µm, which presents significant experimental difficulties
while maintaining a high-quality material.

Consequently, in real-world applications, there is a trade-off between effective carrier
collection, which needs good electrical quality throughout the film, and total light absorp-
tion at the initial light pass. Electro-optical studies must first be conducted to discover the
constraints of a given perovskite deposition method [21]. Multiwavelength photolumi-
nescence (PL) mapping can provide further insight into the material quality. When used
in semiconductor materials, PL can reveal electronic flaws. Therefore, faults in particular
cell layers can be linked to processing conditions or substrate surface state, provided the
tandem layer stack is characterized as it moves through the process flow. Nonradiative
recombination may be lowered by increasing the effectiveness of the perovskite layer
as an absorber through a deeper comprehension of its growth process [99]. Combining
photoluminescence and electroluminescence allows us to learn more about the tandem
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device’s limiting factors: PSCs photovoltaic and charge carrier transport efficiencies could
be mapped with hyperspectral luminescence imaging. Combining photoluminescence
and electroluminescence allows us to learn more about the tandem device’s limiting fac-
tors. Hyperspectral luminescence imaging may map PSC photovoltaic and charge carrier
transport efficiencies [100]. As a result of oscillations in the interfacial resistance, low FF
is found in device regions with an inefficient collection of photogenerated charge carriers.
When considering contact materials based explicitly on the composition of the absorber
material, the situation could be elevated by incorporating superior interface engineering
and energetics.

4. Tandem Configuration

TSCs can attain superior efficiencies in comparison to single-junction devices. This is
achieved by absorbing solar photons with higher energy in a top-cell material with WB. The
photocurrent produced by the material in the top cell could reach a greater voltage than that
of the solar cell below it; its absorbance coefficient is more significant, but its bandgap is
less. PSCs are linked with c–Si, copper indium gallium selenide (CIGS) solar cells in tandem
arrangement to raise the PCE of single-junction solar cells above the theoretical limit stated
by SQ. It is possible to build a TSC in several different ways, with each method determined
by how the junctions connecting the cells at the top and bottom are connected electrically.
The efficiency of a one-junction solar cell is limited by the efficient use of only photons
having energy close to the forbidden energy gap. Spectrum loss due to the restricted
optical sensitivity of semiconductor absorbers accounts for most unusable solar energy.
Photons with energies larger than Eg could be absorbed by a semiconductor, generating
carriers with energies greater than the lattice one. The hot carriers in single junction solar
cells induce hot carriers electromotive force with polarity opposite to the photovoltage
resulting from electro-hole pair creation [101–103]. Solar cells’ efficiency is reduced due
to light-induced carrier heating [104]. Coating silicon solar cells with semitransparent in
infrared light region thin perovskite layers absorbing high energy photons can significantly
reduce the detrimental effects of heated carriers [105].

Photons with energies below Eg cannot be used. Since the open-circuit voltage (Voc)
and the short-circuit current (Jsc) are the two factors that matter most when calculating a so-
lar cell’s PCE, the absorber’s Eg is paramount. Overcoming the Shockley–Queisser limit has
been suggested and developed using various techniques, such as multiple exciton synthesis,
hot carrier collection, intermediate band construction, and tandem design [8,106–109]. The
application of metallic nanoparticles leads to the increased efficiency of SCs due to the
plasmonic effect [10,110]. This became possible by using light trapping through the reso-
nant scattering and concentration of light in arrays of metal nanoparticles or by coupling
light into surfaces plasmon polaritons and photonic modes that propagate in the plane
of the semiconductor layer. Metal nanoparticles can excite the localized surface plasmon
resonance, leading to increased light absorption and increasing the efficiency of SCs [111].
A significant photocurrent increase induced by metallic nanoparticles was observed in
perovskite SC with incorporated Au/SiO2 core–shell nanoparticles [112]. When silica-
coated gold (Au@SiO2) nanorods are embedded in the interface between the hole transport
layer PEDOT:PSS and the perovskite CH3NH3PbI3, the average PCE increased over 40%
from 10.9% for PSCs without Au@SiO2 to 15.6% with Au@SiO2 [113]. According to Jack
et al., this enhancement could be due to the reduction in the binding energy of excitons by
plasmons, which eventually accelerates the dissociation of excitons at the interface with the
electron transport layer [10].

The optical and electrical independence of the four main topologies of TSCs varies.
In a four-terminal (4T) configuration, the top and bottom cells must function as fully
integrated devices to effectively merge their respective power outputs. The four-terminal
(4T) arrangement features top and bottom cells that function independently. Longer
wavelength incident sunlight may go from one cell to another without being blocked in 4T
tandem arrangements (illustrated in Figure 8a) or be reflected by a neighboring bottom cell
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(Figure 8d). The configuration of series-connected monolithic tandems is considered the
most desirable and complex (Figure 8b) [109]. The practicality of this approach lies in its
ability to facilitate a more streamlined electrical connection while obviating top and lower
cells’ need to have front and back electrodes, respectively. Both of these features make it
possible to simplify the electrical connection. To successfully fabricate efficient 2T devices,
one must overcome several challenges, including the following: (i) optical management
within the tandem; (ii) matching of the currents in the upper and bottom cells; and (iii)
the creation of recombination interfaces with minimal losses among neighboring cells or
creating tunnel junction between them. The introduction of series-parallel tandem (SPT)
configurations, as depicted in Figure 8c, presents a viable approach to amalgamate the
power outputs of two cells while maintaining a comparable performance to 4T designs
regarding regular energy yield. This is achieved by independently combining top and
bottom cell strings and then connecting the voltage-matched strings in parallel.
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4T tandem structure has autonomous electrical connectivity to its two cells. (b) A tandem comprising
2T series-connected elements. (c) Series-parallel tandem, voltage-matched sequences of top and
bottom cells. (d) A reflective tandem configuration infrared (IR) reflector is positioned on the angled
high-band gap cell [103]. Copyright 2021, Elsevier.

4.1. 4T Tandem Solar Cells

The 4T TSCs exhibit optical linkage between their top and bottom layers while re-
maining electrically unconnected. This unique feature enables the top cells to operate as
filters. This allows both cells to autonomously contribute to the maximum output power,
as depicted in Figure 8a,c. Maximizing the efficiency of the upper and bottom cells at their
respective current and voltage matching points is crucial for improving the performance
of 4T TSCs. In TSCs, the top subcell is equipped with two transparent electrodes, one at
the front and one at the rear. To function correctly, the front electrode needs a high level of
transparency throughout the light-absorbing area and a high conductivity level. Since the
top subcell must absorb visible light with high energy photons, the bottom subcell absorbs
near-infrared (NIR) light; the rear electrode needs a high degree of transparency in the
NIR region. It is the bottom line to construct an appropriate semitransparent electrode to
optimize the efficiency of tandem devices. The initial investigation of a 4T PVK/Si TSC was
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conducted by Loper et al. in 2014. The front cell was fabricated utilizing MAPbI3, while
the rear cell was constructed using a c–Si heterojunction [77]. The front cell produced a
PCE of 6.2%, while the rear cell produced 7.2% using the transparent MoOx/ITO electrode
in the 4T tandem cell. Ren et al. successfully achieved transmittance at long wavelengths
utilizing a transparent MoO3/Au/MoO3 electrode. Oxygen annealing treatment was used
to introduce a perovskite (PVK) thin film with reduced defect density, which allowed for
the fabrication of a NIP-structured CH3NH3PbI3-based PVK top cell [114].

Transparent electrodes are commonly composed of TCOs, such as indium tin oxide
(ITO), aluminum-doped zinc oxide (AZO), and indium zinc oxide (IZO), which are de-
posited through the process of sputtering. Different types of top cell architectures, such
as NIP and PIN, for example, in an illustration of a typical 4T perovskite/Si TSC that has
a homojunction Si bottom cell. A low-quality multi-crystalline Si bottom cell and a silver
nanowire transparent electrode on a NIP-structured PVK top cell based on CH3NH3PbI3
were used to construct 4T perovskite/Si TSCs, which achieved an efficiency of 17%, as
described by Bailie et al. [115]. The research team of Sargent showed that tandem devices
with a configuration of 4T have demonstrated an efficiency exceeding 28.0% [116]. The
utilization of opaque rear-mirror contacts in perovskite cells has been observed and exhibits
an external quantum efficiency (EQE) typically greater than 80% close to the band edge.
This indicates their effectiveness as single-junction cells.

In contrast, the EQE of semitransparent cells is typically closer to 70% while operating
in the same spectral range. The perovskite film’s thickness was raised as a substitute,
although the resulting films typically showed homogeneous morphologies and short carrier
diffusion lengths. The aforementioned concerns were addressed through enhancements
made to the solvent extraction methodology and the incorporation of a Lewis base. The
outcome of this process resulted in the development of a perovskite film possessing a
significant thickness, consistent morphology, and exceptional ability to remove carriers.
The researchers have communicated the achievement of creating a partially transparent
perovskite top cell that demonstrated a consistent PCE of 19.8%. The cell also demonstrated
an average NIR transmittance of 85% in the range of 800–1100 nm. Furthermore, researchers
have devised 4T MHP/c–Si tandem apparatuses, which demonstrated an overall PCE
of 28.3% [117].

4.1.1. Mechanically Stacked 4T Tandem Solar Cells

The two subcells that make up this structure are arranged in a manner analogous to
that of the 2T tandem class. Conversely, although they are connected optically, they are not
electrically dependent on one another, as shown in Figure 8a. Each subcells independent
operation and optimization is made possible by having a distinct pair of terminals for each
subcell. The mitigation of constraints on the selection of bandgap for the top cell is observed,
resulting in reduced sensitivity of the device to fluctuations in spectral properties. As a
result, it has been observed that 4T tandem cells can attain elevated levels of efficiency across
a wide spectrum of bandgap values, ranging from 1.6 to 2 eV for the upper subcell. When
paired with a c–Si lower subcell, an exceptional value of 1.81 eV can be achieved [96]. The
presence of a matching layer, interface layer, or recombination layer among two subcells
is deemed excessive. However, implementing this design necessitates using multiple
transparent electrodes, potentially leading to increased parasitic absorption [118].

4.1.2. Optical Splitting

This mirror is designed to selectively direct photons possessing high energies towards
the perovskite subcell while simultaneously directing their low energies towards its silicon
subcell [119]. A mono-crystalline (mc) SHJ cell is linked with a PSC made of MAPbI3, using
an optical splitter to make the connection. As seen in Figure 9a, the perovskite cell is angled
at a 90◦ angle towards the Si cell and oriented at 45◦ towards the optical splitter exposed to
incident light. This configuration causes the reflected light to have a short wavelength and
to be present perpendicularly on the lower bandgap cell [109,119,120].
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The optical splitter possesses a cut-off wavelength in the optical spectrum (550 nm,
600 nm, and 640 nm). The Si cell can detect and absorb longer wavelengths of reflected light,
whereas the perovskite cell is sensitive to shorter wavelengths. To attain an ideal cut-off of
600 nm, Zhao et al. employed an optical splitter composed of multi-layered dielectric oxides
deposited through sputtering and possessed low (n~1.5) and high (n~1.9–2.2) refractive
indices. Implementing a multilayer configuration reduces the extent of reflection losses at
the interface between glass and air within 4T devices [121]. One of the benefits of utilizing
a design of this type is that there is no requirement for additional transparent electrodes.

On the other hand, the higher cost of the optical splitter makes it more difficult for this
tandem construction to be economically viable [96]. To mitigate the losses incurred due to
free carrier absorption in the top and back contacts of perovskite cells, researchers recently
employed an optical splitter in an experimental implementation of a bifacial design on 4T
tandem configurations. The outcome of this experiment yielded a significant augmentation
in the short-circuit current density (Jsc) of the lower subcell of silicon, increasing from 15.15
to 33.5 mA/cm2. Furthermore, an increase in the production of electron-hole pairs was
observed in the subcell, as mentioned earlier [122].

4.1.3. Large Area Tandem Modules with Four Terminals

The slow progress toward semitransparent perovskite top cells with a high surface area
may be responsible because most tandem devices still have an area of less than 1 cm2. More-
over, the enhanced sheet resistance of the transparent electrodes will result in heightened
electrical losses for the tandem device, particularly as the surface area of the semitrans-
parent perovskite cell expands. A novel architecture has been developed to fabricate
high-performance 4T solar cells with significant area coverage. A thin-film PSC on top of a
silicon solar cell is part of the current setup’s interconnected solar module [123–125]. The
utilization of the module-on-cell structure in the tandem device comprising 4T perovskite–
Si solar module resulted in an overall efficiency of 20.2% despite its small 4 cm2 aperture.
The front and back electrodes’ sheet resistances were optimized, which helped achieve this
result. To enhance the PV efficiency of a four-terminal solar module, it is imperative to
reduce optical and electrical losses to a greater extent. As mentioned earlier, the aim may be
achieved by lowering parasitic absorption by utilizing a highly transparent electrode and
HTL in the NIR region. In addition, an inactive region in the upper perovskite module can
be reduced between subcells by using efficient pulsed-laser ablation techniques, thereby
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enhancing the patterning process [126]. More research included a textured perovskite layer
into an upper solar module to reduce optical losses further. It employed a refractive index
matching layer within the air gap among the perovskite–Si stacks. The module-on-cell
configuration only took up 4 cm2 of space and showed a 23.9% efficiency boost. A textured
perovskite layer integrated into the top solar module facilitated this success [127]. Wide
and narrow bandgap perovskite photoactive layers on flexible substrates may be developed
by large-area blade-coating, as has been reported. Using an active material surface area
of just 50 cm2 yields an efficiency of 15.3 %, and four-terminal tandem solar modules are
constructed with optimized sub-junctions. The “module-on-module strategy” Combining a
semitransparent perovskite solar module with a CIGS solar module can provide 4T tandem
solar panels [124]. It is possible that flexible tandem solar modules consisting of all-thin-
film layers could be viable, given that perovskite and CIGS absorbers can be integrated
with flexible substrates made of either polymer or metal.

4.1.4. Four-Terminal CIGS-Based Solar Cells

When 4T cells are taken into account, as is to be expected, the investigations provide
an entirely different situation, with the engineering of the transparent conducting electrode
(TCE) emerging as a key component of the research. There are numerous publications
on 4T perovskite/CIGS solar cells, which contrast the monolithic configuration. In this
context, it is important to highlight the work carried out by Shen and his colleagues.
The researchers produced 4T cells with exceptional performance perovskite/CIGS by
strategically integrating appropriately developed transparent electrodes and a multi-cation
Cs0.1Rb0.05FA0.75MA0.15 PbI1.8Br1.2 perovskite absorber. The researchers utilized properly
designed transparent electrodes for this purpose [128]. A 70 nm-thick coating of dense TiO2
and a 60 nm-thick film of mesoporous TiO2 were deposited onto an ITO bottom electrode
of 100 nm thickness, and a perovskite top cell was produced. The top electrode, in contrast,
was made up of a 180 nm-thick MgF2 AR coating on top of a 40 nm-thick IZO conductive
layer and a 10 nm-thick MoOx anode buffer layer. As a result, this phenomenon yields an
excellent total NIR transmittance, exceeding 70%, accompanied by significant bandgaps
of 1.62 eV and 1.75 eV in perovskites, resulting in PCEs of 18.1% and 16.5%, respectively.
The research reports the attainment of 23.4% efficiency in a 4T tandem configuration,
which exhibited remarkable stability against degradation caused by oxygen. This was
accomplished by stacking a CIGS bottom cell with an efficiency of 16.5% and a bandgap of
1.13 eV mechanically on top of partially transparent PSCs with a high bandgap (1.75 eV).
Bailie and his team utilized AgNWs as a back contact material to achieve a transparent
perovskite-based subcell [115]. The overall efficiency was increased to 18.6% when paired
with a CIGS rear subcell, which was 17% of the total. AgNWs were utilized by Lee et al. for
the same objective but in a MAPbI3/CIGS device that had undergone complete solution
processing [129]. Although this method is inexpensive, it only produces efficiencies of
10%. Device performance when employing AgNWs in perovskite-based devices is very
unpredictable because the process is complex and involves solvents.

The study conducted by Gharibzadeh and colleagues involved the combination of
a bulk 3D double-cation FA0.83Cs0.17Pb(I1−yBry)3 structures with a 2D passivation agent
based on n-butylammonium bromide (BABr) to create a 2D/3D perovskite heterostructure.
This approach aimed to enhance the performance of 4T perovskite/CIGS TSCs. The result
was a much higher Voc and PCE values [130]. Changing the bromide concentration allows
the 3D perovskite absorber layer’s bandgap to be controlled, ranging from 1.65 to 1.85 eV.
The study determined that the stand-alone perovskite top cell exhibited a maximum
stabilized PCE of 17.5% at a bandgap value of 1.65 eV.

Conversely, PCE values were significantly lower for bandgap values exceeding 1.74 eV.
The researchers observed 4T TSCs by integrating perovskite cells mentioned earlier with
CIGS bottom cells (Eg = 1.13 eV, PCE = 21.2%). The results demonstrated an overall tandem
PCE of up to 25.0%.
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4.1.5. 4T Perovskite/Si Tandem Solar Cells

The PV industry typically uses crystalline silicon (c–Si) as its primary material. Perovskite-
silicon TSCs have been more efficient than single-junction c–Si solar cells since 2018. The
industry has been pairing perovskite-based TSCs with c–Si, as the silicon solar cells might
benefit significantly from bottom-cell technology. This approach represents a viable strat-
egy for commercializing PSCs in the current PV industry [131]. The subcells’ maximum
power output is achieved in filtered and unfiltered 4T TSCs because of the lack of electri-
cal connection between the subcells. Each subcell can independently increase its power
conversion efficiency since current and voltage matching are unnecessary. Theoretically,
4T TSCs can achieve a PCE of 46% [108,132]. Fewer constraints on texture, cell polarity,
processing technique, and temperature must be satisfied by other cells before a subcell may
be created. This is performed to enable individual treatment of each subcell as a distinct
entity. There is a significant reduction in the requirements of top and bottom cells in 4T
TSCs. The remark implies that a simple method to enhance the PCEs of TSCs is to use
high-performance double-sided texturing Si cells or PSCs produced at high temperatures.
As a result, while other Si solar cells might be used as bottom cells, SHJ solar cells with
double-side roughness and the greatest PCE would be the best option for 4T TSCs. The
research team headed by Ballif reported the initial endeavor to attain MHP/c–Si TSCs [77].
To demonstrate this, they constructed a 4T tandem device with a MAPbI3 top subcell and
a c–Si heterojunction bottom subcell, achieving a PCE of 13.4% as far as top and bottom
subcells are concerned; 6.2% and 7.2% efficiencies were reported for top and bottom, re-
spectively. Snaith et al. has presented their findings on developing high-performance 4T
tandem cells incorporating a c–Si heterojunction cell. The resulting PCE of the tandem
cell was measured and was found to be 22.4%. The authors have also demonstrated the
successful fabrication of a mixed cation (FA/Cs) metal halide perovskite (MHP) solar cell,
which exhibits high crystallinity and photostability in terms of composition. The optical
bandgap of this MHP solar cell was determined to be 1.74 eV [133]. Recently, Ašmontas
and his team explored the PV characteristics of a triple cation perovskite/silicon tandem
SC with a four-terminal Cs0.06(MA0.17FA0.83)0.94Pb(I0.83Br0.17)3 layer-based perovskite cell
integrated on an industrial n-type monocrystalline bifacial PERT silicon SC [134]. The
perovskite layer is very effective at absorbing visible light and is just slightly transparent in
the infrared, as seen by its transmittance spectrum. In the 800–1100 nm wavelength region,
the transmittance is considerably larger than 80%. The best PSCs have an open circuit
voltage of 1.11 V, a short current density of 23.6 mA, a fill factor (FF) of 74%, and a PCE of
19.4%. The data for the bottom cell are as follows: 71% FF, 7.2% PCE, 15.8 mA short-current
density, and 0.64 V open-circuit voltage. Thus, the 4T perovskite/silicon TSCs’ overall PCE
of 26.6 % is substantially more significant than the efficiency of each subcell.

4.1.6. Four-Terminal Perovskite–Perovskite Tandems

All-perovskite tandems’ design and processing flexibility are revolutionary compared
to existing tandem technologies. The bandgaps of the upper and lower cells in any per-
ovskite tandem may be modified to meet the most demanding design requirements and
obtain the best possible performance. Additionally, the fabrication of the subcells may be
accomplished with a low thermal budget, which helps to reduce the overall manufacturing
cost [18,72,116,135]. Consequently, using all-perovskite TSCs might be a potentially fruitful
technique to generate high-efficiency tandems that are low-cost, simple to manufacture,
and lightweight. In 2015, Li et al. [136] constructed a 4T TSC using perovskite materials by
stacking MAPbBr3 on top of MAPbI3. The HTL serves as the top cell’s means of facilitat-
ing charge transfer, and they utilize a composite material consisting of carbon nanotubes
and PMMA. They opted for an ultrathin grid of gold metal as the transparent electrode.
Transparent electrodes and high parasitic absorption in the HTL limited the top cell’s NIR
transmission to 45% of its theoretical maximum. As a direct consequence, the performance
of the TSC was reduced to 9.46% in PCE. The bandgaps of the upper and lower cells were
not what would have been ideal for a highly functional TSC. Later, Jen and colleagues
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announced a 4T 19.08% PCE all-perovskite TSC that combined MA0.5 FA0.5 Pb0.75Sn0.25I3
with PSCs with a small bandgap (1.33 eV). Zhao et al. constructed a perovskite bottom cell
with a NB to improve the NIR response [85]. Perovskite absorber layer thickness and grain
size increased by adjusting the concentration of the precursor, resulting in better electronic
properties. The Sn–Pb PSC’s NIR spectral response with a NB was better, resulting in a
validated PCE of 17.01%. The increased light absorption was caused by the traits that these
cells exhibited. Integrating a PSC with a WB showed a complete perovskite TSC with a
21% PCE. In 2019, Tong et al. [137]. The study established additional research involving the
utilization of guanidinium thiocyanate (GuaSCN) in a perovskite precursor solution with a
NB (FASnI3)0.6(MAPbI3)0.4 to enhance the structural and electrical characteristics of solar
cells. As an optical filter, bandgap 1.63 eV semitransparent Cs0.05FA0.8MA0.15PbI2.55Br0.45
MHP solar cells were employed to achieve a PCE of 25.4% and a sustained efficiency
of 25.0%.

4.2. Two-Terminal (2T) Perovskite–Silicon Tandem Solar Cells

Matching currents across subcells and ensuring processing compatibility across each
layer and interface is crucial; obtaining monolithic 2T TSCs is technically more difficult
than obtaining 4T TSCs. A 2T configuration characterizes the TSCs. It is hypothesized that
2T tandem cells will be more efficient than their 4T counterparts due to the reduced optical
parasitic absorption and scattering at subcell interfaces. For this reason, 2T all-perovskite
TSCs should be prioritized. To construct a 2T tandem device, a TCE with a metal grid and
a transparent recombination layer is required.

On the other hand, a 4T tandem device necessitates using three TCEs, along with a
physical gap separating the top and bottom cells. Employing low-temperature sputtering
and atomic layer deposition, a TCO that includes ITO, hydrogenated indium oxide, AZO,
and indium-doped zinc oxide (i-ZnO) could be created for the top TCE [138–142]. As a
recombination layer, the top TCE material used is contingent on the feasibility of process-
ability since the recombination layer needs qualities comparable to those of the top TCE.
The previously discussed requirements must be satisfied for the device to function correctly.
A layer of interconnectivity links the subcells electrically in series. The intermediate layer
connecting the subcells is a tunnel recombination junction with low resistance, WB, high
doping, or a transparent conductive oxide layer. The 2T architecture has various benefits
over its counterpart. Transparent electrodes are needed in a 2T architecture, which mini-
mizes the deposition processes and speeds up and lowers the cost of processing. In addition,
having fewer electrode layers aids in reducing parasitic losses. In order to develop a 2T TSC
that is affordable, commercially scalable, and incredibly efficient, significant research has
been carried out to commercialize this technology within the next ten years [72,143,144].

Nevertheless, the 2T structure introduces a plethora of challenges in terms of process-
ing. Kirchhoff’s law states that the aggregate device voltage equals the accumulated subcell
voltages. Furthermore, the subcell that generates the least current limits the total current
going through the TSC. This is because the subcells are linked together sequentially. To get
the most out of a 2T TSC, it is essential to balance the current flowing through its numerous
subcells. As a direct consequence, the bandgap and the absorber layer thickness in each
subcell need to be meticulously optimized [145].

McGehee et al. presented a study wherein a monolithic 2-T perovskite/Si tandem
device was developed by utilizing an n++/p++ Si tunnel junction on an n-type Si wafer
in combination with an n–i–p perovskite subcell [146]. To achieve this, an n-type Si wafer
was used. The n–i–p perovskite subcell of early PSCs used a MAPbI3 absorber and an
electron-transport layer of mesoporous TiO2 that had been processed at high temperatures.
TSC performance is inadequate because the Si subcell has neither been surface-textured
nor has its p-type front been surface-passivated. As a result, the TSCs could only achieve a
PCE of 13.7% at a voltage of 1.65 V. In a groundbreaking work by McGehee and colleagues,
a low-temperature produced NiOx hole-transport layer was used with a p–i–n perovskite
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subcell. ITO was used as the recombination layer and placed on top of a flat-topped
SHJ subcell [147].

An ALD-coated oxide layer was employed in this research to prevent the perovskite
layer from being damaged during the ITO top electrode deposition. Specifically, the
SnO2/ZTO bilayer technique was utilized, previously used within the interconnecting
layers for all-perovskite tandem devices. The enhanced stability of this particular perovskite
enables it to endure the application of a buffer layer of tin oxide via atomic layer deposition
is being considered. Sputtering could be used to deposit a transparent capping electrode
on top of the layer, which also inhibits shunts and has minimal parasitic absorption. The
endurance of perovskite devices under a damp heat test at 85 ◦C and 85% relative humidity
for 1000 h is attributed to a diffusion barrier in the window layer. This contributes to
increased perovskite device’s thermal and environmental durability. For a 2T tandem device
with a 1 cm2 active surface, it was proved that an efficiency of 23.6% could be achieved
while maintaining a Jsc of 18.1 mA cm–2. Fluorinated ammonium’s electropositivity at its
-NH3+ terminals can be significantly improved by increasing the distance between F and
-NH3+. The outcome of this phenomenon is robust adsorption onto the anti-site defects of
IA and IPb with negative charges. These calculations were based on the work of Liu’s group,
which conducted theoretical research [148]. The efficiency of inverted PSCs with a 1.68 eV
bandgap is an incredible 21.63%, setting a new record. This is a significant accomplishment.
In addition, a flexible PSC and a 1 cm2 opaque device both provide the greatest PCEs,
21.02% and 19.31%, respectively. Another research group reported that the perovskite/Si
2T tandem methodology resulted in a remarkable PCE of 29.15% when evaluated at the
1 cm2 device scale. Additionally, the device had a FF of 0.778, a Jsc of 19.75 mA cm–2, and a
Voc of 1.897 V [149]. Remembering that the Jsc values of each subcell in a 2T TSCs need to
be well-matched for the cell to perform at its highest possible efficiency.

4.2.1. Two-Terminal Perovskite–CIGS Tandems

In addition to silicon solar cells, CIGS solar cells may be used as bottom cells in hybrid
TSCs. These cells have an ideal band gap of ~1.08–1.15 eV, necessary for today’s most
cutting-edge, high-efficiency devices. The bandgap of CIGS, which is a direct-bandgap
semiconductor, may be continuously adjusted within a range of 1.00–1.67 eV by changing
the Ga/(Ga + In) ratios. In contrast to silicon thin films, which need an absorber layer
thickness of over 200 µm, the absorption coefficient of CIGS can reach 105 cm−1, low-
temperature coefficient of −0.32%/K, low material usage (~2 µm), which reduces the
absorber layer thickness to as little as 1–2 µm [150–152]. The capacity to adjust the band
gap of CIGS and perovskites can yield tandem PCEs that are notably superior to those
of perovskite/Si TSCs. This is the case because both materials have a tunable band gap.
With this in mind, combining perovskite and CIGS could lead to a low-cost, thin-film
tandem approach with high PCE. CIGS cells are anticipated to cost USD 0.34 W−1 for a
manufacturing capacity of 1000 MW y−1 when the module PCE is 15% [153]. The use of
CIGS and PSCs enables the processing of solutions, which makes it easier to produce TSCs
that are both effective and affordable. Because CIGS and perovskite are both composed
of thin films, they can be manufactured on flexible substrates. This enables roll-to-roll
production, which has a high throughput and a cheap cost. The thin-film perovskite/CIGS
TSCs, as they are initially fabricated, possess flexibility and affordability, and they hold
promise for use in several cutting-edge industries, including portable electronics and
building-integrated photovoltaics (BIPV).

The earliest monolithic perovskite-CIGS tandem devices were constructed in 2015,
and their bottom cells were made using a solution rather than vacuum, leading to a
noticeably flatter cell shape [154]. The recombination layer was an ITO of 30 nm to establish
a connection between the two subcells. Since the perovskite layer is prone to degradation,
the deposition process occurred directly onto the CdS layer, obviating the requirement for
the CIGS devices to initially use an intrinsic zinc oxide (ZnO) layer. Figure 10a–c show
an SEM image of the device and the associated JV curves, demonstrating that the JSC



Nanomaterials 2023, 13, 1886 21 of 43

produced by the tandem device was low, falling somewhere about 56% of that produced
by the top perovskite subcell as a standard and CIGS cell as a shadowing element. The
tandem device’s JSC was lower than anticipated, which limits the transmission of incoming
light to a maximum of 50% due to optical loss brought on by Al contact in the higher
partially transparent perovskite cell. The maximum efficiency of the tandem device was
10.9%, which was much lower than the combined efficiency of the subcells. A perovskite
top cell with a 1.72 eV bandgap and a CIGS bottom cell with a 1.04 eV bandgap was
used in the configuration. Its inadequate structure significantly restricts the CIGS device’s
performance, which is caused by the absence of intrinsic ZnO, which results in high
parasitic absorption losses from the ultrathin metal electrodes. High series resistance due
to inadequate devices made of CIGS and perovskite were found to have made contact with
one another, contributing to the exceptionally low FF. Han et al. found practical solutions to
these issues. The researchers used an ITO transparent electrode with a thickness of 100 nm
rather than ultrathin metal electrodes. As a result of this layer’s high transparency, the light
transmission was sufficient, and optical losses in tandem devices were reduced [155]. In
addition, ZnO nanoparticle-doped transparent ITO electrodes provided excellent protection
against moisture intrusion, enhancing the perovskite layer’s lifetime. To maintain high
efficiency, TCO layers, called i-ZnO and boron-doped zinc oxide (BZO), were kept in the
CIGS device structure. Chemical mechanical polishing was used to provide a uniform
surface for the perovskite top cell, and an ITO buffer and recombination layer were used
to compensate for the considerable vertical distance of the BZO layer. To enhance hole
transportation due to a discrepancy in the work function of PTAA (−5.1 eV) and BZO
(−4.0 eV), a polished ITO recombination layer was adjusted, resulting in superior ohmic
contact. The study found that the efficiency of monolithic perovskite/CIGS TSCs increased
significantly, reaching 22.43%. The improvement is attributed to the coexistence of a CIGS
bottom cell and a perovskite top cell, which led to a noticeably increased Jsc of 17.3 mA cm−2

and an FF of 73.1%. Perovskite was discovered to have a bandgap of 1.59 eV, while CIGS
had a bandgap of 1.00 eV.
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In 2016, another team of researchers unveiled a device configuration that facilitates the
production of inverted semi-transparent planar PSCs. These cells have an impressive open-
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circuit voltage of 1.116 V and a significantly higher efficiency of 16.1% [157]. Perovskite
devices with the substrate configuration display encouraging thermal and photo-stability,
with a temperature coefficient of −0.18% ◦C−1. The average transmittance of the device is
80.4% between 800 and 1200 nm, which is quite high. In 2017, Guchhait and colleagues
conducted this work to examine the conductivity and transmittance performance of Ag/ITO
and MoOx/ITO electrodes [158]. Even though the conductivity was comparable, substantial
ITO delamination was seen for MoOx/ITO following exposure. This was because MoOx
is extremely sensitive to the oxygen in the surrounding environment. Consequently, the
transparent electrode was chosen as a bilayer Ag (1 nm) and ITO (250 nm) structure. A
tandem device with an overall efficiency of 20.7% was achieved by merging it with a
Csx(MA0.17 FA0.83)(100−x)Pb(I0.83Br0.17)3 perovskite top-cell that had a PCE of 16%. Semi-
transparent PSCs with an ideal efficiency of 18.1% at a bandgap of 1.62 eV were produced by
Shen et al. in 2018. When mechanically stacked in a tandem arrangement with a 16.5% CIGS
cell, the resultant efficiency of the tandem arrangement is determined to be 23.9% [128]. By
implementing optical management techniques, a notable mean transmittance exceeding
80% was attained within the 800 nm to 1200 nm range for a potential energy of 1.62 eV
and within the 700 nm to 1200 nm range for a potential energy of 1.75 eV. The researchers
emphasized the significance of interfaces as a key source of the O2-induced degradation
of PSC. This is because recombination occurs at a much higher rate when an MA cation
is present, which they observed to be particularly important. Perovskite/CIGS tandems
have significant potential to exhibit an efficiency of greater than 30% using high bandgap
perovskite, as proven by optical simulations carried out by this group. In 2019, Zhao
and fellow workers conducted a comprehensive theoretical investigation to enhance the
efficiency of TSCs [159]. Perovskite/CIGS TSCs with two terminals require the perovskite
and CIGS layers’ thicknesses to be tuned to fulfill the present matching requirements. The
thickness of the FTO was reduced to avoid reflection in order to boost the performance
of two-terminal tandem cells, and a CIGS doping level of 1 × 1018 cm−3 was applied.
Furthermore, the results indicate that augmenting the grain size of perovskite films could
improve their quality by reducing the number of trapped states at the grain boundaries.
When using two terminals, CH3NH3PbI2Br/CIGS TSCs may achieve an efficiency of up to
31.13% at their best [159]. In the year 2020, Nakamura and colleagues conducted research
in which they prepared a variety of CIGS solar cells with Eg values differing from 1.02 to
1.14 eV [156]. Subsequently, through practical means, a spectrum-splitting mechanism was
utilized to exhibit the outcome of utilizing lower Eg cells as the bottom cell in two-junction
solar cells. In this study, the performance of a tandem cell design comprised of a top
mixed-halide perovskite cell with a 1.59 eV energy gap and stand-alone efficiency of 21.0%
and a bottom CIGS cell with a 1.02 eV energy gap and a stand-alone efficiency of 21.5% is
reported. The tandem cell was fabricated using a 775 nm spectral splitting mirror with an
aperture area of 1 cm2. The results indicate that the tandem cell exhibited an efficiency of
28.0%, as illustrated in Figure 10b. Kumar et al. conducted the computational modeling
of two terminal Perovskite/CIGS TSCs in 2021 [160]. Based on simulations, this work
introduces a unique perovskite, a CIGS tandem solar cell that offers long-term savings at
lower costs and higher output. A simulated perovskite top cell is reported to possess a
bandgap of 1.5 eV. A simulation on a CIGS bottom subcell with a 1.1 eV bandgap produced
conversion efficiencies of 16.69% and 15.98%. The tandem configuration of the devices was
assessed after the proper calibration of the upper and lower subcells. In order to determine
the present matching point, modifications in absorber layer thickness were made at both the
top and bottom. The ideal thicknesses for top and bottom subcells in tandem cells are 151
and 1000 nm, respectively. The tandem structure of CIGS/CdS/ZnO/Spiro/Perovskite/C-
TiO2 proposed in this study has an open-circuit voltage of 1.646 V and a PCE of 23.17 %.
A monolithic perovskite/CIGS TSC with a verified PCE of 24.2% was developed by a
different research team in 2022 [161]. To identify the optimal device stack structure, optical
simulations were used. The findings indicate that a significant amount of optical potential
exists. The optimized structure attained a PCE of 32% and a short-circuit current density
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of 19.9 mA cm−2 while merely utilizing approximations of the authentic characteristics of
the materials. When compared to CIGS and perovskite single-junction devices, which lose
9.7% and 5.6% of their energy, respectively, owing to temperature increases during field
operation, the simulations showed that roughly 7% of the energy is lost in the tandem due
to the temperature increase.

4.2.2. Two-Terminal Perovskite–Perovskite Tandem Solar Cells

Two-Terminal perovskite–perovskite TSCs are solar cells that employ two perovskite-
structured materials in a tandem arrangement to boost their overall efficiency. Additionally,
the perovskite’s bandgap must be regulated to permit the coupling of two perovskite
absorbers to build all-perovskite TSCs. Typical monolithic perovskite-perovskite tandem
cell topologies are shown in Figure 11 Although no polarity has been shown to exist, p–i–n
cells are more common.
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All-perovskite TSCs have been developed to take advantage of both the tunability of
WB subcells and the exceptional advance in single-junction device efficiency [162]. WB
and NB perovskite subcells are used in all-perovskite TSCs and have become cutting-
edge high-efficiency tandem devices, both theoretically and in experiments. All per-
ovskite TSCs may undergo full solution and roll-to-roll processing, enabling low-cost
manufacturing development, as shown with perovskite/CIGS TSCs. All-perovskite TSCs
are thought to provide enormous potential for commercial breakthroughs due to recent
advancements in single PSCs that are cheap, highly efficient, and large-scale [163–167].
Stacking a PCBM/MAPbI3/PEDOT:PSS/ITO bottom subcell alongside an FTO/TiO2/
MAPbBr3/PTAA(P3HT) top subcell, Heo et al. produced the first 2T perovskite/perovskite
thin-film solar cell [166]. The Li-TFSI and t-BP additives in the HTM layer created a
high-conductive recombination layer. The low current density caused by combining two
WB absorbing layers capped the PCE at 10.4%. A high internal electrical field must be
maintained for the directly laminated tandem device to prevent solvent from penetrat-
ing the top cell during perovskite deposition. Developing perovskite/perovskite TSCs
presents a significant challenge: producing Pb–Sn perovskite materials with a high degree
of NB and a recombination layer that exhibits excessive transmittance, excellent conduc-
tivity, and processing compatibility. Further, to use the near-infrared (NIR) spectrum
in a tandem arrangement, the bandgap of the bottom cell should be smaller. MASn1−x
PbxI3 (0 < x < 1) was discovered to have strong NIR (700–1000 nm) photoluminescence
(PL) emission characteristics by Stoumpos et al. [81]. To obtain a minimum bandgap of
1.2 eV, the Sn concentration must be between 60–80 mol%, based on the total amount of
Pb and Sn [88,168]. To advance the efficiency of all-perovskite TSCs, a reduced bandgap
perovskite material with a larger absorption spectrum was direly necessary. The absorber
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bandgap narrows once further when increased quantities of Sn are present. The observed
phenomenon enables the diverse compositions of Pb–Sn mixed perovskites to exhibit
moderate band gaps within the 1.22–1.25 eV range [82]. Simply the mixed cation halide
perovskites of Sn–Pb composition have demonstrated reduced bandgaps appropriate for
utilization in TSCs [169]. The exhibition of perovskite cells with NB and high efficiency,
frequently called Sn–Pb perovskite cells, is a frequent additional problem linked with
developing two-terminal perovskite–perovskite tandem. Eperon and colleagues fabricated
a perovskite-perovskite tandem with two terminals, utilizing an Sn-containing perovskite
with a NB (1.2 eV) as the material for the bottom cell. This allowed for more efficient energy
conversion [170]. The instability of the Sn-containing perovskite is the primary challenge
connected with it. The underlying reason for the instability observed can be attributed
to the inherent tendency of Sn2+ to undergo oxidation, resulting in the development of
Sn4+. The use of SnF2 or metallic Sn particles in the perovskite precursor has allowed this
problem to be solved over the course of several years [81,171,172].

In 2016, a Pb–Sn mixed perovskite (FA0.75Cs0.25Sn0.5Pb0.5I3) with a low bandgap of
1.2 eV was used to extend the spectrum absorption range of all-perovskite tandems to
wavelengths over 1000 nm [170]. The efficiency of the 2T tandem device was 17.0%,
and the efficiency of the 4T tandem device was 20.3% when the NB (1.2 eV) bottom sub-
cell with FA0.75Cs0.25Pb0.5Sn0.5I3 perovskite was paired with WB top cells with 1.8 eV
FA0.83Cs0.17Pb(I0.5Br0.5)3 or 1.6 eV FA0.83Cs0.17Pb(I0.83 Br0.17)3 perovskites. The interconnec-
tion between the bottom and top cells was established by employing layers of zinc–tin–
oxide and SnO2. The uppermost cell was made up of a lead cation and halide composition.
Sputtered ITO was applied to the connected layers to prevent any damage to the underlying
perovskite subcell from this process. A highly efficient 2T tandem SC reaching 80% of
the theoretical limit in voltage was developed by Rajagopal et al. [173]. Optical simula-
tions were utilized to validate the current matching criterion and identify possibilities
for further improving the current generation in tandem architecture. Pb–Sn binary per-
ovskite (MAPb0.5 Sn0.5I3) with a low bandgap of 1.2 eV was used as the bottom subcell,
and WB perovskite Cs0.1MA0.9Pb(I0.6Br0.4)3 with a bandgap of 1.8 eV served as a top
cell. Current-voltage characteristics of the best-performing 2T TSC show an exceptional
Voc of 1.98 V, a Jsc of 12.7mA cm−2, and an FF of 0.73, resulting in a PCE of 18.4%. The
reduction in defect density in low-band gap perovskites became the primary focus of
subsequent research and development efforts. Recent studies have shown that by adding
chlorine, CdI2, and guanidinium thiocyanate (GuaSCN), the defect densities in Pb–Sn
mixed perovskites can be significantly reduced by adding metallic tin to the perovskite
precursor solution or by post-depositing absorber films with MACl vapor, both of which
impede Sn2+ oxidation [137,171,174–176]. Using Sn–Pb alloyed perovskite absorbers with
a NB, Yan and his team published a series of studies on all-perovskite TSCs [85]. The
bottom cells absorbed additional infrared light when FA0.8Cs0.2Pb(I0.7Br0.3)3 with a larger
bandgap of 1.75 eV and MoOx/ITO electrodes were utilized in the top cell as opposed
to FA0.3MA0.7PbI3 (1.58 eV) and MoOx/Au/MoOx transparent electrodes. Due to these
enhancements, the PV performance of the NB (1.25 eV) (FASnI3)0.6(MAPbI3)0.4 bottom cell
was much improved, while the top cell’s excellent light transparency of 70% over 700 nm
was preserved [177]. Another research group accomplished a significant step forward with
their research. NB (1.25 eV) absorber (FASnI3)0.6(MAPbI3)0.4 perovskite was improved
through the incorporation of guanidinium thiocyanate (GuaSCN) into its structure and op-
toelectronic properties [137]. Applying an additive of 7% GuaSCN to NB, perovskite films
resulted in a tenfold decrease in defect density and an increase in carrier lifetimes of more
than 1 µs. Better film morphology with fewer grain boundaries and pinholes decreased
surface recombination velocity to 1.0 × 102 cm s−1 and increased carrier diffusion length to
2.5 µm. A stabilized efficiency of 20.2% was shown by a (FASnI3)0.6 (MAPbI3)0.4 perovskite
treated with 7% GuaSCN. In addition to merging with WB PSCs, they achieved a PCE of
23.1% for 2T devices. Bandgap enhancement without a corresponding increase in Br content
has also been achieved by using the bulky cation dimethylammonium in the perovskite
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composition, which has been used extensively in optimizing the WB top cell. Because of
this, photo-stable perovskite compositions with a bandgap of 1.7 eV and minimal voltage
losses have been produced. This has made it possible to create 2T tandem cells on flexible
substrates that are 21.3% efficient [178]. The comparison of 2T/4T perovskite tandem solar
cells is provided in Table 1.

Table 1. Comparison of perovskite tandem solar cells.

Device Structure Tandem
Type

Top/
Bottom Voc [V] Jsc

[mAcm−2] FF [%] PCE [%] Ref

ITO/PTAA/MAPbI3/
PCBM/C60/BCP/Cu/Au 4T Top 1.08 20.6 74.1 16.5 [57]

IZrO/SnO2/
Cs0.05FA0.81MA0.14PbI2.55 Br0.45 /

Spiro/MoO3/IZO/MgF2

4T Top 1.12 22.3 77.7 19.4 [116]

ITO/PEDOT:PSS/
MA0.5FA0.5Pb0.75Sn0.25 I3/

PCBM/Bis-C60/Ag
4T Bottom 0.76 9.14 80 5.56 [67]

FTO/SnO2/C60SAM/FA0.3MA0.7PbI3/
Spiro-OMeTAD/MoOx/Au/MoOx

4T Top 1.141 20.1 80 18.3 [166]

FTO/bl-TiO2/
MAPbBr3/PTAA/PCBM/
MAPbI3/PEDOT:PSS/ITO

2T Top 2.25 8.3 56 10.4 [125]

ITO/SnO2/
C60-SAM/SiO2-NP/
(FA0.83MA0.17)0.95Pb

(I0.83Br0.17)3/
Spiro-OMeTAD/MoO3

4T Bottom 1.18 18.6 67.6 15.0 [140]

FTO/c-TiO2/m- TiO2/
PbI2/CH3NH3I/

Spiro-MeOTAD/ MoOx/Ag
4T Top 0.93 18.5 51.9 11.6 [77]

FTO/c-TiO2/m-TiO2/
perovskite/SpiroOMeTAD/Au 4T Top 1.11 23.6 74 19.4 [134]

ITO/(PFN-Br)/perovskite/
LiF/C60/(BCP)/Ag 2T Top 1.886 19.12 75.3 18.53 [167]

ITO/TiO2/perovskite/
Sproro-OMeTAD/MoO3/Au 4T Top 1.156 19.8 79.9 18.3 [78]

ITO/PTAA/
(FA0.65MA0.20Cs0.15)Pb(I0.8Br0.2)3/C60/Ag 2T Top 0.677 35.11 76 17.28 [144]

4.2.3. The Layer of Recombination in a 2T Tandem

Regarding the design and manufacturing procedures, the recombination layers present
among the top and bottom cells in two-terminal tandems are among the layers that provide
some of the biggest obstacles. To link two distinct cell layouts, the layers must integrate
electrons and holes with little voltage loss and transparency degradation. A recombina-
tion layer is required for the current to travel between the two sides of a 2T tandem. As
mentioned earlier, the process is achieved through the facilitation of the recombination of
opposing carriers within the subcells, which occurs in a heavily doped layer. The ideal
recombination layer would minimize optical and electrical losses while boosting electron
and hole recombination between two subcells [178–180]. Due to the need for a lattice
match between the subcells and the tunnel junctions, the range of design possibilities for
conventional III–V multi-junction solar cells is severely constrained. In high-efficiency III–V
semiconductor TSCs research, a tunnel junction can be built as the recombination layer
by heavily doping the interlayers between the subcells with n- and p-type elements. It
will become less critical to have the valence band maximum and conduction band mini-
mum of the p-type and n-type semiconductors match up in energy. It will also minimize
the undesirable nonradiative recombination between the subcells [181,182]. Perovskite
tandems are exempt from this constraint, which paves the way for innovative designs of
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recombination layers. Shunt paths employing the top cell can be drastically reduced by
creating a thick recombination layer with poor lateral conductivity. Previous decades have
seen several publications demonstrating the usefulness of thick conformal recombination
layers in reducing shunts in 2T tandems [178–180].

An effective recombination layer must have a high carrier recombination rate, excellent
optical transparency, good ohmic contact, and seamless interaction with other component
manufacturing processes. To date, one of the most common options for connecting the
subcells of 2T all-perovskite TSCs is to use a single TCO layer with a significant doping con-
centration (~1020–1021 cm−3). For some applications, an additional layer of ultrathin metal
(~1 nm) was developed to improve the efficiency of charge recombination [171,174]. TCOs,
including indium tin oxide (ITO), hydrogenated indium oxide (IO: H), AZO, and IZO, are
commonly used as conductors in perovskite tandem solar cells [77,125,133,179,183–185].
Due to their outstanding optoelectronic capabilities, TCOs, such as ITO and IZO, appeal for
a recombination layer in organic TSCs. The 2T perovskite/SHJ tandem device of Albrecht
et al., including a SnO2/ITO recombination layer, shows a high Voc of 1.78 V and a stable
efficiency of 18.1% [186]. Werner et al. utilized a recombination layer of indium zinc oxide
(IZO) and an ETL of PCBM to fabricate tandem devices featuring a 2T perovskite/SHJ
architecture. The stability of the SHJ bottom cell has been guaranteed by fabricating the
semitransparent perovskite top cell at low temperatures. The individual showcased the
method of generating semitransparent PSCs through low temperature means, resulting
in up to 14.5% efficiencies. Subsequently, the previously mentioned methodology was
employed to synthesize integrated perovskite/silicon heterojunction TSCs, yielding effi-
ciencies of 21.2% and 19.2% for cell dimensions of 0.17 cm2 and 1.22 cm2, respectively [187].

Several optical simulations conclude they cause optical losses of around 1 mA cm−2.
Since the TCO and the bottom of the cell absorber contact have different refractive indices,
the TCO suffers from issues including free carrier absorption at NIR wavelength and Fresnel
reflection losses. Sahli and fellow workers used a perovskite–SHJ tandem configuration
with a recombination layer built of highly doped nc–Si:H to limit the effect of Fresnel
reflection losses. More than 1 mA cm−2 was added to the SHJ bottom cell’s output after the
nc–Si:H recombination layer enhanced index matching with the c–Si absorber. We can be
grateful to this improvement for the reduction in reflection loss compared to the ITO version.
These losses have been reduced by showcasing a refined recombination junction that uses
nanocrystalline silicon layers. This combination has been used to increase the photocurrent
of the bottom cell in monolithic heterojunction tandem cells made of perovskite and silicon
by more than 1 mA cm−2 when the front side is flat [188]. Nevertheless, the low-bandgap
nc–Si:H recombination layer was shown to be responsible for the parasitic absorption that
led to the optical losses. Mazzarella et al. successfully resolved the issue of low light
coupling to the bottom cell by introducing oxygen alloying into the nc–Si:H layer. This
resulted in creating a WB gap nc–SiOx:H recombination layer [189]. Mailoa et al. had
successfully developed the initial 2T tandem featuring an all-silicon tunneling junction.
Further enhancements are anticipated to mitigate voltage loss compared to the TCO–Si
tunneling junction [146]. A 1 cm2 monolithic perovskite/silicon multijunction solar cell
with two terminals and a VOC of 1.65 V was successfully developed. Using perovskite as
the current-limiting subcell reliably yielded a PCE of 13.7%. The device architecture faced
significant obstacles that must be addressed to attain efficiencies exceeding 25%. Significant
gains can be made by switching out the Spiro-OMeTAD layer for a hole transport material
with a more considerable band gap. The quality of the perovskite absorber will improve
as a result of this replacement. The desired outcomes were attained through utilizing
specialized furnaces to produce the Si subcells and the enhancement of surface passivation
methods applied to both the front and back surfaces of the Si subcells.

The recombination layers of 2T perovskite TSCs, predominantly comprising soft
organic and hybrid materials, must possess high transmittance, high conductivity, and
processing compatibility to ensure optimal performance. Consequently, the recombination
layer suitable for this scenario ought to maintain the flexibility that can accommodate the
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soothing properties of the underlying cells. To bridge the gap between the two subcells,
Jiang et al. recommended utilizing a Spiro-OMeTAD/PEDOT:PSS/PEI/PCBM:PEI multi-
layer organic recombination layer. The outcome yielded a Voc value of 1.89 V and an overall
efficiency of 7.0% for the 2T all perovskite TSCs [190]. Protecting the perovskite layer’s
structure beneath the recombination layer is essential; all its component elements were
produced by utilizing orthogonal solvent processing techniques at reduced temperatures.
Subsequently, a brief annealing process was conducted. The recombination layer, pos-
sessing an average thickness of approximately 200 nm, can efficiently extract and convey
carriers generated in the subcells while safeguarding the uppermost perovskite layer from
any possible solvent infiltration. Using a solution-based method, a recombination layer
composed of PEDOT:PSS and ITO NP sublayers was developed by McMeekin et al. [191].
Using a spin-coating technique, the Spiro-OMeTAD layer was first coated with the PE-
DOT:PSS layer. Subsequently, the indium tin oxide nanoparticles (ITO-NPs) were applied
onto the PEDOT:PSS layer via spin-coating using a dispersion solution. The PEDOT:PSS
layer exhibited recombination and partial solvent barrier characteristics. The ITO NPs facil-
itated enhancements in the recombination process, thereby augmenting carrier transport
efficiency. The 2T perovskite/perovskite tandem devices were able to attain a PCE of 15.2%
in a steady state attributed to the recombination layer. Advantages and disadvantages of
2T and 4T tandem solar cells are summarized in Table 2.

Table 2. A comparison of 2T and 4T tandem solar cells.

2T 4T

1. It consists of two series connected cells
of different bandgaps, requiring
current matching.

2. It is not easy to fabricate.

2.1. Fabrication of recombination
layers with a minimal loss
between the cells.

2.2. Optical management within
the cells.

3. The top cell is directly integrated with the
bottom cell.

4. Optical coupling is required.
5. It requires fewer processing steps and

fewer contact layers.
6. Less parasitic absorption from the

glass substrate.
7. Lifetime of the tandem cell will be

determined by the perovskite top cell.

1. These cells are not necessarily connected
in series; these are not limited by
current matching.

2. It is comparatively easy to fabricate.

2.1. All the terminals of the sub cells
are operated individually to get
maximum power.

2.2. This four terminal device works
in such a way that two diodes
mean the incident light is split
into two diodes, and these diodes
work electrically independently.

3. Fabricated independently.
4. Optical coupling is required.
5. Easy to maintain and fix by replacing

new subcell.
6. The overall device efficiency is not

sensitive to the solar spectrum.
7. Conductive glass substrate of the

perovskite top cell will cause optical
losses due to its parasitic absorption.

5. Perovskite Tandem Solar Cells: Challenges

When PSCs are combined with other cutting-edge PV technologies, all the benefits
and drawbacks of both are amplified. Perovskite-based TSCs have a lot of potential in
their PCE, which is a very encouraging development. The PCE of solar cells is among
various factors that contribute to their suitability for widespread use, in addition to their
huge processing area, excellent throughput, low environmental impact over time, and
other relevant considerations. The factors that facilitate a smooth transition from laboratory
research to industrial production are of significant interest, given the established validation
of silicon and CIGS solar cells in the current market. The sustainability and scalability of
PSCs remain a subject of inquiry. To be commercially viable, the perovskite top cell must
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satisfy the same field assurance standards as the silicon bottom cell for a silicon-based
tandem solar panel. Furthermore, wafers made for industrial manufacturing must be used
to make tandem cells, and only minimally expensive technologies and materials must be
used. Scaling up devices to module size is just one of the many obstacles to commercializing
this technology; increasing the operating lifetime to 25 years is another key hurdle.

5.1. Device Structure

The two subcells of 4T tandems are completely separated electrically. The device can
still function overall, although with reduced power production if one of the subcells is not
functioning. The devices within a 2T tandem are susceptible to destruction in the event of a
failure in either subcell or the recombination layer, owing to their direct interconnection.
Creating vital semitransparent perovskite front cells is a significant challenge for 4T tandem
devices. Since there are more transparent electrodes and interfaces in a 4T tandem, it is more
susceptible to inefficient reflection and parasitic absorption than a 2T arrangement. Because
of this, two-terminal topologies predominate in the literature when discussing tandem
devices. In addition, we believe that the 2T architectures will continue to be the norm.

When fabricating an efficient monolithic multi-junction solar cell, several specific
problems must be overcome in addition to optimizing each subcell. The first need for
effective 2T device design is to pick band gaps that correspond with the current generated
by each subcell. A band gap of 1.73 eV is considered optimal for the top cell in both Si
and CIGS. More than 40% efficiency may be attained theoretically with a top cell band gap
of 1.65 to 1.85 eV. However, the performance reduction is insignificant when constrained
by a tried-and-true bottom cell technology, such as Si or CIGS (Eg = 1.11 eV) [192–194].
Applying a 2T tandem connection to optimize high-quality Si is difficult, even when the
optimum band gap is specified. Producing efficiencies more significant than the single
junction efficiency of silicon or CIGS has been challenging because there have not been any
readily available extraordinarily efficient high-band gap top-cells (beyond the III–V growth).
Another significant challenge for efficient tandem design and optimization is ensuring
process compatibility while layering fabrication. The top cell’s maximum processing
temperature must tolerate the bottom cell and pn-junction of a substrate device, and the
reverse is valid for a superstrate device. One can decouple the difficulties associated with
temperature compatibility by linking two fully functional devices [192,195].

5.2. Long-Term Stability

After a quarter of a century of practical application, the pre-eminent silicon PV tech-
nology ensures an electricity output of more than 80% of its original PCE. This technology
has shown exceptional endurance. CIGS and CdTe, two examples of thin-film PV technolo-
gies, have shown an impressive capability for long-term reliability [145,196]. PSCs have
struggled with stability since their inception. Poor stability was the main reason Mitzi et al.
abandoned their research on perovskite materials for PVs in the early 1990s [33]. However,
a lot of work has been undertaken in the past five years. Numerous research groups
have shown hundreds to thousands of hours of consistent data by adhering to standard
degradation protocols [197,198]. To compete with these well-established PV technologies,
perovskite-based TSCs must meet or exceed their standards for efficiency and durability.
Perovskite-based TSCs with a 2T configuration exhibit restricted operational stability for
a few months. This duration is when the solar cell can maintain its stability while being
exposed to the sun’s illumination and generating its maximum output [179]. The instability
of perovskite materials and single-junction perovskite devices have been the primary foci
of previous studies.

In contrast, the 2T perovskite/c–Si tandem has not been studied to the same extent [199–201].
The enhanced management of anions in the perovskite compound improved stability. Fol-
lowing consistent illumination for 1000 h, a tandem device consisting of 2T perovskite
and c–Si retained 80% of its initial efficiency. This was demonstrated in a study by
Kim et al. [144]. A semitransparent PSC encapsulated in EVA glass–glass encapsula-
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tion the damp heat test (85 ◦C/85% relative humidity) performed by Bush et al. with
negligible thermal and moisture deterioration [147]. According to results from experiments
conducted by Aydin et al. on two-terminal monolithic PK/c–Si tandems in hot, sunny
weather, the perovskite’s ideal bandgap may be less than 1.68 eV under typical test cir-
cumstances [202]. The 2T perovskite/c–Si tandem underwent outdoor testing at KAUST
for one week. This report presents the inaugural outdoor performance analysis of the 2T
perovskite/c–Si tandem. It is essential to point out that, as of yet, there has been no report
of a 2T perovskite/c–Si tandem device passing the IEC61215:2016 standard (temperature
85 ◦C), low temperature (−40 ◦C) paired with high relative humidity (85%), and/or rapid
change in temperature (200 ◦C h−1). As a result, instability may count as one of the main
challenges to bringing perovskite/c–Si tandem to market. PSC instability problems can be
attributed to internal variables, such as ion diffusion or migration, as well as environmental
factors, such as sensitivity to oxygen and humidity. The impact of subcell failure on 2T
and 4T TSCs varies depending on the mode of connection, with unique effects observed
in each case. Due to the fact that the two subcells of a 2T TSC are connected in series, if
either the subcells themselves or the recombination layer fail, all of the devices will be
rendered useless.

5.2.1. Material-Related Instability

There are many skeptics regarding the commercialization of this promising technology
because of the perovskite material’s instability. Because of its soft-matter nature, the most
popular MAPbI3 perovskite absorber has a bad reputation for tolerating heat, moisture,
and light. These crystals are unstable, and the organic component in the crystal lattice may
have something to do with this [203–205]. MAPbI3, a perovskite material, has a tetragonal
phase at ambient temperature. Still, it undergoes a phase transition to a cubic phase at
60 ◦C, within the practical temperature range of a solar module. Under conditions of high
temperature, the methylammonium cation was also observed to rapidly diffuse out of the
cell [206]. Perovskite-based TSCs have serious difficulty at the material level because of the
hybrid perovskite materials’ intrinsic resistance to water, heat, light, and oxygen.

In most cases, adding Cs can partially replace the volatile A-site organic cations
(i.e., MA+, FA+) with stable WB perovskites [90,207]. It has been demonstrated that the
structural stability of the perovskite material can be significantly improved by adding
MA and/or FA. Using inorganic cations, such as cesium and, subsequently, rubidium,
marked a significant step forward in the stability of materials. After hours of maximum
power point tracking, cells with cesium and rubidium cations maintained 95% of their
initial efficiency [23,165,207–211]. After a stability test, more than 85% of the initial PCEs
were maintained by all of the CsPbI3 solar cells, indicating that they are reasonably stable.
Zhao et al. found that the performance of a solar cell based on γ-CsPbI3 remained constant
during a stability test performed without encapsulating material, even in the presence of
extreme ambient conditions. One possible explanation is that the γ-CsPbI3 thin film is
thermodynamically stable [212]. Potentially valuable for tandem structures, CsPbI3 solar
cells’ total efficiency is still lower than that of hybrid perovskites with the same bandgap.
More study is needed to improve the single junction device’s efficiency.

5.2.2. Intrinsic Stability

Ion diffusion and migration are cited as reasons for perovskite devices’ intrinsic insta-
bility. Because perovskite materials are ionic conductors and have loose crystal structures,
in addition to the presence of vacancies and other defects, ion migration is a phenomenon
that is intrinsic to these materials. Light and/or heat conditions can speed up the loss of
perovskite ions, which would cause the lattice to collapse and change the film’s composition
and morphology once ion migration occurs in perovskite materials [213,214]. Perovskite
crystals’ formation temperature is low, resulting in a relatively facile production process.
Perovskite crystals exhibit a delicate and soft nature. Thus, they rapidly decompose when
exposed to heat, even at moderate levels. Figure 12c illustrates the ion migration phenom-
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ena in organometal halide perovskites [215]. Mizusaki et al. discovered this behavior for the
first time in 1983 [216]. According to the authors’ proposal, ionic conduction in halide per-
ovskites was hypothesized to originate from the movement of halide-ion vacancies inside
the perovskite lattice. Perovskite films are prone to undesirable band bending, interfacial
interactions, and phase segregation due to ion migration during device operation.
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The passivation of defects has the potential to inhibit the movement of ions. The
hysteresis and instability of PSCs would result from ion movement inside perovskite
materials when subjected to an electric field [217,218]. Since the hysteresis greatly impacts
the reliability of the device’s photovoltaic performance under operational conditions, it is
also seen as an obstacle to developing stable PSCs. The J–V hysteric properties of PSCs
were first reported by Snaith et al. [219]. Hysteresis refers to the deviation in the forward
and reversed scan current-voltage (J–V) curves: while scanning in reverse, the photocurrent
drops exponentially before reaching a steady state, and while scanning forwards, the
photocurrent increases exponentially before reaching a steady state. Hysteresis is significant
since it is correlated with PSCs’ performance parameters and durability over time. Various
studies have found that the hysteresis of multiple factors impacts PSCs, including scan
rate, perovskite composition, particle size, and device structure [68,220–224]. Moreover,
McGehee et al. found that the hysteresis in PSCs was very sensitive to J–V measurement
parameters, such as pre-bias, scan rate, and scan direction [225]. PSCs’ photovoltaic
performance was enhanced when exposed to a 1.2 V forward bias in constant light, but
it was degraded when exposed to a 1.2 V reverse bias during light soaking. The photo-
induced ion migration in perovskite caused by the applied electric field was thought to be
the primary cause of the substantial impact of the pre-bias conditions on J–V measurements.
According to the findings of this study, any ion migration in perovskites would not only
impact the reliability of the J–V measurements but also damage the PSCs’ capacity to
maintain their stability over the long run. Even though numerical modeling revealed that
charge trapping and de-trapping were needed for hysteresis, the timeframe for charge
trapping and de-trapping (picosecond) was too rapid to explain the slow hysteresis with
a period of 1–10 s [220,226]. A possible cause of hysteresis is the movement of ions since
the low frequency (1 Hz) enormous capacitance found in PSCs is thought to be strongly
related to the J–V hysteresis and can be accounted for by the electrode polarization induced
through ionic charge accumulation [227,228].
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The normal thermal instability is generally brought on by the loss of organic com-
ponents (MA+), resulting in many flaws at the grain boundaries, similar to humidity
instability [229,230]. Attractive solutions to this issue include passivating grain boundary
defects and optimizing the “A” cation with suitable materials (FA, Cs, Rb, and K). The
thermal stability of inorganic perovskite has been demonstrated in several investigations to
be superior to that of organic perovskite [23,231–233]. Stability is necessary for successfully
commercializing 2T perovskite/c–Si tandem, since solar cells need to function in light con-
ditions maintained over long periods. The majority of high-efficiency 2T perovskite/c–Si
tandem top cells utilize mixed-halide hybrid perovskites as their active material [234].

5.3. Charge Transport Layers

Organic semiconductors were frequently utilized as charge transport layers in PSCs,
which were problematic since they were quickly oxidized or absorbed water. The utilization
of n-type fullerene PCBM has been observed to be an effective charge transport mechanism
in PSCs. Conversely, it was determined that PCBM exhibited instability in the presence
of ambient air, attributable to fluctuations in its chemical states or band structure. This
discovery formed the basis for explaining why the device degraded over time [235]. The
present layer has the potential to absorb moisture from the surroundings and corrode the
transparent conductive electrode, specifically ITO, owing to the acidic nature of PEDOT:PSS.
This, in turn, results in the deterioration of the devices. P-type of PEDOT:PSS was typically
used as the HTL in the inverted structure [235,236]. Corrosive decomposition of MAPbI3
to PbI2 has been demonstrated in the presence of dopants and additives, such as 4-tert-
butylpridine in Spiro-OMeTAD. However, annealing Spiro-OMeTAD causes it to crystallize,
reducing contact with the perovskite layer [237,238]. The inclusion of lithium salt dopant
within the Spiro-OMeTAD layer possesses the capacity to absorb water, thereby leading
to device malfunction and potential water infiltration into the perovskite layer [239]. An
opaque metal is frequently employed as the back electrode when working with single-
junction perovskite cells. As per the conclusions drawn by several research teams, it
has been suggested that the metal layer could potentially lead to degradation via one
of three mechanisms: first, through corrosive reactions involving the byproducts of the
perovskite absorber degradation; second, through redox reactions regarding the metal
electrode and the perovskite absorber material; and third, through the migration of metal
particles [240–243]. The low stability of PSCs can be traced back to the perovskite materials
and interface, and many groups are still trying to improve the situation.

6. Perovskite Tandem Solar Cell Power Losses

Power loss is a crucial factor to consider when designing and making tandem devices.
The ability to build highly efficient devices relies on having a solid understanding of the
elements that affect the loss of power. Other than electrical losses, reflection, parasitic
absorption, and another optical loss account for a considerable portion of total power losses.
Parasitic absorption losses arise in tandem device structures when photons are absorbed
in layers that do not generate photocurrent. Monolithic TSCs experience high electrical or
resistive losses during operation, which causes current mismatch and lower efficiency.

6.1. Parasitic Absorption

The 2T and 4T c–Si/perovskite tandems benefited from the use of transparent elec-
trodes for a number of reasons. T transparent electrodes used in the top PSC and bottom
silicon subcells must have low sheet resistance and high transparency to allow for the
transmission of a significant amount of light across a broad spectrum (UV-vis and in the
NIR spectral range). The optical absorption at the TCO electrode, charge transport, and
recombination layers generated parasitic absorption loss. Within these layers, photons that
are absorbed do not make any contribution to the photocurrent. As a result, there is a loss in
absorption due to parasitic factors. Therefore, a significant barrier to four-terminal tandem
structures is the necessity for three transparent electrodes. The transparent electrodes’ free-
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carrier absorption is thought to cause a noticeable increase in parasitic absorption losses
in the 850–1200 nm wavelength range. This effect is particularly pronounced for layers
exceeding a thickness of 100 nm [244]. Numerous experiments using various materials
to increase transmittance have been reported on transparent electrodes. Many research
groups have demonstrated that electrodes based on AgNWs mesh can be produced by
implementing spray coating and mechanical transfer deposition techniques [115,245,246].
An interaction between silver halide complexes and ions from the perovskite layer quickly
raised concerns about the layer’s stability [179,240]. One of the well-established methods
for minimizing parasitic loss is to reduce the layer thickness of transparent electrodes.
This method is one of numerous that have been developed. The parasitic absorption and
reflection were successfully reduced by reducing the thickness of the front ITO layers from
150 to 60 nm [247,248]. On the other hand, the optical simulation revealed that thicker
ITO layers result in considerable parasitic absorption. The reduced thickness of layers
decreases the FF owing to the elevated series resistance. Significant parasitic charge carriers
cause both of these phenomena [147,249]. To minimize the effect of parasitic absorption,
one other method would be to use electrodes that are not made of ITO and have a lower
carrier concentration but a high carrier mobility IZO [154]. Using NiOx HTL, phenyl-C61-
butyricacid-methyl-ester (PCBM) ETL, and the MoOx/IZO front electrode, Sahli et al. were
able to effectively manufacture a monolithic tandem with considerably decreased parasitic
absorption [188]. There was a slight possibility that the charge transport layers underneath
the perovskite layers could have been harmed when transparent electrodes were placed
on top of those layers. This issue was fixed by adding buffer layers between transparent
electrodes and organic charge transmission. In sputtering, MoOx is commonly employed
as a p-type contact and a buffer layer to safeguard the subjacent soft layers. MoOx is a
variant of the transition metal oxide (TMO) and was thermally evaporated [77,183,250]. As
an alternative to MoOx, tungsten oxide (WOx), a more resilient metal oxide, was offered as
a substitute. Atomic layer deposition might be used to deposit ZnO NPs and SnO2 thin
films as an alternative option [147,157].

6.2. Reflection Losses

It is a verifiable truth that in both the 2T and 4T c–Si/per tandem configurations, the
upper perovskite subcell must be traversed by light prior to its arrival at the lower silicon
subcell. As a result, it is desirable to improve the intensity of NIR light that is losslessly
transported from the top perovskite cell to the bottom silicon cell. TSCs experience a
notable reduction in power output due to reflection loss caused by refractive index (n)
mismatch among the various layers. This is especially true for light with a long wavelength.
Furthermore, it is worth noting that the phenomenon of reflection losses can be attributed
to alterations in the refractive index at the interface of the front surface (comprising the
front electrode and free air) and the interfaces between the upper and lower subcell layers
stack. A substantial fraction of the reflection loss can be ascribed to the refractive index
mismatch among the air (n = 1), glass (n = 1.52), and the transparent electrode. Significant
losses occur at the front electrode due to the deflection of a portion of the light away from
the higher refractive index layers, resulting in no contribution to the photocurrent [251,252].
It is possible to minimize reflection losses by adjusting the refractive index of the TCO
layers; as has been reported, the nc–SiOx:H layers in thin-film silicon TSCs were substituted
with TCOs with n values ranging from 1.8 to 2 [253,254]. The results show reduced
parasitic absorption and reflection losses in the red and infrared spectral ranges. The
silicon bottom cell’s photogenerated current was also improved using the nc–SiO:H layer
as an interference/recombination junction between perovskite/Si monolithic TSCs [255].
Another idea is to minimize the effect of the refractive-index mismatch within the tandem
solar cells. For instance, by utilizing a multilayer stack in the tandem design that displayed
spectrally selective transmission/reflection behavior, the JSC was able to be enhanced by
0.82 mA cm−2, a significant amount [256]. Investigations have been conducted using
polydimethylsiloxane (PDMS) films, which have been shown to have a refractive index
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(n~1.4) that is comparable to that of glass (n~1.52) and to be capable of significantly reducing
reflection at shorter wavelengths. At 550 nm, the reflectance of the flat PDMS is 8.12%,
which is considerably lower than the reflectance of bare c–Si, which is 38% using textured
PDMS; this can be minimized even further [257].

It is highly recommended to use anti-reflective coatings to lower the reflection losses.
Since both lithium fluoride (LiF) and magnesium fluoride (MgF2) are highly transpar-
ent and have a low refractive index, they are widely employed in anti-reflective coat-
ings [165,186,208,258–260]. Incorporating a LiF layer on a monolithic c–Si/per thin-film
solar cell by thermal evaporation allowed Albrecht and colleagues to decrease reflection
losses at the air/ITO contact [186]. Adding a LiF layer as an anti-reflective coating re-
sulted in a 1.5 mA/cm2 increase in the photo-generated current as measured in the bottom
silicon subcell. Anti-reflective coatings also made it easier for the two subcells to show
closed-matched currents. Under AM 1.5G spectra, the current values for the top perovskite
and bottom silicon subcells were 14.7 and 14.0 mA/cm2, respectively. It is anticipated
that similar to the case of amorphous silicon, plenty of research will be conducted in the
near future regarding the specific advancement of wide-band antireflection coatings for
thin-film technologies [261].

7. Conclusions

This review provided an in-depth assessment of the advancements made during
this intense period, emphasizing the perovskite/silicon tandem solar cell advancement.
Material characteristics, device designs, and basic working mechanisms have advanced
perovskite development. Because of the limited number of layers, they can be produced
cheaply, have great efficiency potential with low parasitic absorption, and be easily used in
PV systems. Efficiency records have been broken rapidly due to the strengthening of tandem
structures in combination with perovskite/contact materials. Lab-scale 2T perovskite/c–Si
tandem efficiency is promising for commercializing perovskite/Si tandem technology.

Regarding prospective and actual application in industry, the monolithic two-terminal
tandem cell is the way to go. The efficiency of commercially available Si bottom cells is
quite close to their theoretical maximum. Multiple challenges, including performance
improvement, the intrinsic instability of perovskite materials, the expense of acquisition,
and scaling-up manufacturing, continue to obstruct the development of tandem devices.
It has been shown that single-junction solar cells have intrinsic flaws; hence the benefits
of multifunctional cells have been emphasized. The discourse has encompassed various
categories of TSCs and their corresponding mechanisms: the two-terminal monolithic, four-
terminal stacked, and optically splitting solar spectrums. However, this conversation will
continue to be grounded in state-of-the-art research and the significant advances of recent
years. We think it is realistic to aim for a demanding goal with a two- and four-terminal
tandem configuration. Perovskite photovoltaics have a dedicated fanbase, and as a result,
they are expected to make rapid advancements in the near future. The commercialization
of solar energy as the most commercially viable energy source may be facilitated by using
perovskite absorbers in TSCs.
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photovoltage formation in solar cells. Appl. Phys. Lett. 2018, 113, 071103. [CrossRef]
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