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Abstract: At sub-3 nm nodes, the scaling of lateral devices represented by a fin field-effect transistor
(FinFET) and gate-all-around field effect transistors (GAAFET) faces increasing technical challenges.
At the same time, the development of vertical devices in the three-dimensional direction has excellent
potential for scaling. However, existing vertical devices face two technical challenges: “self-alignment
of gate and channel” and “precise gate length control”. A recrystallization-based vertical C-shaped-
channel nanosheet field effect transistor (RC-VCNFET) was proposed, and related process modules
were developed. The vertical nanosheet with an “exposed top” structure was successfully fabricated.
Moreover, through physical characterization methods such as scanning electron microscopy (SEM),
atomic force microscopy (AFM), conductive atomic force microscopy (C-AFM) and transmission
electron microscopy (TEM), the influencing factors of the crystal structure of the vertical nanosheet
were analyzed. This lays the foundation for fabricating high-performance and low-cost RC-VCNFETs
devices in the future.

Keywords: vertical nanosheet; laser annealing; recrystallization; Si cap

1. Introduction

With the evolution of Moore’s law, it becomes more and more difficult to scale down
transistor size [1]. The 2 nm technology nodes Samsung, Intel, and TSMC will all have
the architecture of gate-all-around field effect transistors (GAAFETs) [2–5]. The dynamic
random-access memory (DRAM) roadmap of the International Roadmap for Devices
and Systems (IRDS) 2020 report proposes that the cell transistor structure of DRAM will
shift from one of the current mainstream Saddle Fin to the vertical channel transistor
(VCT) [6–11]. In logic applications, IBM and Samsung jointly proposed vertical-transport
FET (VTFET), which achieved a 40 nm contacted gate pitch (CGP) under excellent gate
control, which is significantly lower than the 45 nm CGP of the TSMC 3 nm fin field-
effect transistor (FinFET) technology node [12–14]. This proves that the vertical device
has great potential for future device footprint scaling. However, the patterning of the
vertical transistor channel mainly relies on advanced lithography and etching, which are
accompanied by large process fluctuations. Implementing the self-alignment technology in
lateral devices for gates and device channels is also challenging. As a result, there are large
fluctuations in the vertical device’s performance.
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Based on the advanced Si/SiGe/Si epitaxy and SiGe selective etching process, self-
aligned vertical sandwich FET (VSAFET) and vertical C-shaped-channel nanosheet FET
(VCNFET) devices were proposed successively [15–19]. In this way, gate and source/drain
self-alignment was realized. At the same time, a device with a strong gate control ability
and a large driving current was prepared. However, the above devices all use expensive
epitaxial processes. At the same time, introducing SiGe epitaxy at the front-end-of-line
(FEOL) of the process flow caused the problem of Ge contamination. Controlling the
contamination of Ge during mass production significantly reduces the versatility of related
equipment, making it difficult to process other Ge-free devices, and thus increasing the cost
of mass production.

This paper proposes a recrystallization-based vertical C-shaped-channel nanosheet
field effect transistor (RC-VCNFET) and process integration method. The entire process of
the device did not involve the Ge element, avoiding the use of expensive epitaxial processes.
This method utilizes the principle of laser annealing and recrystallization of the a-Si. A
high-quality recrystallized C-shaped Si channel was fabricated at the nanometer scale, by
optimizing the laser annealing energy and other process parameters. Through physical
characterization methods, it was found that the lattice structure of Si in the channel is
very close to a single-crystal structure. This result can provide a foundation for the future
fabrication of low-cost, high-mobility vertical channel devices.

2. Materials and Methods

Figure 1a–h illustrates the main process flow for forming the recrystallized vertical
nanosheet. First, 80 nm SiN was deposited on a silicon substrate via plasma-enhanced
chemical vapor deposition (PECVD, AMAT Producer S PECVD, Applied Materials, Santa
Clara, CA, USA), and 180 nm a-Si was deposited at 580 ◦C via rapid thermal chemical
vapor deposition (RTCVD, Centura, Applied Materials, Santa Clara, CA, USA). Next, 10 nm
SiO2, 300 nm a-Si and 300 nm SiO2 stacks (abbreviated as OSO stacks) were sequentially
deposited via PECVD. Moreover, the OSO hard mask (OSO HM) structure in Figure 1a was
formed via lithography and etching. Then, silicon oxide sidewalls were formed sequentially,
depositing an oxide and anisotropic etching oxide, as shown in Figure 1b. Then, using the
silicon oxide as a hard mask, the a-Si/SiN/c-Si stacks were etched through an anisotropic
RIE process to form the structure shown in Figure 1c. Then, SiN was etched isotropically
by 160 ◦C H3PO4 to form a C-shaped-cavity structure, as shown in Figure 1d. Next, a
20 nm thick Si cap was grown via RTCVD. When growing the Si cap, a diluted buffered
oxide etchant (dBOE) was used to remove the natural oxide layer on the c-Si surface
in the C-shaped-cavity. After the Si cap growth was completed, the Si cap on the OSO
HM and oxide spacer was removed, forming the structure in Figure 1e via RIE. Then a
high-aspect-ratio-process(HARP) oxide was deposited via PECVD, and the wafer was
polished via a chemical mechanical planarization (CMP, FRX200, Ebara, Tokyo, Japan)
process until the mandrel in the OSO HM was exposed. Moreover, the a-Si was removed
using a high-selectivity TMAH wet etch. Next, 10 nm silicon oxide CESL was etched via
RIE. Next, using silicon oxide as a mask, the inner a-Si/SiN/c-Si stacks were etched via
RIE to form the structure shown in Figure 1f. Next, the remaining SiN in the device cavity
was removed using 160 ◦C H3PO4. Then, the HARP oxide was deposited again and CMP
was performed on it so that the height of the silicon oxide was about 20 nm from the top
of the a-Si. Then, the diluted hydrofluoric acid solution (dHF) was used for the oxide
recess process so that the surface of the HARP oxide was lowered to the position shown
in Figure 1g. At this point, about half of the top a-Si of the RC-VCNFET was exposed.
Subsequently, four groups of Nd:YLF pulsed lasers with different energy densities were
used to irradiate the wafer’s surface (the laser annealing equipment was developed by
the Institute of Microelectronics, Chinese Academy of Sciences, the laser’s wavelength
is 527 nm, the pulse width is 200 ns, and the frequency is 200 Hz). At this time, the a-Si
began to recrystallize under laser light irradiation. Finally, we continued to etch the HARP
oxide through the STI recess process to release the RC channel. In the next experiment, if
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RC-VCNFET devices need to be fabricated, process steps such as the gate stacks formation
and subsequent BEOL should be carried out.
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Figure 1. Schematic diagram of the key process steps for the RC-VCNFETs: (a) OSO HM formation;
(b) oxide spacer formation; (c) a-Si/SiN/c-Si etching; (d) SiN etching; (e) Si cap depsition; (f) inner
a-Si/SiN/c-Si etching; (g) STI recess and laser annealing; (h) RC channel release.

In addition, we also conducted a short loop of the Si cap growth module and the flow
chart is shown in Figure 2a. We have reported the experiment of Group A, in another work.
In that experiment, the blank wafers used all had high-energy boron ion implantation.
Therefore, we conducted new experiments on Group B, and the blank wafers in this group
of experiments did not have a p-well. The following are the experimental steps. Firstly, a
pre-clean step was performed on two groups of silicon wafers, one without dBOE etching
and the other with 60 s dBOE etching. These two groups of wafers were respectively
named wafer(B-1) and wafer(B-2). Subsequently, these wafers were immediately loaded
into the chamber of RTCVD, thereby reducing the formation of the natural oxide layer on
the surface of the wafer. Next, a 40 nm-thick Si cap was grown on the surface of the wafer
at 580 ◦C.

Scanning electron microscopy (SEM, S-5500, Hitachi, Tokyo, Japan) was used to
observe the topography of the surface and cross-section of the sample, thereby measuring
the film thickness and etching depth. Atomic force microscopy (AFM, Dimension Icon,
Bruker, Karlsruhe, Germany) was used to evaluate the film surface’s roughness. Conductive
atomic force microscopy (C-AFM, Dimension Icon, Bruker, Karlsruhe, Germany) was used
to characterize the conductivity of the nanosheet. Transmission electron microscopy (TEM,
FEI Talos F200, Hillsboro, OR, USA) was used to characterize the device’s component
dimensions and crystal structure. Energy-dispersive spectroscopy (EDS) was used to
determine the distribution of various elements in the device. Nano-beam diffraction (NBD)
was used to analyze the crystal structure of the channel
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Figure 2. (a) Flow diagram of the laser annealing experiment; schematic diagram of (b) group A
wafer with p-well after Si cap growth; (c) group B wafer without p-well after Si cap growth.

3. Results and Discussion
3.1. Structural Analysis of the Si Cap Film Based on RTCVD

Figure 3a is a SEM image of the sample surface of wafer(B-1) after the “dBOE cleaning
0 s + Si cap growth” step, and it can be seen that the wafer has a very smooth surface.
In Figure 3b, there is a layer of a-Si film with a thickness of 38.9 nm on the surface of
wafer(B-1), and the contrast between the a-Si film and the single-crystal Si of the substrate
is different, proving that the a-Si/c-Si interface exists. This result may be due to the natural
oxide layer on the wafer having a blocking effect on the Si (100) crystal plane, suppressing
the regular arrangement of Si atoms during the growth of the Si cap.
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Figure 3. SEM images of (a) the surface and (b) the cross-sectional view of the blank wafer after the
“dBOE cleaning 0 s + Si cap growth” process; SEM images of (c) the surface and a (d) cross-sectional
view of the wafer after the “dBOE cleaning 60 s + Si cap growth” process.
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Figure 3c is a SEM image of the wafer(B-2) surface after the “dBOE cleaning 60 s + Si
cap growth” step, and Figure 3d is its cross-sectional SEM image. In Figure 3d, it can be
seen that the interface of a-Si/c-Si is not visible after 60 s of BOE cleaning. This result
indicates that the Si (100) crystal surface could act as a seed layer. Meanwhile, as the
RTCVD chamber was designed for the deposition of a-Si and poly-Si thin films, a small
number of particles in the equipment may cause some hillock-like defects such as those in
Figure 3c during the growth of the Si cap.

In addition, AFM tests were carried out on the wafer(B-1) and wafer(B-2) surfaces. In
Figure 4a,b, the root mean square roughness (RMS) of the wafer(B-1) surface is 0.50 nm,
and the RMS of the wafer(B-2) surface is 3.65 nm. This result is due to some small bulges on
the surface in Figure 4b, increasing the RMS of the entire region. The RMS of the non-bulge
area on the wafer(B-2) surface is relatively low. These test results show that the pre-clean
step significantly impacts the morphology of the Si cap.
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Figure 4. AFM images of the surface of (a) the blank wafer after the “dBOE cleaning 0 s + Si cap
growth” process and (b) the blank wafer after the “dBOE cleaning 60 s + Si cap growth” process.

3.2. Effect of the Laser Annealing Process on the Nanosheet with the RC Channel

As shown in Figure 1g, we performed a laser annealing experiment on the vertical
nanosheet with an “exposed top” structure. Figure 5a is the SEM image of the nanosheet
surface before laser annealing, and Figure 5b is the SEM image of the vertical nanosheet
surface after laser annealing. The energy density of the laser used was 1.67 J/cm2. The
above results show that the top silicon of the “exposed vertical nanosheet” changed from
having a right-angled surface to a curved surface. This result shows that the top silicon
of the nanosheet underwent a recrystallization process of “a-Si (solid)-Si (liquid)-c-Si
(solid)” [20,21]. Moreover, it can be seen that the surface morphology of the ring-shaped
recrystallized nanosheet was relatively uniform, and no apparent cracks appeared.
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Next, we also studied the effect of different laser energy densities on the recrystal-
lization process of the vertical nanosheets. Figure 6a is a top-view SEM of the vertical
nanosheet before laser annealing. The dishing pits in the center of the circular nanosheet
caused by the CMP process can be observed. We used A, B, C, and D, four groups of
lasers with different energy densities, to irradiate the “exposed vertical nanosheet” (the
laser energy is 0, 1.33, 1.67 and 2.00 J/cm2). Obtained after the laser annealing process,
the AFM test results of the above four groups of samples are shown in Figure 6b–e. It can
be seen from Figure 6b–e that when the laser energy density was 1.67 J/cm2, the color
difference between the nanosheet top silicon and its surrounding HARP oxide was the
smallest, which means that the height difference was the smallest. This indicates that the
top silicon of the nanosheet shrunk significantly due to the recrystallization process under
this annealing condition. At the same time, when the laser energy density was 2.00 J/cm2,
the color difference between the top silicon of the nanosheet and the surrounding HARP
oxide began to increase, which means that the roughness of the HARP oxide began to
increase significantly. This result indicates that the energy of the “2.00 J/cm2” laser was too
high and began to have an ablation effect on the wafer surface.
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annealing process; AFM images of the surface of the “exposed vertical nanosheet” under the laser
energy of (b) 0 J/cm2, (c) 1.33 J/cm2, (d) 1.67 J/cm2 and (e) 2.00 J/cm2.

In addition, we also carried out a C-AFM test on the four groups of samples, A, B, C
and D. With the increase in the laser energy density, the tunneling current of nanosheets
first increased and then decreased, as shown in Figure 7a–d. This indicates that the laser
with the energy density of 1.67 J/cm2 was the most favorable for the recrystallization.
Under the condition of 1.67 J/cm2, the energy absorbed by a-Si from the laser was enough
to melt itself, and the ablation effect caused by high laser energy was avoided.
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3.3. Crystal Structure Analysis of the Vertical Nanosheet before Laser Annealing

Next, we analyzed the changes in the crystal structure of the vertical nanosheet before
and after laser annealing by means of TEM. Figure 8a is the TEM test result of the cross-
section of the nanosheet before laser annealing. The C-shaped Si cap at the bottom of the
channel and the single-crystal Si substrate have a black contrast, which indicates that the Si
cap grown on Si (100) by RTCVD was a single-crystal structure. Simultaneously, the top
silicon of the vertical nanosheet and the upper half of the C-shaped channel had a light
contrast, indicating that the silicon in these regions was amorphous. Using Figure 8a, the
Si cap thickness can be measured. The thickness of the Si cap grown on c-Si, SiN and a-Si
was 10.4 nm, 13.1 nm and 23.1 nm, respectively. This is a clear deviation from the expected
growth thickness. The different growth rates of Si caps on these interfaces were due to
the differences in their respective surface chemical reaction rates. Figure 8b–d shows the
HRTEM images of the three regions of the nanosheet in Figure 8a. In Figure 8b, the lattice
diffraction signal cannot be observed in the upper half of the C-shaped channel, and the
FFT image in Figure 8e shows a dispersed circle. These results indicate that the Si cap in
this region was amorphous, like the HARP oxide in Figure 8b. The regions in Figure 8c,d
are all in black contrast, and both have Si (111) plane-aligned twin dislocations. At the
same time, the FFT results in Figure 8f,g also show a diamond-shaped pattern of the Si
(110) crystal plane. These results show that the Si cap grown near the Si (100) seed layer
had a single-crystal structure, but the annealing process is required to eliminate defects
such as twin dislocations.
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Figure 9a–c is the HAADF-STEM image of the cross-section of the vertical nanosheet
before laser annealing, and the EDS mapping images of O and Si elements, respectively.
Figure 9d,e are the EDS line scan results of the red dotted line in Figure 9a. In the HAADF-
STEM image, there is an obvious interface between the Si cap layer and the bottom c-Si
seed layer before laser annealing, and the twin dislocations in the lower left corner of
the C-shaped channel are in bright-white contrast. This shows that although the Si cap
film grown by RTCVD could form a structure close to that of a single crystal with the
assistance of the c-Si seed layer, the film may still have had some lattice defects. These
defects may need to be repaired via a laser annealing process. The EDS line scan results in
Figure 9d show that there was no significant oxygen element at the Si cap/c-Si interface,
which indicates that the “dBOE 60 s cleaning” process removed the natural oxide layer on
the surface of the c-Si seed layer, enabling the growth of the single-crystal Si cap on the
seed. According to the curve of the Si element in Figure 9e, the thickness of the Si cap was
about 13.4 nm, which is basically consistent with the results in Figure 8a.
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3.4. Crystal Structure Analysis of the Vertical Nanosheet after Laser Annealing

Figure 10a is the TEM image of the vertical nanosheet after laser annealing. Compared
with to sample before laser annealing, the TEM images of the C-shaped channel and the top
silicon show the black contrast of the single crystal. In Figure 10b,e, twin dislocations exist
in the middle region of the sample channel after annealing. In Figure 10c,d, compared to the
samples before annealing, the twin dislocations in these regions of the samples disappeared
after annealing, indicating that the laser annealing process can repair these dislocation
defects. Next, as shown in Figure 11a–d, the three regions of the nanosheet channel were
tested via nanobeam diffraction (NBD), and the spot size of the electron beam was 0.45 nm.
The results show that the three regions of the channel all exhibit diffraction patterns of the
Si (110) plane index.
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Figure 11. (a) TEM image (the red circles refer to the area of NBD images) and (b–d) NBD images of
the cross-section of the “exposed vertical nanosheet” after the laser annealing process.

Figure 12a–c is the HAADF-STEM image of the cross-section of the vertical nanosheet
after the laser annealing process and the EDS mapping images of the O element and the Si
element. Figure 12d,e shows the EDS line scan results of the red dotted line in Figure 12a.
From the HADDF diagram, the Si cap/c-Si interface of the sample after annealing can
be seen. At the same time, it can be seen that the bright spot of the twin dislocations in
the lower left corner of the nanosheet disappeared. This shows that the laser annealing
process has a good repair effect on lattice defects. In Figure 12b,d, the interface of Si
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cap/c-Si has no oxygen enrichment. Via the comparison of Figures 12e and 9e, it can be
seen that the thickness of the middle channel of the vertical nanosheet with the “exposed
top” structure was reduced from 13.4 to 7.0 nm after the laser annealing process. This
may be due to the compressive stress exerted by the HARP oxide on the circular vertical
nanosheet. During the laser annealing process, the a-Si changed from being in a solid state
to a free-flowing liquid Si when the nanosheet absorbed laser energy. At this time, the
liquid Si moved upward, the compressive stress on the vertical nanosheet channel began
to release, and the surrounding HARP oxide was displaced, which finally reduced the
thickness of the nanosheet.
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of the “exposed vertical nanosheet” before the laser annealing process.

In order to further characterize the recrystallization effect of the laser annealing process
on larger-sized devices, we also conducted laser annealing experiments on the “exposed
vertical nanosheet” with a size of 4 µm × 4 µm and performed a top-view-TEM test analysis.
Figure 13a is a schematic diagram of the structure of the TEM sample preparation area. The
red-framed part is the FIB slice sample, and the sample thickness was about 100 nm.

Figure 13b is the TEM test result of the sample’s top view. The channel with a size
of 4 µm × 4 µm remained intact and continuous after laser annealing, which proves
the uniformity of the recrystallization process of the “exposed vertical nanosheet”. In
the HRTEM and FFT images of Figure 14A–D, the channels at the four corners of the
sample are all single-crystal structures. In Figure 13e–h, the HAADF images also prove the
integrity and continuity of the channel with a size of 4 µm × 4 µm. In Figure 14E–H, the
average projected width of the nanosheet channel is about 13.5 nm. This thickness indicates
that the RC-VCNFETs device fabricated by the laser annealing process has superior gate
control capability.
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(E–H) HAADF images of the “exposed vertical nanosheet” after the laser annealing process.

3.5. Electrical Properties of the "Exposed-Top" RC-VCNFET Device

Finally, the RC-VCNFET device was fabricated successfully. Figures 15a and 15b,c
are the TEM images of the device’s top view and cross-section view, respectively. It can
be seen from Figure 15a that the upper half of the ring-shaped RC-VCNFET device is a
double-gate device, while the lower half of the ring-shaped device is a single-gate device.
Next, the electrical test was performed on the "exposed-top" RC-VCNFETs device, and
the results are shown in Figure 15d. The Ion of this RC-VCNFET device is 11.5 µA/µm
(ID @ VOV = VG − VT = 1 V, VDS = 0.65 V). The SS of the device is 67.0 mV/dec, and the
DIBL of the device is 46.7 mV/V. These test results indicate that the performance of the
RC-VCNFET needs to be further optimized.
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Figure 15. (a) The Top View TEM image in dark field, (b,c) the Cross-section TEM in bright field of
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4. Conclusions

This paper introduces the effect of pre-cleaning conditions on the surface of the wafer
on the Si cap film grown by RTCVD. SEM and AFM results revealed that an amorphous
Si cap grew on the single-crystal silicon without the pre-clean step. In addition, the laser
annealing process was carried out on the vertical nanosheet with an “exposed top” structure,
and the crystal structure of the vertical nanosheet before and after laser annealing was
characterized by means of SEM, AFM, C-AFM, TEM and NBD. Finally, the high-quality
recrystallized vertical nanosheet structure was successfully fabricated, which laid a certain
foundation for the preparation of high-performance and low-cost vertical-channel devices
in the future.
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