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Abstract: Recent studies have highlighted the potential of smart radiotherapy biomaterials (SRBs)
for combining radiotherapy and immunotherapy. These SRBs include smart fiducial markers and
smart nanoparticles made with high atomic number materials that can provide requisite image
contrast during radiotherapy, increase tumor immunogenicity, and provide sustained local delivery
of immunotherapy. Here, we review the state-of-the-art in this area of research, the challenges and
opportunities, with a focus on in situ vaccination to expand the role of radiotherapy in the treatment
of both local and metastatic disease. A roadmap for clinical translation is outlined with a focus on
specific cancers where such an approach is readily translatable or will have the highest impact. The
potential of FLASH radiotherapy to synergize with SRBs is discussed including prospects for using
SRBs in place of currently used inert radiotherapy biomaterials such as fiducial markers, or spacers.
While the bulk of this review focuses on the last decade, in some cases, relevant foundational work
extends as far back as the last two and half decades.

Keywords: smart radiotherapy biomaterials; cancer; in situ vaccination; abscopal effect; image-guided
radiotherapy; radio-immunotherapy

1. Introduction

Current cancer treatments include radiotherapy, surgery, chemotherapy, and more
recently, immunotherapy. Radiotherapy (RT) is used in the treatment of over 50% of
cancer patients. While the options available are expanding and improving, there are still
many factors limiting treatment. These include tissue-specific toxicities from radiation and
systemic toxicities from chemo- and immune-therapy, which can include long-term side
effects such as neuropathy, cognitive problems, kidney damage, hearing damage, and other
morbidities [1–3].

Increasingly, radiotherapy is being investigated in combination with immunother-
apy [4], sometimes called Radio-Immunotherapy. Such combination approaches may in-
crease toxicities that can be severe or even life threatening [5]. Currently, inert radiotherapy
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biomaterials, such as fiducials and beacons, are used during image-guided radiotherapy
to minimize local toxicities, allowing radiation to be more targeted to the tumor while
minimizing the irradiation of healthy tissue. The use of smart radiotherapy biomaterials
(SRBs) or biomaterial drones provide a major opportunity for achieving the same function
as well as minimizing toxicities when combining radiotherapy with immunotherapy. These
SRBs can be produced by customizing currently used single-function biomaterials, e.g.,
fiducials, designed to provide image-guidance during RT. This customization upgrades
the technology to be multifunctional, allowing SRBs to provide image-guidance and also
serve as radiosensitizers, immunoadjuvants, and/or a vehicle for drug delivery [6]. These
upgrades can be facilitated via functionalization by way of Poly(lactic-co-glycolic acid)
(PLGA), chitosan, or even carbohydrate polymers. Additional benefits of the latter two
include pronounced anti-microbial properties to further enhance treatments [7]. Such
technology has the potential for localized delivery of immunotherapy targeted to the tu-
mor microenvironment to minimize systemic toxicities. The use of SRBs is particularly
exciting for combining radiotherapy and immunotherapy to generate an in situ vaccina-
tion against tumor antigens. An important benefit to creation of the in situ vaccination
is lowered barriers to care. While traditional cancer vaccines take weeks to create with
a hefty price tag (upwards of USD 36,000 for a single treatment), SRB mediated in situ
vaccination would remove the waiting time and could decrease cost due to delivery method
optimization [8–10].

In situ vaccination with radiotherapy has been described as the abscopal effect,
whereby radiotherapy of a tumor at one site may lead to the regression of tumors that
are not treated, such as distant metastases [5]. Strategic use of SRBs for in situ delivery
of immunotherapies has significant potential to enhance in situ vaccination. Successful
clinical translation of SRBs would extend radiotherapy for curative treatment of both local
and metastatic diseases that are responsible for over 90% of cancer deaths [11]. Here, we
review the development of radiotherapy biomaterials, and the potential merits of SRBs for
radio-immunotherapy combining image-guided radiotherapy and immunotherapy. We
present a potential roadmap to clinical translation and opportunities for other research and
development, including new radiotherapy approaches, such as FLASH.

2. Radiotherapy Biomaterials
2.1. Currently Used Radiotherapy Biomaterials

Different types of biomaterials have been developed for image-guided radiotherapy or
ensuring beam-to-target geometric accuracy and precision targeting during radiotherapy
treatment, including motion management. These biomaterials employ various types of
fiducial markers, beacons, and spacers. Fiducial markers include metallic seeds, coils or
even liquid to provide image contrast across different modalities. In the past, beacons
have also been used to provide guidance by transmitting low level RF signals that can be
tracked in real time using specialized equipment. Due to the nature of liquid versus solid
forms, the liquid fiducial may be easier to administer [12,13]. The additional advantages of
liquid fiducials include minimizing migration and image artifacts [14–17]. Brachytherapy
spacers, on the other hand, are primarily used to space out the radioactive seeds to ensure
placement accuracy and facilitate dosimetry [18].

2.2. Smart Radiotherapy Biomaterials

In a previous review we have described the development of smart radiotherapy bioma-
terials, which can serve the same functions as their inert counterparts described above but
have additional capabilities [6]. Their design allows the SRBs to provide image-guidance as
well as other functions, such as radiosensitization, modifying the tumor microenvironment,
and sustained delivery of payloads to enhance treatment efficacy. The payloads can include
chemotherapy, immunotherapy or nanoparticles that can increase damage to tumor cells
during radiotherapy [19]. The specific use of high atomic number (high-Z) nanoparticles
provide enhanced image contrast while also enabling photon-induced emission of sec-
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ondary electrons, to deliver additional damage to the targeted cancer cells within a few
micrometers [20]. Examples include gold nanoparticles (GNPs), and gadolinium nanoparti-
cles (GdNPs), which can provide both MRI and CT contrast [21]. In the previous review
the different types of SRBs were described [6]. Here, we focus on more recent develop-
ments, with specific focus on SRBs for combining radiotherapy and immunotherapy for in
situ vaccination.

In the past, cancer vaccination has relied on external processing of tumor cells or
dendritic cells harvested either directly from a patient or engineered in a lab to elicit a
tailored anti-tumor immune response [22,23]. This anti-tumor immune response is evoked
by the presentation of these cells to the immune system, thus training the immune system
on what to target [24]. SRBs provide another approach for vaccination, highlighted in
Figure 1, where image-guided RT using SRB generates neoantigens unique to each tumor
that are taken up by dendritic cells, which migrate to draining lymph nodes and activate
antigen specific T cells. The SRBs can also sustainably deliver immunotherapy into the
tumor microenvironment to boost the in situ vaccination at different levels, providing a
multi-pronged strategy that can maximize both local and metastatic tumor kill.
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Figure 1. The process of SRB-assisted abscopal effect wherein an initial tumor (left) is treated with
both radiation enhancing NPs and irradiation, triggering a cascade of antigen-presenting cells (APCs)
to the lymph node (bottom) to activate naïve CD8+ T-Cells, thus triggering an immune response not
only to the initially treated tumor, but also to the metastatic tumor (right).

2.3. Seed Smart Radiotherapy Biomaterials

The first types of SRBs under development are seed-like and are similar to solid
fiducials and brachytherapy spacers. Figure 2 illustrates the design of these seeds to
provide image contrast and radiation enhancement as well as delivery of immunotherapy.
The seed SRB can be created with a mix of PLGA polymer and formed to the size and
shape of current fiducials [25]. As can be seen in Figure 2, high-Z nanoparticles can either
be loaded together with drugs and incorporated in the hollow core of the SRB (A) or the
nanoparticles can be incorporated within the biodegradable polymer matrix in the annulus
of the cylinder (B).
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Figure 2. Hollow degradable fiducial SRB loaded with drug payload and nanoparticles. (A) One
formulation has the NPs within the hollow center, mixed with the drug payload. (B) Another
formulation has the NPs incorporated within the polymer matrix in the annulus for a quicker release
of NP while the drug payload is confined to the core, permitting a similar release rate as in case (A).

The hollow SRB is advantageous because it allows for direct loading of drugs in the
core with sustained release as the polymer degrades. In this way, both NPs and drugs have
a constant presence of the drug within the tumor sub volume, which is thought to help
overcome immunosuppression, as discussed in recent work [25]. The same investigators
highlight the possibility of the biomaterial supporting maturation of dendritic cells and
further include animal studies demonstrating that this approach can substantially prime
the abscopal effect [25]. While the results support the use of the seed SRB to elicit the
immune response for both treated and metastatic tumors, the authors acknowledge the
necessity of improved optimization. This is in line with other author’s work citing the
necessity for optimization of immunotherapy drug choice and dose as well as concomitant
RT dose, fractionation, and selection of relevant high Z NPs [21,25–27].

2.4. Liquid Smart Radiotherapy Biomaterials

The second type of SRB under development is in the form of a liquid fiducial, called
liquid immunogenic fiducial eluter (LIFE) Biomaterial [28]. The LIFE SRB technology is
composed of a solution of sodium alginate (ALG) and chitosan that is rapidly transformed
into an anchored hydrogel in the presence of calcium ions (Ca2+) within the tumor, illus-
trated in Figure 3 [28,29]. Immunotherapy drug payloads such as anti-CD40 and/or high-Z
nanoparticles such as gold (GNP) or gadolinium nanoparticles can be incorporated into
this biodegradable polymer to expand it from single function to multi-functional technol-
ogy [28]. This enables a potent amount of the immunotherapeutic agent to diffuse locally
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for a sustained period within the tumor with minimal leakage into neighboring organs.
The LIFE SRB represents a new generation of multifunctional liquid fiducials, combining
image-guidance with in situ drug delivery, to engender effective in situ vaccination. This
has the potential for extending the role of RT from local palliation to lasting local and
distant disease control of metastatic tumors, such as cervical cancer. Preclinical studies
have demonstrated that both MRI and CT contrast gradually decrease over the span of 3
weeks, corresponding to the biodegradation of the LIFE biomaterial [28]. The study also
notes significant decrease in tumor progression [28].
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Figure 3. Process of the Liquid Immunogenic Fiducial Eluters (LIFE) Biomaterial loaded with
nanoparticles and drug payload as it solidifies in situ. The LIFE biomaterial polymers (green) interact
with the free calcium ions (Ca2+, blue) and solidify in the tumor.

Figure 5A highlights results in animals showing visibility of the LIFE SRB in tumor
over time. Figure 5B summarizes tumor control and survival of pancreatic cancer when
treated with LIFE SRB loaded with titanium oxide and anti-CD40 with and without radia-
tion versus radiation alone [28]. These studies, as reflected in Figures 4 and 5, corroborate
the immune-mediated response and show significant regression of both local treated pan-
creatic tumors and untreated contralateral tumor, representing metastasis, when using RT
in combination with either seed-type (Figure 4) or LIFE gel-type (Figure 5) SRB compared
to when treating with RT or RT with anti-CD40 alone [30]. Studies also show that the use
of SRB is immunogenic (Figure 4C), significantly enhancing infiltration of APCs that are
crucial for priming metastatic tumor kill [30,31]. Altogether, the results demonstrate major
potential for SRB technology, especially LIFE gel-type, as a multifunctional fiducial that can
provide both image-guidance as currently needed clinically (Figure 4) but also boost local
and metastatic tumor kill [28].
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Figure 4. (A) in vivo fluorescence imaging (FLI) comparing direct injection of fluorescence-tagged
Anti-CD40 with seed-type SRB loaded with Anti-CD40 in mice. The images demonstrate superior
sustained presence of antibody when administered with SRB versus direct injection, showing greater
presence up to 13 days post-administration. (B) Scatter plots of percent volume change of treated and
abscopal tumors when treated with IGRT of 5 Gy was given in combination with either direct injection
of anti-CD40 or seed-type SRB loaded with the same [30]. (C) Bar graph of the average fluorescent
intensity of immunofluorescence-stained prostate cancer tissue treated with mouse CD11b+ antibody
administered intratumorally vs. via smart radiotherapy biomaterials (SRB) at posttreatment day
7 [31]. Bar graph showing the infiltration of APCs such as dendritic cells (CD11b+) to the treated
tumors on day 7 post treatment for varying doses of RT with SRB loaded with mouse antibody versus
control [28,32]. Graphs adapted from cited references.
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Figure 5. (A) CT images showing contrast from LIFE biomaterials injected in mice pancreatic
tumors up to 21 days post injection (circled in yellow). Mice were monitored up to 10 weeks after
treatment with combinations of RT and LIFE gel, loaded with titanium oxide and anti-CD40. The
survival fraction (B) and overall change in tumor volume (C) for week 7 are shown in snapshot here
demonstrating better tumor control when combining SRB LIFE gel with radiotherapy [28]. Graphs
adapted from cited references.
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2.5. Nanoparticle Smart Radiotherapy Biomaterial

The third type of smart radiotherapy biomaterials are nanoparticle drones (nan-
odrones). Nanodrones loaded with immunotherapy drugs and with a high-Z component
can be administered to accumulate in the tumor. Examples include nanodrones made of
gadolinium or gold or a hybrid, which permit the tracking of this accumulation via CT or
MRI. Such platforms can be optimized for image-guided drug delivery, which could allow
for quantification of distribution in tumors over time [33,34].

Some nanodrone platforms are being investigated to target lung cancer [35]. One
promising approach for administration of these nanodrones is via inhalation. In inhalation
delivery, it is important to know the deposition pattern of the nanoparticles in various
generations and parts of the lung (airways and alveoli) as well as the size distribution of the
nanoparticles therein. Figure 6 shows the foundational steps taken to apply the dedicated
aerosol dynamic computer code, SAEROSA, to determine particle deposition in inner-lung
volumes [36]. SAEROSA accounts for coagulation and inter-particle dynamics as well as
various deposition mechanisms based on boundary layer theory in confined spaces [37].
When compared to bulk deposition fractions from in vivo experiments, SAEROSA simula-
tions demonstrate good agreements [32,38]. These computations provide detailed insight
of generation-wise nanoparticle behavior, including the role of coagulation and changing
size distribution. At high initial inhaled nanoparticle concentration, which is required for
therapeutic effect, interparticle collisions become non-negligible and give rise to altered
size distribution and deposition fractions compared to low concentrations (not shown
here). Information of particle deposition patterns and size distribution are instrumental in
developing an eventual treatment-planning algorithm.
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Figure 6. Preliminary results validatinging the application of the aerosol dynamics computer code
SAEROSA in a detailed lung model [36]. Simulation results are compared to published in vivo
bulk deposition results for polystyrene nanoparticles [38]. Graph (A) shows good agreement be-
tween simulated versus experimental bulk deposition for polystyrene nanoparticles at 50, 75 and
100 nm. Concentrations, particle sizes and materials used in simulations reflected those used in vivo.
Graph (B) demonstrates the first step towards therapeutic applications by comparing the deposition
within the airway and alveoli separately for both polystyrene and gold nanoparticles, both with
50 nm and experimental concentrations. In-vivo data obtained from cited reference.

3. Roadmap to Clinical Translation

One approach that is being supported by NIH for clinical translation of SRBs is radio-
immunotherapy dose-painting. Radio-immunotherapy traditionally refers to the use of
an antibody labeled with a radionuclide to deliver cytotoxic radiation to a target cell.
However, as of the late 2000’s, this has come to represent a treatment approach combining
radiotherapy and immunotherapy [39–41]. In radio-immunotherapy dose-painting, only
a sub-volume of the tumor, determined via, e.g., imaging, needs to be irradiated and
treated with immunotherapy as delivered by SRBs [31]. In studies conducted in prostate
and pancreatic cancer, it was shown that radio-immunotherapy dose-painting using SRBs
consistently resulted in effective in situ vaccination [31].

The appeal of this dose-painting approach, highlighted in recent work, is that it may
substantially reduce toxicities. Targeting a tumor sub-volume with radiotherapy added to
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continued release of immunoadjuvant from SRBs minimizes the amount of surrounding
healthy tissue to be irradiated and there may be reduced or no need for added margins
around the tumor, called the clinical target volume in radiation oncology. Targeted release of
immunoadjuvants via SRB allows for a controlled and localized release of immune-adjuvant
payloads, thus reducing the systemic distribution and minimizing related toxicities [42].

Other advantages of the SRBs include increased immunogenicity and benefits to hy-
pofractionated radiotherapy (HFRT) as well as high dose rate (HDR) brachytherapy. In situ
(intra-tumoral) vaccination with SRB technology may help overcome immunosuppression
due to the sustained localization of the immunoadjuvant and simultaneous presence of
RT-generated neoantigens in the tumor microenvironment. The use of immunoadjuvants,
such as anti-CD40, may increase the activation or maturation of antigen presenting cells that
pick-up the neoantigens [28,30]. Delivering immunoadjuvants with SRBs may also increase
retention within the tumor, substantially minimizing systemic/overlapping toxicities which
are currently a limitation with other approaches [30].

In clinical translation studies, the optimal choice of SRBs for in situ vaccination may
depend on the type of cancer and where it is located. This is due to difficulties imposed
by the location surrounding the cancer, where unique challenges arise relating to dose
limitations and related short- and long-term treatment side effects. In pelvic-area cancers,
complications can include infertility, incontinence, and radiation-induced disease, while
chest-area cancers can have radiation therapy related complications with motion manage-
ment, skin irritation and radiation pneumonitis [43]. Most, if not all, of these complications
stem from too much radiation delivered to healthy organs, whether from the necessity of
proper tumor coverage or due to inability to exactly reproduce patient or tumor positioning
at the time of treatment. Table 1 shows proposed matching of specific cancers to different
forms of SRB. For example, seed SRBs may be readily employed in the treatment of prostate
cancer as they can replace currently used seed fiducial markers. On the other hand, LIFE
SRBs may be more appropriate for cervical or breast cancers, head and neck cancers or
other tumors where liquid fiducials are used. An important benefit of the LIFE biomaterial
is the similarities it has with liquid fiducials, which have been shown to have minimal
migration and lessened scatter-induced image artefacts [14–17,44]. Both of these aspects
are important to ensure viability as a dependable source for set up with scatter affecting
image clarity and migration affecting relative positioning.

Table 1. Comparison of various cancer sites and their most likely form of in situ vaccination. Each
site has unique attributes that lend towards one methodology over another.

Type of Cancer Best In Situ Vaccine Treatment

Brain Nanoparticle drone SRBs

Breast LIFE SRBs

Thoracic Seed SRBs

Pancreatic Seed or LIFE SRB

Cervical LIFE SRB

Lung Seed or Nanoparticle drone SRB

Prostate Seed or LIFE SRB

Nanodrone SRBs have been considered for targeting lung tumors, including via in-
halation delivery [35]. In highly sensitive areas, such as the brain and other head and neck
cancers, seed or LIFE SRBs may not be optimal for payload delivery, given the route of ad-
ministration. Further, intratumoral administration of single-function nanoparticles can be
too invasive for many head and neck area cancers or their metastases—something that cur-
rent clinical trials of this nature must be aware of [45]. This barrier could be assuaged with
incorporation into multifunctional nanodrones. Alternatively, if looking at high-risk cohorts
such as head and neck patients with high cervical nodal metastatic spread, clinicians could
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target clinically accessible nodes with SRBs versus the tumor of origin to elicit the in situ
vaccination effect for distant metastasis. A final cancer to highlight in the translation of SRBs
to clinical use is skin cancer. With its favorable location, the intra tumoral administration of
SRBs is easier than most other cancers. Further, these lesions have a tendency towards im-
munogenicity due to their UV-induced DNA damage [46]. This is an especially important
aspect to consider when dealing with post-transplant immunosuppressed patients who
are at risk of developing skin carcinomas where innovative therapeutics are needed given
concerns related to transplant rejection with current checkpoint inhibitors [47].

Previous work using other nanoparticle platforms has demonstrated the use of
nanoparticles targeting brain tumors [34]. These studies, focused on the gadolinium-
based nanoparticles called AGuIX®, found that intravenous injection of AGuIX GdNPs
lead to accumulation in the tumor in animal models, serving as a basis for protocol of an
initial Phase I human clinical trial [48,49]. Further phase I and II clinical trials have relied
on the AGuIX GdNPs as well [50–55]. Nanodrone SRBs to deliver immunotherapy can
build on lessons from such platforms to add the dimension of immunoadjuvant delivery
for in situ vaccination. Immunoadjuvants could include agonists, checkpoint inhibitors
or monoclonal antibodies [56–58]. Intravenously administered neoadjuvant cemiplimab,
for instance, is a monoclonal antibody with high efficacy in treating cutaneous malignan-
cies when combined with curative surgery [59]. If incorporated with an SRB delivery
system alongside radiosensitizers, pre-surgical RT could be administered as a primer for
the immunoadjuvant, potentially allowing to eliminate the need for aggressive or radical
surgical resection.

Given this potential of SRBs for combining radiotherapy and immunotherapy, there is
rationale for considering combination of SRBs with FLASH Radiotherapy (FLASH RT) tech-
nique as an approach for clinical translation. FLASH RT involves treating target volumes
at dose rates significantly higher than current standard practice, e.g., >40 Gy/s, which
minimizes damage to normal tissue [60]. The potential for FLASH RT to minimize normal
tissue toxicity has already been shown [61–63]. This approach has garnered significant
recent attention due to its normal tissue sparing effects and represents a possible avenue for
RT dose-escalation or dose-painting that merits further investigation [64]. Moreover, recent
work has suggested that FLASH RT may also have immunologic implications, with two
recent reports suggesting that FLASH RT can upregulate T-cell activating and trafficking
markers in both glioblastoma and diffuse pontine glioma models [65,66].

4. Perspective Discussion

To optimize the use of SRBs, further investigations into the optimal material compo-
nents are needed. The ideal property of such material is stimulus induced dissolvability
that would allow for a slow and continuous release of chosen payload appropriate for the
treatment schedule [6]. With the high level of localization provided by the SRBs, more
concentrated doses of loaded therapy can be delivered directly to the tumor, avoiding the
toxicities related to systemic distribution discussed previously.

In addition to reducing toxicities related to systemic over distribution of immunoad-
juvant payloads, incorporating high-Z NPs, e.g., gold, gadolinium or even well-known
chemotherapy drugs, such as cisplatin or carboplatin that contain platinum, into SRBs
could bolster damage to tumor cells via the photoelectric effect [6]. In high-Z materials, be-
low about 500 keV incident X-ray energies, photoelectric effect is the dominant interaction
mechanism. The photon is absorbed and one or more electrons along with low-energy char-
acteristic X-rays are emitted. The benefit of eliciting the photoelectric effect is that sparsely
ionizing radiation (X-rays) are converted to densely ionizing electrons that are emitted
by high-Z NPs, which results in enhanced energy deposition (dose) in the locality of the
NP [67]. The ability to deliver a tightly localized radiation “boost” dose and concomitant
damage to the tumor tissue while keeping the overall dose much lower permits normal
tissue sparing [20]. This NP-induced boost dose has been shown to result in higher DNA
damage than without [68].
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With documented benefit to both metastasis and local recurrence alone and increased
tumor immunogenicity when combined with immunotherapy, high linear energy transfer
(LET) carbon ion therapy could also be investigated with the use of SRBs [69]. Carbon
ion therapy is a type of heavy ion therapy wherein the use of the spread-out Bragg Peak
allows for enhanced dose distribution and increased tissue sparing when compared to
conventional RT and has already been suggested as a means to create an in situ vaccine [70].
Proton therapy, another type of heavy ion therapy which operates similarly, has also been
shown to synergize with the immune system [70]. SRBs loaded with immunoadjuvant
payloads combined with heavy ion therapy may enhance the immune response seen when
combining heavy ion therapy with intravenously administered immunotherapy [71].

Use of nanoparticle SRBs may also benefit the development of neutron capture therapy.
This could employ nanoparticle SRBs made of gadolinium (Gd) due to the high interaction
probability with thermal neutrons [72–75]. Gd neutron capture therapy (GdNCT) has been
discussed in the literature as a means to overcome limitations currently faced by boron-
mediated neutron capture, especially with its already established use as MRI contrast with
high uptake in tumors [76]. Additional benefits can be seen in the secondary radiations Gd
can produce upon neutron interactions. These secondary radiations span photoelectrons,
capture gamma rays, X-ray emissions, conversion electrons and Auger electrons which
can then be reabsorbed by the Gd to create a cascading effect of further radiations [67,77].
This approach may make the tumor more immunogenic. In preliminary simulations, the
dose enhancement factor for GdNCT has been shown to be significant when compared to
treatment without nanoparticles (Figure 7) [78].
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Vaccination approaches are typically dependent on tumor-associated antigens being
recognized and picked up by the immune system, and having a sufficiently robust response
to be able to overcome the immunosuppression of the tumor microenvironment. Part of
the appeal of using the approach of SRBs for in situ vaccination is that the neoantigens
generated by RT are done in situ and are specific to the patient’s tumor. This could
provide another option to current clinical trials whose focus is on personalized vaccination
created ex situ in a lab environment [79–83]. The use of immunogenic SRB components
such as polymers can enhance recruitment of dendritic cells to pick-up the antigens. The
sustained delivery of immunoadjuvants such as anti-CD40 can then bolster the activation
of dendritic cells for more robust in situ vaccination. These approaches, both with standard
therapy combinations as well as novel ones, all serve to remove barriers to care for patients,
especially from economically disadvantaged areas from rural united states to low and
middle income countries [84–86].

More work still needs to be done in order to implement and optimize these ap-
proaches [25]. Optimization will include the type of radiation and radiotherapy approach,
nanoparticle type, size, and concentration, and type and dose of any immunoadjuvant for
different cancers as some cancers may be more resistant [48,87]. In addition to therapeu-
tic dose considerations, optimization is needed for the SRBs on programming sustained
delivery timing and formulations.

5. Conclusions

SRBs technology development represents a major opportunity to provide the next gen-
eration of radiotherapy biomaterials or fiducial markers that are multi-functional, enabling
image-guidance during radiotherapy, but also boosting in situ vaccination. The potential
for using SRBs for image-guided immunotherapy delivery, hence combining radiotherapy
and immunotherapy, has shown to be promising in preclinical studies. Successful clinical
translation would extend the use of radiotherapy to curative treatment of both local and
metastatic disease. The use of innovative approaches such as radio-immunotherapy dose-
painting could help minimize systemic and overlapping toxicities hence also enhancing the
quality of life of patients. More studies optimizing the use of SRBs for different cancers are
an important area of investigation. This is especially true when considering the possible
growth into novel combinations such as HFRT, FLASH RT, neutron capture and proton
beam therapies.
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