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Abstract: Rapid urban industrialization and agricultural production have led to the discharge of
excessive phosphate into aquatic systems, resulting in a rise in water pollution. Therefore, there
is an urgent need to explore efficient phosphate removal technologies. Herein, a novel phosphate
capture nanocomposite (PEI−PW@Zr) with mild preparation conditions, environmental friendli-
ness, recyclability, and high efficiency has been developed by modifying aminated nanowood with
a zirconium (Zr) component. The Zr component imparts the ability to capture phosphate to the
PEI−PW@Zr, while the porous structure provides a mass transfer channel, resulting in excellent
adsorption efficiency. Additionally, the nanocomposite maintains more than 80% phosphate adsorp-
tion efficiency even after ten adsorption–desorption cycles, indicating its recyclability and potential
for repeated use. This compressible nanocomposite provides novel insights into the design of
efficient phosphate removal cleaners and offers potential approaches for the functionalization of
biomass−based composites.

Keywords: natural wood; zirconium; nanocomposite; phosphate; adsorption

1. Introduction

Phosphorus fertilizer is a crucial component of chemical fertilizers in agricultural
production, facilitating plant resistance and growth [1]. However, high levels of phosphorus
in the environment can have adverse effects [2,3]. For instance, the excessive use in
agriculture can cause phosphorus to leach into surface water [4], while the use of domestic
and industrial detergents can result in excess phosphate in wastewater, which can end
up in water bodies [5]. A significant concern is when the phosphorus concentration in
water bodies exceeds 0.01–0.02 mg·L−1, leading to toxic algal growth, overgrowth, and
eutrophication [6]. Hence, it is critical to remove phosphorus from natural water bodies,
particularly freshwater bodies, to prevent eutrophication.

Phosphorus exists in pentavalent forms such as orthophosphate, pyrophosphate,
long−chain polyphosphate, and phosphodiester in the aqueous environment [7].
Figure S1 presents the structural formulas for these forms of phosphorus. These different
phosphorus−containing compounds can be hydrolyzed to orthophosphate, which is the
only form that bacteria, algae, and plants can utilize [8]. Consequently, it is crucial to remove
excess orthophosphate from water bodies [9,10]. Various methods for the removal of phos-
phate exist currently, including biological treatment [11], chemical co−precipitation [12],
reverse osmosis [13], electrodialysis [14], membrane separation [15], and adsorption [16].
Among these, the adsorption method is widely used in the field of wastewater treatment
because of its high efficiency, environmental friendliness, recyclability, and flexibility in
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preparation and separation, making it a promising approach for phosphorus capture in
wastewater [17].

Several adsorbent materials have been explored for phosphate removal from water,
including biochar [18], laponite [19], and biopolymers [20,21]. Despite the progress made,
many prepared adsorbents exhibit drawbacks such as high cost, non−recyclability, poor
adsorption capacity, and low adsorption rate, thereby limiting their practical use [22]. Wood,
as a renewable and carbon−neutral resource, has emerged as an attractive raw material
in the field of advanced materials [23,24]. Wood possesses numerous advantages, such
as large specific surface area, regular pore channels, biodegradability, non−toxicity, and
diverse tunability through functional groups such as hydroxyl groups [25]. However, wood
has poor adsorption performance for phosphates due to the abundance of electronegative
functional groups, which hinder the adsorption of anions [26]. Therefore, modifying
wood−based materials is necessary to achieve effective phosphate adsorption.

Recently, considerable research efforts have been focused on developing novel ad-
sorbent materials modified with phosphate−affinity components, such as lanthanum or
Zr, to enhance their adsorption capacity for phosphate ions [27]. Among these, Zr−based
oxides have been identified as a promising adsorbent for phosphate removal due to their
superior properties, including high thermal stability, low solubility in water, and resis-
tance to oxidants and acids/bases [28,29]. Zr components not only endow adsorbents
with ultra−high adsorption affinity for phosphate, but also impart selectivity towards
phosphate ions in water [30,31]. As such, incorporation of Zr components into modified
wood−based materials offers a potential approach for the efficient removal of phosphate
from wastewater.

In this study, a novel adsorbent material for phosphate removal from wastewa-
ter was prepared by modifying natural wood through a top−down approach to obtain
nanowood, followed by grafting polymerization to produce a porous and amino−rich
cross−linked nanowood−based material (PEI−PW), and ultimately loading the Zr compo-
nent on the nanowood matrix skeleton via the chelating effect of amino groups to prepare
the Zr−loaded nanocomposite (PEI−PW@Zr). The adsorbent was subjected to compre-
hensive characterization to evaluate its potential for phosphate adsorption. To optimize
the PEI−PW@Zr formulation (Zr concentration) and investigate the effects of adsorbent
dosage, adsorption time, temperature, pH of the solution, and the presence of coexisting
anions on the adsorption efficiency of PEI−PW@Zr for phosphate, a series of batch experi-
ments were performed. Additionally, the cyclic regeneration performance of the adsorbent
was examined.

2. Materials and Methods
2.1. Materials

Basswood was purchased from Decci Co., Ltd.: Dongguan, China. Polyethyleneimine
(PEI, M. W. 70,000, 50 wt% in water), acetic acid (98 wt%), NaClO2 (80 wt%), ZrOCl2·8H2O
(98 wt%), KH2PO4 (99 wt%), and γ−(2, 3−epoxy−propoxy) propyl trimethoxy−silane
(KH560) were purchased from Aladdin Reagent Co., Ltd.: Ontario, CA, USA. NaClO was
purchased from Tianjin Baishi Chemical Industry Co., Ltd.: Tianjin, China. Deionized (DI)
water was made in a laboratory using an ultrapure water system (Milli−Q, Merck KGaA,
Germany: Darmstadt, Germany). The porous nanowood (PW) was obtained from the
laboratory based on our previous work [32,33].

2.2. Preparation of PEI−PW

A certain amount of PW was put into a 250 mL beaker containing 200 mL of DI
water, and then 2 g of KH560 was added and magnetically stirred for 2 h. Subsequently,
12 g of PEI was added and stirred for 30 min. During the reaction, PW was squeezed
continuously to accelerate the modification rate of PW. Finally, PEI−PW was obtained by
washing thoroughly with DI water and freeze−drying.
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2.3. Preparation of Zr−Loaded Adsorbent (PEI−PW@Zr)

A certain amount of dry PEI−PW was put into a 100 mL beaker, and different concen-
trations of ZrOCl2·8H2O aqueous solution were added to completely immerse PEI−PW.
The pH was adjusted to 10 with a 0.5 M NaOH solution. Then, such solution was left at
60 ◦C for 2 h and at room temperature for 24 h. Finally, PEI−PW@Zr was obtained by
washing thoroughly with DI water and freeze−drying.

2.4. Characterization

The functional groups of samples were investigated using a Nicolet iS10 Fourier−
transform infrared (FTIR) spectrometer (Thermo Fisher, Waltham, MA, USA) with the
wavenumber range of 4000–400 cm−1. The thermal behaviors of samples were performed
using a TGA 550 thermogravimetric analysis (TA Instruments, New Castle, DE, USA)
from 25 ◦C to 600 ◦C with a heating rate of 20 ◦C min−1 under a nitrogen atmosphere.
The modification and adsorption mechanism of samples were revealed using an X-ray
photoelectron spectrometer (XPS, Thermo SCIENTIFIC ESCALAB 250Xi, Waltham, MA,
USA) with a monochromatic Al K alpha source operated at 230 W.

2.5. Adsorption Experiments

Adsorption experiments were conducted by the batch method to test the influence
of adsorption kinetics, adsorption isotherm (varying from 20 to 500 mg·L−1) and other
experiments of the concentration of ZrOCl2·8H2O (varying from 0.005 to 0.1 mol·L−1), the
amount of adsorbent (0.5, 1, 1.5, and 2 g·L−1), pH (3–11), coexisting anions (SO4

2−, HCO3
−,

and Cl−), and temperature (277.2, 298.2, 308.2, and 318.2 K). Before the adsorption process,
the pH was adjusted to the required value by using 0.1 M NaOH and HCl. Then, a certain
amount of PEI−PW@Zr adsorbent was added into a beaker containing a certain amount of
phosphate solution with a known concentration and squeezed slowly at intervals. After
the adsorption reached equilibrium, the phosphate concentration was measured using a
UV−2550 spectrophotometer (Shimadzu, Japan). The adsorption capacity of PEI−PW@Zr
was calculated by the Equation (1).

qe =
(C0 − Ce)V

m
(1)

where C0 and Ce are the initial phosphate concentration (mg·L−1) and adsorption equilib-
rium phosphate concentration (mg·L−1), respectively, V is the volume of the solution (L),
and m is the mass of PEI−PW@Zr (g).

To study the stability of PEI−PW@Zr, a reusability experiment was conducted. An
amount of 100 mg PEI−PW@Zr was added to 100 mL 100 mg·L−1 phosphate solution until
reaching the adsorption equilibrium. After the adsorption, the adsorbent was taken out
and regenerated with 1 wt% NaCl solution by stirring for 1 h. Finally, the adsorbent was
fully rinsed with DI water to remove the residual NaCl solution, and then regenerated
PEI−PW@Zr could be obtained for adsorption in succeeding cycles.

3. Results
3.1. Characterizations

Figure 1a shows the FTIR spectra of PW, PEI−PW, PEI−PW@Zr, and phosphate−
adsorbed PEI−PW@Zr. The peak at 3321 cm−1, attributed to the stretching vibration
of O−H and N−H groups, became wider and more intense in PEI−PW compared to
PW. This was due to the overlapping of stretching vibration peaks of the two groups.
Additionally, two new peaks at 1558 and 1457 cm−1, corresponding to the stretching
vibrations of C=N and N−H groups, respectively, appeared in PEI−PW [34]. The peak
at 1096 cm−1 indicated the presence of Si−O bonds in PEI−PW. Thus, the amino group
in PEI−PW was introduced through the cross−linking reaction between PEI and KH560.
Moreover, the stretching vibration peaks of −CH2− at 2916 and 2928 cm−1 confirmed the
successful introduction of PEI into PW. Furthermore, after phosphate adsorption, a new
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peak at 1040 cm−1 appeared in the spectrum of PEI−PW@Zr, which was attributed to the
asymmetric stretching vibration of P−O, indicating the successful phosphate absorption
by PEI−PW@Zr.

Nanomaterials 2023, 13, x FOR PEER REVIEW 4 of 12 
 

 

N−H groups, respectively, appeared in PEI−PW [34]. The peak at 1096 cm−1 indicated the 
presence of Si−O bonds in PEI−PW. Thus, the amino group in PEI−PW was introduced 
through the cross−linking reaction between PEI and KH560. Moreover, the stretching vi-
bration peaks of −CH2− at 2916 and 2928 cm−1 confirmed the successful introduction of PEI 
into PW. Furthermore, after phosphate adsorption, a new peak at 1040 cm−1 appeared in 
the spectrum of PEI−PW@Zr, which was attributed to the asymmetric stretching vibration 
of P−O, indicating the successful phosphate absorption by PEI−PW@Zr. 

 
Figure 1. (a) FTIR spectra, (b) XPS full−scan spectra, (c) TGA curves, and (d) DTG curves of PW, 
PEI−PW, PEI−PW@Zr, and phosphate−adsorbed PEI−PW@Zr. 

The changes in the surface chemical structures and elements of all samples were an-
alyzed using XPS. The XPS full−scan spectra of PW, PEI−PW, PEI−PW@Zr, and phos-
phate−adsorbed PEI−PW@Zr are presented in Figure 1b. The peaks with binding energies 
of 181.0, 286.1, 399.2, and 532.1 eV were attributed to Zr 3d, C 1s, N 1s and O 1s, respec-
tively. Notably, the appearance of a N 1s peak on the XPS spectrum only after the coupling 
reaction dendrimer verified the successful introduction of PEI in PW. Additionally, the 
presence of a P 2p peak at 133.1 eV after adsorption confirmed the successful adsorption 
of PEI−PW@Zr. 

To investigate the thermal stability of the samples, TGA was conducted on PW, 
PEI−PW, PEI−PW@Zr, and phosphate−adsorbed PEI−PW@Zr. As presented in Figure 1c, 
the weight loss profiles of all four samples comprised two stages. The first stage, up to 200 
°C, was attributed to the elimination of residual moisture, while the second stage (200–
400 °C) corresponded to the decomposition of cellulose, amylated lignin, and other or-
ganic components of wood, wherein the C−C bond between cellulose units was broken 
[35]. Additionally, Figure 1c indicates that the phosphate−adsorbed PEI−PW@Zr had a 
higher residual mass than other samples, resulting from the successful adsorption of phos-
phates with flame retardant properties. The TGA analysis further revealed that the mate-
rial had a maximum weight loss of approximately 300 °C, with no significant thermal de-
composition below 200 °C (Figure 1d). Based on the findings, it can be concluded that 
PEI−PW@Zr exhibited favorable thermal stability, which is of practical significance. 

Figure 1. (a) FTIR spectra, (b) XPS full−scan spectra, (c) TGA curves, and (d) DTG curves of PW,
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The changes in the surface chemical structures and elements of all samples were ana-
lyzed using XPS. The XPS full−scan spectra of PW, PEI−PW, PEI−PW@Zr, and phosphate−
adsorbed PEI−PW@Zr are presented in Figure 1b. The peaks with binding energies of
181.0, 286.1, 399.2, and 532.1 eV were attributed to Zr 3d, C 1s, N 1s and O 1s, respectively.
Notably, the appearance of a N 1s peak on the XPS spectrum only after the coupling reaction
dendrimer verified the successful introduction of PEI in PW. Additionally, the presence of a
P 2p peak at 133.1 eV after adsorption confirmed the successful adsorption of PEI−PW@Zr.

To investigate the thermal stability of the samples, TGA was conducted on PW, PEI−PW,
PEI−PW@Zr, and phosphate−adsorbed PEI−PW@Zr. As presented in Figure 1c, the weight
loss profiles of all four samples comprised two stages. The first stage, up to 200 ◦C, was
attributed to the elimination of residual moisture, while the second stage (200–400 ◦C) corre-
sponded to the decomposition of cellulose, amylated lignin, and other organic components
of wood, wherein the C−C bond between cellulose units was broken [35]. Additionally,
Figure 1c indicates that the phosphate−adsorbed PEI−PW@Zr had a higher residual mass
than other samples, resulting from the successful adsorption of phosphates with flame
retardant properties. The TGA analysis further revealed that the material had a maximum
weight loss of approximately 300 ◦C, with no significant thermal decomposition below
200 ◦C (Figure 1d). Based on the findings, it can be concluded that PEI−PW@Zr exhibited
favorable thermal stability, which is of practical significance.

3.2. Adsorption Study
3.2.1. Effect of Zr Content

Zr content is a critical parameter that influences the adsorption performance of
PEI−PW@Zr [36]. PEI−PW, which lacks active sites, exhibited minimal phosphate ad-
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sorption capacity. To investigate the effect of ZrOCl2·8H2O concentration, Figure 2a
shows the phosphate adsorption by PEI−PW@Zr at various concentrations. The highest
adsorption capacity (80.9 mg·g−1) of PEI−PW@Zr was observed at a ZrOCl2·8H2O con-
centration of 0.01 mol·L−1. At concentrations lower than this, less Zr was complexed with
the amino group on the PEI−PW surface, leading to low adsorption capacity. Conversely,
at concentrations higher than 0.01 mol·L−1, the adsorption capacity of PEI−PW@Zr
decreased with an increase in Zr content. The formation of Zr(OH)4 particles increased
significantly under alkaline conditions, leading to difficulty in entering the pores of
PEI−PW and only chelating on the surface. These particles were too large to penetrate
the porous structure of PEI−PW@Zr, reducing the active sites of phosphate adsorption,
and were prone to detachment during the aqueous solution adsorption process. There-
fore, PEI−PW@Zr with ZrOCl2·8H2O concentration of 0.01 mol·L−1 was chosen for
subsequent adsorption experiments.
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adsorbent dosage = 1.0 g·L−1, initial pH = 3, room temperature) and (b) the amount of PEI−PW@Zr
(initial phosphate concentration = 100 mg·L−1, initial pH = 3, room temperature) on adsorption capacity.

3.2.2. Effect of the Amount of Adsorbent

As shown in Figure 2b, the adsorption capacity of PEI−PW@Zr increased remarkably
as the amount of adsorbent increased from 0.5 g·L−1 to 1 g·L−1. This can be attributed
to the fact that a larger contact area and more binding sites were provided for phosphate
adsorption. However, when the amount of adsorbent exceeded 1 g·L−1, the adsorption
capacity slowly decreased due to a reduction in unit adsorption capacity under a constant
phosphate concentration. Therefore, for this experiment, an adsorbent dosage of 1 g·L−1

was chosen.

3.2.3. Adsorption Kinetics Study

To investigate the effect of contact time between PEI−PW@Zr and phosphate on
adsorption, kinetics experiments were performed and the results are presented in Figure 3a.
It was observed that, when stirred, PEI−PW@Zr reached 80% of the adsorption equilibrium
within 3 h and reached the adsorption equilibrium in approximately 8 h. Compared
with non−stirring adsorption, the time taken for stirring adsorption to reach adsorption
equilibrium decreased by 70.2%, and the adsorption capacity increased by 8.54%. The
reason behind this improvement can be attributed to the large number of channels present
in the as−made PEI−PW@Zr, which enhanced the mass transfer effect of phosphate liquid
under stirring [37]. This increase in mass transfer improved the chances of contact and
collision between phosphate and Zr on the adsorbent surface, leading to an improved
adsorption rate and capacity of PEI−PW@Zr.

To elucidate the phosphate adsorption mechanism by PEI−PW@Zr, three kinet-
ics models, namely pseudo−first−order kinetics, pseudo−second−order kinetics, and
intra−particle diffusion models, were employed to fit the experimental data (see
Supplementary Material) [15,28,29]. These models are primarily regulated by physi-
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cal, chemical, and intra−particle diffusion processes, respectively [38]. As depicted in
Figure 3b−d and Table S1, the correlation coefficient (R2) of the pseudo−second−order
kinetic model was the highest among the three models, with a value of 0.9993, whereas
the R2 values of the other two models were 0.9484 and 0.9352, respectively. Moreover, the
equilibrium adsorption capacity of 101.32 mg·g−1 calculated by the pseudo−second−order ki-
netics model was more consistent with the actual adsorption equilibrium value (97.90 mg·g−1).
These observations suggest that chemisorption was the dominant process during the phos-
phate adsorption by PEI−PW@Zr, and the pseudo−second−order kinetics model was
found to be more suitable for describing the adsorption process.
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3.2.4. Adsorption Isotherm Study

The effect of initial phosphate concentrations on the adsorption capacity of PEI−PW@Zr
and their interaction mechanism was studied through adsorption isotherm analysis, as de-
picted in Figure 4a. The results indicate that the adsorption capacity of PEI−PW@Zr in-
creased markedly with an increase in phosphate concentration. As the concentration was
raised to 300 mg·L−1 or above, the reaction sites of PEI−PW@Zr were nearly saturated,
leading to a gradual flattening of the adsorption capacity. When the concentration was
500 mg·L−1, the adsorption capacity reached the highest, 217.0 mg·g−1. Moreover, the
comparisons of the PEI−PW@Zr with other similar adsorbents are listed in Table S2. It
can be easily seen that the adsorption capacity of PEI−PW@Zr is better than that of most
similar adsorbents, which may be caused by the uniformly dispersed Zr(OH)4 on the
wood surface.

The present study investigated the applicability of Langmuir and Freundlich isotherm
models (see Supplementary Material) for describing the phosphate adsorption process
of PEI−PW@Zr [4], as depicted in Figure 4b,c and Table S3. The Langmuir model as-
sumes an ideal adsorption system with a limited number of equivalent adsorption sites
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distributed uniformly on the adsorbent surface, while the Freundlich model is appropriate
for multilayer adsorption with a heterogeneous surface as it describes the heterogeneity
of the adsorption surface [21]. Our findings showed that the R2 value of the Langmuir
adsorption model was significantly higher than that of the Freundlich model. Furthermore,
the maximum adsorption capacity predicted by the Langmuir adsorption model was in
closer agreement with the actual adsorption equilibrium capacity of 217.0 mg·g−1. Hence,
the Langmuir adsorption isotherm model was deemed more suitable for characterizing the
phosphate adsorption process of PEI−PW@Zr, wherein the adsorption mainly occurred via
monolayer adsorption and the adsorption sites on the adsorbent were evenly distributed
over its surface.
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3.2.5. Adsorption Thermodynamic Study

To gain a comprehensive understanding of the adsorption mechanism, thermody-
namic parameters such as adsorption entropy (∆S), adsorption enthalpy (∆H), and Gibbs
free energy (∆G) were calculated using the van’t Hoff equation (see Supplementary
Materials) [5]. The adsorption capacity of phosphate by PEI−PW@Zr at various tempera-
tures was presented in Figure 5a and Table S4. The results show an increase in adsorption
capacity with an increase in temperature, which could be attributed to the enhancement
in phosphate diffusion in solution, leading to an improved binding to the active sites on
the surface of the adsorbents. The calculated value of ∆H > 0 indicates that the adsorption
process was endothermic in nature. Furthermore, the positive value of ∆S indicates that
PEI−PW@Zr increased interfacial freedom during the adsorption process, and the negative
∆G values demonstrate the spontaneity of the adsorption process.

3.2.6. Effect of Solution pH

The solution pH is a crucial factor affecting the adsorption process since it affects
both the potential of the adsorbent surface and the form of the adsorbate [39]. As de-
picted in Figure 5b, the maximum adsorption capacity of 87.3 mg·g−1 was attained by
PEI−PW@Zr at pH 3, which gradually declined with an increase in pH value. This trend
could be attributed to the protonation of the amino group on PEI−PW@Zr, which imparted
a positive charge to the adsorbent surface, thereby facilitating electrostatic attraction be-
tween the positively charged adsorbent and negatively charged phosphate ions under
acidic conditions. As the pH value increases, the amino group deprotonates, exposing
the lone electron pairs, and the adsorbent surface becomes negatively charged. Conse-
quently, the electrostatic repulsion of phosphate ions increases, which makes it difficult
for them to approach the active sites of the adsorbent, thereby causing a decline in the
adsorption capacity.
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concentration = 100 mg·L−1, adsorbent dosage = 1.0 g·L−1, initial pH = 3), (b) pH (initial phosphate
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temperature). (d) Phosphate adsorption by PEI−PW@Zr over 10 successive adsorption–desorption
cycles (initial phosphate concentration = 100 mg·L−1, adsorbent dosage = 1.0 g·L−1, initial pH = 3,
room temperature).

3.2.7. Effect of Co−Existing Anions

It is widely recognized that numerous harmful anions coexist in both industrial
and domestic wastewater, which may influence the practical adsorption of phosphate
by the adsorbent [40]. To investigate the effect of coexisting anions on the phosphate
adsorption process, two different concentrations (100 and 200 mg·L−1) of competing ions
were selected to coexist with phosphate for adsorption experiments, and the results are
presented in Figure 5c. The inclusion of competing anions into the phosphate solution
evidently affected the phosphate adsorption of PEI−PW@Zr, leading to a reduction
in its adsorption capacity. As the concentration of coexisting anions increased, the
adsorption capacity of the adsorbent for phosphate decreased, and the order of the effect
on the adsorbent was SO4

2− > Cl− > HCO3
−. The observed results could be attributed to

differences in the number of negative charges carried by the coexisting anions. Although
the coexistence of anions affected the adsorption of phosphate by the adsorbent, it was
generally within an acceptable range.

3.2.8. Reusability

The reusability of adsorbents is a crucial factor in their practical application [41]. To
evaluate the reusability of PEI−PW@Zr as an adsorbent for phosphate, 1 wt% NaCl solution
was used as the desorption agent. Figure 5d shows that after 10 cycles, the adsorption
capacity of PEI−PW@Zr decreased from 95.6 mg·g−1 to 77.3 mg·g−1, indicating that it
exhibited excellent reusability. However, this reduction could be attributed to the existence
of some phosphates that were tightly bound to the adsorbent and could not be completely
removed during desorption. Interestingly, after the sixth adsorption–desorption cycle, the
adsorption capacity of PEI−PW@Zr slightly increased, possibly due to the loosening of
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the adsorbent structure after prolonged soaking in water, which exposed some previously
hidden adsorption sites. Nevertheless, the adsorption capacity of the adsorbent remained
stable and did not decline in subsequent cycles, suggesting that the number of irreversible
binding sites did not increase. Overall, the as−prepared PEI−PW@Zr exhibited good
reusability for phosphate in water.

3.2.9. Adsorption Mechanisms Analysis

In this work, the successful adsorption of phosphate on PEI−PW@Zr could be con-
firmed directly by FTIR, XPS, and TGA analyses. The phosphate adsorption by PEI−PW@Zr
mainly includes two adsorption mechanisms: (1) Electrostatic attraction: According to
the FTIR and XPS spectra of the samples, amino groups and Zr components have been
successfully introduced into the porous wood. Thus, under the acidic conditions, the
residual amino groups could be protonated to positive charge to attract the phosphate
anions. (2) Ligand exchange: Due to the strong affinity of Zr for phosphate, phosphate in
aqueous solution binded to Zr in the as−prepared PEI−PW@Zr through ligand exchange,
thereby completing adsorption.

4. Conclusions

In conclusion, a phosphate adsorbent (PEI−PW@Zr) with porosity, environmental
protection, and high efficiency was successfully prepared using natural wood as raw mate-
rial by delignification, crosslinking, and complexing reactions. The adsorption mechanism
of the adsorbent was based on electrostatic attraction and ligand exchange processes. The
results of this study demonstrate that PEI−PW@Zr exhibited a high adsorption capacity
(217.0 mg·g−1), and its adsorption kinetics and isotherm models were well described by the
pseudo−second−order kinetics model and Langmuir isotherm model, respectively. In com-
parison with other powder adsorbents, PEI−PW@Zr exhibited a significantly improved
adsorption efficiency due to its bulk structure. Moreover, PEI−PW@Zr demonstrated
promising reusability with a retained adsorption capacity of over 80% after 10 regeneration
cycles. Hence, the developed PEI−PW@Zr has a potential for effective removal of excess
phosphate from wastewater.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/nano13111807/s1, Figure S1: The structures of orthophos-
phate, pyrophosphate, long−chain polyphosphate, and phosphodiester. Table S1: Kinetic parameters
of the phosphate adsorption on PEI−PW@Zr. Table S2. Comparative studies of phosphate adsorp-
tion capacity of PEI−PW@Zr and other similar adsorbents. Table S3: The fitting parameters of
Langmuir and Fruendlich models of the phosphate adsorption on PEI−PW@Zr. Table S4: Thermody-
namic parameters of the phosphate adsorption on PEI−PW@Zr. References [42–49] are cited in the
Supplementary Materials.
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