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Abstract: Mesoporous silica engineered nanomaterials are of interest to the industry due to their
drug-carrier ability. Advances in coating technology include using mesoporous silica nanocontainers
(SiNC) loaded with organic molecules as additives in protective coatings. The SiNC loaded with
the biocide 4,5-dichloro-2-octyl-4-isothiazolin-3-one (DCOIT), i.e., SiNC-DCOIT, is proposed as an
additive for antifouling marine paints. As the instability of nanomaterials in ionic-rich media has
been reported and related to shifting key properties and its environmental fate, this study aims
at understanding the behaviour of SiNC and SiNC-DCOIT in aqueous media with distinct ionic
strengths. Both nanomaterials were dispersed in (i) low- (ultrapure water—UP) and (ii) high- ionic
strength media—artificial seawater (ASW) and f/2 medium enriched in ASW (f/2 medium). The
morphology, size and zeta potential (ζP) of both engineering nanomaterials were evaluated at
different timepoints and concentrations. Results showed that both nanomaterials were unstable in
aqueous suspensions, with the initial ζP values in UP below −30 mV and the particle size varying
from 148 to 235 nm and 153 to 173 nm for SiNC and SiNC-DCOIT, respectively. In UP, aggregation
occurs over time, regardless of the concentration. Additionally, the formation of larger complexes was
associated with modifications in the ζP values towards the threshold of stable nanoparticles. In ASW,
SiNC and SiNC-DCOIT formed aggregates (<300 nm) independently of the time or concentration,
while larger and heterogeneous nanostructures (>300 nm) were detected in the f/2 medium. The
pattern of aggregation detected may increase engineering nanomaterial sedimentation rates and
enhance the risks towards dwelling organisms.

Keywords: agglomeration; aggregation; antifouling; DCOIT; mesoporous silica; marine; stability

1. Introduction

In Europe, more than one million tons of silica engineering nanomaterials (ENMs)
were traded in 2022 [1]. Thus, increasing amounts of silica-based ENMs are expected in
natural compartments through the release of urban and industrial mismanaged sewage
effluents [2].

Several types of silica ENMs (e.g., fumed silicas, silica sols, mesoporous silica, etc.)
can be used in different industrial applications [3,4]. In particular, mesoporous silica
nanocontainers (SiNCs) gained interest in generating drug-delivery systems and stimuli-
responsive nanocarriers [5,6] due to their hollow structure, high surface area, tunable
pore size, biocompatibility and low-cost synthesis [3]. The inclusion of SiNC additives in
marine protective coatings has been highlighted due to the successful encapsulation and
controlled release of antifouling biocides [7–9] and anticorrosion agents [10–12]. These
ENMs showed effective biocidal activity and a reduced environmental footprint compared
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to traditional marine coatings by controlling chemical release over time [7,13–15]. However,
paint particles are often released into the water column during paint application, boat
maintenance activities or due to uncontrolled leaching [16], which may negatively impact
aquatic species [17–19].

Given their high surface area, ENMs may experience homo- and hetero-aggregation in
natural environments and undergo other physicochemical processes, such as sedimentation,
adsorption or coating. Those processes are known to modulate the fate and bioavailability
of ENM [20,21] and are influenced by abiotic factors, such as ionic strength or the presence
of dissolved organic material [22–25]. Few studies have addressed the influence of those
factors on the stability of mesoporous silica nanocontainers [12,26,27] comparatively to
what is described for other metal nanomaterials [28–30].

Despite the progress in understanding the interactions of ENMs in environmental
matrices [31], the behaviour of ENMs at their end-life stages when reaching marine areas
remains limited [32,33]. Insights into the transformations experienced by ENMs under
those conditions will support the generation of safer nano-based products [34].

The characterization of silicon nanoparticles, structurally distinct from SiNC, in sea-
water, confirmed the formation of aggregates of different sizes with implications for ENM
ecotoxicity [35–38] and transport in seawater [39]. Little is known about the colloidal
stability of mesoporous silica ENMs once released into the aquatic compartment [26,40],
and no clear pattern linking toxicity with particle size has been established yet. For instance,
Bondarenko et al. [40] performed an ecotoxicology survey testing mesoporous silica ENMs
in freshwater and marine species. The authors reported no toxicity (EC50 > 100 mg/L) in
all models except for freshwater microalgae (EC50 = 83.6 mg/L). In parallel, the hydro-
dynamic size of the ENM was estimated in different test media. The silica nanoparticles
detected in freshwater (575 ± 65 nm) were smaller than what was found in the saline
medium (1101 ± 76 nm), which suggests that particle size may have implications for the
toxicological effects of this ENM. On the other hand, Figueredo et al. [26], who tested meso-
porous silica particles with a hydrodynamic size between 180 nm and 708 nm, observed
that the sensitivity of marine organisms to SiNC was species-specific and independent of
particle size.

In the present study, the ENMs (1) hollow silica nanocapsules (SiNC) and (2) SiNC
loaded with the antifouling biocide 4,5-dichloro-2-octyl-4-isothiazolin-3-one (SiNC-DCOIT),
two forms of mesoporous silica nanomaterials, were characterized in terms of stability in
media of different ionic strengths and concentrations, through time. The results gather
data on the sizing and electric charge of these ENMs in standardized test media used in
ecotoxicological surveys: artificial seawater and f/2-enriched artificial seawater medium,
plus ultrapure water. The dataset will help unveil the transformations experienced by these
ENMs when reaching the ocean.

2. Materials and Methods
2.1. Materials

Acetonitrile and methanol (HPLC grade) were purchased from Fisher Scientific (Hamp-
ton, NH, USA). The SEA-NINE™ 211N (30% of DCOIT in xylene) was obtained from Rohm
and Haas (Philadelphia, PA, USA). Tetraethoxysilane (TEOS, 99.9%), cetyltrimethylam-
monium bromide (CTAB, >98%) was supplied by Sigma-Aldrich (St. Louis, MO, USA).
Pro-Reef salt was purchased from Tropic Marin® (Wartenberg, Germany). Analytical grade
xylene was provided by Labscan (Rio Janeiro, Brazil). All other chemicals were obtained
from Riedel-de-Haën (Charlotte, NC, USA).

2.2. Synthesis of Engineered Nanomaterials

Mesoporous silica nanocontainers (SiNCs) were synthesized according to Chen and
collaborators [41] and the encapsulation of SEA-NINE™ 211N in SiNC (SiNC-DCOIT) is
described in Maia et al. [8]. The nanomaterial synthesis is detailed in the Supplementary
Material. Briefly, the formation of silica nanocapsules and the biocide encapsulation occurs
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in one step, resulting from an oil-in-water microemulsion polymerization process. Meso-
porous capsules with differentiated porosity from core to outer shell regions were generated
due to the gasification of solvents (oil phase) arising from the exothermic polymerization
of TEOS.

Both ENMs were characterized previously regarding textural properties (Table S1),
biocide loading and release [8]. Additionally, the chemical structure of the antifouling
nanomaterial was confirmed based on Fourier-transform infrared spectroscopy (FTIR)
spectra and the biocide degradation profile in seawater obtained via high-performance
liquid chromatography (HPLC) [26].

2.3. Test Solutions and Dispersions

SEA-NINE™ 211N (hereinafter referred as DCOIT) was first dried for 30 min under
140 ◦C in a dry oven to evaporate xylene. The same drying step was performed in SiNC
and SiNC-DCOIT. The test dispersions were prepared (1 mg/L, free or as SiNC-DCOIT)
in the following: (i) low ionic strength medium, ultrapure water (UP water, Milli-Q water
18.2 MΩ, 25 ◦C); and (ii) two high ionic strength media, 0.45 µm filtered artificial seawater
with 35 salinity (ASW, detailed composition in Table S2) and f/2-enriched [42] in filtered
ASW with 35 salinity (f/2 medium, detailed composition in Table S3). The dispersions
were placed in an ultrasonic water bath (Selecta; 550 W; 40 kHz, 25 ◦C) for 30 min.

2.4. Engineered Nanomaterial Characterization

ENM size and morphology were characterized via scanning electron microscopy
(SEM) (Hitachi SU-70; Tokyo, Japan) coupled with energy dispersive spectroscopy using an
electron beam energy of 15 kV. Both nanomaterial suspensions were prepared in UP water
(1 mg/L), and the corresponding external particle diameter was determined using ImageJ
(NIH, Bethesda, MD, USA).

Intensity-based dynamic light scattering (hydrodynamic size,
−
xDLS) and surface

charge (zeta potential, ζP) measurements were carried out on a Zetasizer Nano-ZS (Malvern
Panalytical, UK) in 0.01, 0.5 and 1.0 mg/L of SiNC and SiNC-DCOIT.

The samples were initially pre-treated with an ultrasonic water-bath during 30 min
prior to the analysis and afterwards stored in ambient conditions, in a closed vessel and
protected from light.

The hydrodynamic size was monitored at times 0, 24 and 48 h, using polystyrene
cuvettes (DTS0012, Malvern Panalytical), default high sensitivity settings of 173◦ backscatter
detection, and the hydrodynamic diameter calculated using the Strokes-Einstein equation.
As previously described, the ζP was determined in suspensions of ENMs in UP water using
a capillary cuvette (DTS1060, Malvern Panalytical) and the Smoluchowski’s equation was
used to derive the ζP. Except for SEM analysis, all the measurements were performed at
25 ◦C in triplicate.

2.5. Statistical Analysis

Shapiro-Wilk and Levene’s tests were performed to analyse the dataset normality and

homoscedasticity, respectively (p = 0.05). Statistical differences in the ζP and
−
xDLS of each

ENM, regarding different concentrations and time points, were established using a two-
way ANOVA followed by a Holm-Šidák multiple comparison test whenever significant
differences were attained (p < 0.05). The same approach was adopted to assess the effects

of ionic strength on the
−
xDLS of each ENM. The statistical analyses were performed using

SigmaPlot v.12.5 (Systat Software Inc., San Jose, CA, USA), and the results were expressed
as average values (mean ± standard deviation). The variation within each parameter
measured over time was assessed to estimate the stability of the colloidal suspensions [43].
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3. Results and Discussion
3.1. Engineered Nanomaterial Morphology

SEM micrographs (Figure 1) showed spherical particles for both (a) SiNC and (b) SiNC-
DCOIT with a mean external diameter (d) of 121 nm and 134 nm, respectively. The one-step
SiNC synthesis produced homogenous nanocapsules with dimensions similar to what was
reported in previous studies [8,9,26] (detailed in Table S1). According to the ISO 26824 [44],
these ENMs fulfil the requirements to be considered a nanomaterial, as previous works
demonstrate that internal pores were within the nanoscale [11].
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The frequency histograms (Figure 1) with the particle size distribution of (c) SiNC
and (d) SiNC-DCOIT revealed the prevalence of smaller particles in empty ENMs when
compared to loaded nanocapsules; 50% of the particles were under 120 nm in SiNC, while
more than 50% were larger than 130 nm in SiNC-DCOIT, which are related to the presence
of large molecules of DCOIT.

The defined size of mesoporous silica, together with the successful encapsulation of
organic molecules, makes this synthesis procedure a promising way of manufacturing
antifouling nanomaterials for industrial applications [8,9], as it accelerates the production
of these ENMs compared to other methods involving functionalization processes [10,45].

3.2. The Zeta Potential of ENMs

The lack of stability of colloidal ENMs can be considered a drawback while characterizing
the exposure and ENM behaviour within an environmental risk assessment procedure, as it
decreases reproducibility between studies and compromises data analysis [43,46,47].

The ζP of both ENMs was assessed over time to evaluate the stability of the suspen-
sions in UP water. The results (Table 1 and Figure S3) showed that both ENMs were initially
below the threshold for charge-stabilized nanoparticles (±30 mV), indicating colloidal
instability for synthesized ENMs.
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Table 1. Zeta potential values (ζP, mV) in suspensions of hollow silica nanocontainers (SiNC: 0.01, 0.5
and 1.0 mg/L) or with encapsulated DCOIT (SiNC-DCOIT: 0.01, 0.5 and 1.0 mg DCOIT/L), dispersed
in ultra-pure water at 0, 24 and 48 h post resuspension. Data are expressed as averaged values ± SD
(n = 3). Superscript letters (a, b) indicate homogeneous groups within each nanomaterial (SiNC or
SiNC-DCOIT) and tested concentration, over time (p < 0.05). Symbols (*, #, $) denotes homogeneous
groups in each nanomaterial (SiNC or SiNC-DCOIT) and timepoint, due to concentration variation
(p < 0.05).

Nanomaterial Concentration
(mg/L)

Time
(h) pH ζP

(Mean ± SD, mV)

SiNC

0.01
0 6.4 −8.7 ± 0.2 (a,*)

24 6.6 −28.3 ± 3.0 (b)

48 6.7 −23.9 ± 2.0 (b,*)

0.5
0 6.8 −11.6 ± 0.6 (a,*#)

24 6.7 −31.8 ± 3.7 (b)

48 6.7 −32.6 ± 2.4 (b,#)

1.0
0 6.6 −16.6 ± 1.5 (a,#)

24 6.7 −31.7 ± 2.5 (b)

48 6.8 −29.8 ± 5.5 (b,#)

SiNC-DCOIT

0.01
0 6.2 −12.2 ± 0.6 (a,*)

24 6.4 −16.3 ± 1.5 (b)

48 6.7 −15.1 ± 1.1 (b,*#)

0.5
0 6.0 −15.3 ± 0.9 (b,#)

24 6.0 −14.3 ± 1.7 (ab)

48 6.3 −13.2 ± 0.4 (a,*)

1.0
0 6.2 −17.1 ± 0.1 ($)

24 6.2 −16 ± 0.8
48 6.4 −15.4 ± 0.3 (#)

Previous studies testing hollow SiNC and SiNC loaded with organic molecules re-
ported similar ζP values under this pH range, corroborating our results [10,12,26,48].
Conversely, other authors reported positive ζP values when cationic surfactants remain
encapsulated [11,49], thus highlighting the role of loaded molecules in the overall nanocon-
tainer surface charge. The ζP values increased over time for SiNC (p ≤ 0.01), reaching the
−30 mV threshold after 48 h, but remained approximately −15 mV for SiNC-DCOIT until
the end of the essay.

Based on the stability criteria defined by the OECD GD317 (2021) which set ±20% as
the maximum deviation from the initial value, the dispersion of SiNC-DCOIT is considered
stable, but not the SiNC. Ambrosone and co-authors (2014) [50] justify the silica reactivity
with the presence of surface silanol groups, which can explain the results obtained for SiNC.
Concerning SiNC-DCOIT, the same silanol groups could react with functional groups from
DCOIT molecules, thus reducing the availability of the former groups to be solvated and
contributing to the overall surface charge. However, previous studies that described the
release of DCOIT from these silica nanocapsules [8] revealed that DCOIT could be almost
fully extracted using organic solvents, implying that the interaction between DCOIT and
silanol groups is not irreversible. Furthermore, other reasons that may explain differences
in the surface charge of empty (SiNC) and DCOIT-loaded (SiNC-DCOIT) nanocapsules
include differences in the extent of the TEOS reaction and degree of surfactant impurities
staying in the nanocapsules after synthesis.

There is evidence showing that SiNC colloidal stability could be improved by ad-
justing the synthesis conditions, such as the catalyst concentration [51] or the biocide
concentration [15].

Understanding the ENM stability is important while studying their effects in biota.
The presence of organisms, leading to the release of excretion material, organic matter or
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other potential ligands, is a key factor affecting stability measurements [31,52,53]. There-
fore, the OECD GD317 advises the use of a flowchart regarding test media manipulation,
where natural organic matter (NOM) is suggested in specific cases as a nanomaterial’s
stabilizer [43]. This is generally stated in freshwater systems [53] and is likely to occur in
saline waters [54–57].

Herein, NOM was absent from the test media. However, studies demonstrated that
NOM present in seawater has a minor effect on the stabilization of some ENMs, delay-
ing but not preventing nanoparticle sedimentation [52,57,58]. According to the classical
Derjaguin, Landau, Verwey and Overbeek (DVLO) theory [59], colloidal particles are sur-
rounded by a diffuse electrical double layer (EDL) and the balance between the attractive
(e.g., Van der Walls) and repulsive (e.g., EDL) forces determines the colloidal stability
and, consequently, the state of aggregation of nanoparticles. High-electrolyte solutions,
such as seawater, contribute to a reduction in the thickness of the EDL that surrounds
nanoparticles, thus reducing the repulsive electrostatic interactions that modulate par-
ticle dispersion [60]. This electrostatic destabilization explains why the steric repulsion
effect induced by different types of NOM [52,61] may not prevent particle aggregation in
seawater. For instance, the presence of increasing concentrations of divalent cations in
NOM-coated metal nanomaterials reduced the overall energy barriers between particles
and was associated with increases in particle size [60].

Thus, we speculate that the low NOM present in seawater [56] will not prevent the
aggregation and the gravitation settling of synthesized ENMs, although more studies
are required.

3.3. The Influence of Ionic Strength on the ENM Hydrodynamic Diameter

Colloidal stability determines the state of aggregation of ENMs [60] and is modulated,
among other factors, by the electrolyte composition and the ionic strength of surrounding

media [22,27,56,61]. This study assessed the
−
xDLS of produced ENMs when suspended in

media of different ionic strengths and electrolyte compositions: (i) low ionic strength (UP
water) and (ii) high ionic strength (ASW and f/2 medium) (Tables 2, S4 and S5).

The DLS analysis recorded values of the polydispersity index above 0.7, reinforcing
the heterogeneous nature of the dispersions formed. Consequently, Z-average estimations
do not fulfil the set quality criteria. Thus, the ENM’s hydrodynamic size was based on the
average value of peaks obtained in size distribution histograms (intensity-based) on the
instrument software (Figures S1 and S2).

Initially (0 h), the increase in the ionic strength (UP < ASW < f/2) promoted the agglom-
eration of SiNC, with the largest complexes being detected in f/2 medium at concentrations

0.01 mg/L (
−
xDLS = 365 ± 43.9 nm) and 0.5 mg/L (

−
xDLS = 374 ± 55.5 nm), compared to

the values obtained in UP water (
−
xDLS = 148 ± 11.0 nm and

−
xDLS = 103 ± 44.4 nm for 0.01

and 0.5 mg/L, correspondingly; p < 0.05). Similar results were detected at 0.01 mg/L SiNC-

DCOIT (
−
xDLS = 169 ± 43.9; 233 ± 43.9; 196 ± 94.8 nm for UP water, ASW and f/2 medium,

respectively), but no statistical differences were noted at the highest concentrations. It
is hypothesized that the mono (Na+, Cl−) and divalent ions (Mg2+; SO2−) in the ASW
(Table S2) might adsorb to the surface of ENMs, causing electrostatic destabilization and,
consequently, promoting particle agglomeration as described by other authors [22,23,27,35].
In the f/2 medium, ferric chloride contributed to the formation of larger particle com-
plexes, as trivalent cations are known to exert a high electrostatic destabilization effect on
nanoparticles [62].

For the highest tested concentration (1.0 mg/L), differences in the media ionic strength
and composition had no significant effect on the ENMs’ hydrodynamic size. However,
particle enlargement and bimodal size distribution were evident, suggesting the presence
of agglomerates. When the concentration increases, the frequency of collisions between
particles is enhanced, which facilitates the agglomeration of ENMs [63,64]. Our data suggest
that the particle concentration may mask the effects of ionic strength on the agglomeration
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state of ENMs above a certain concentration threshold. Therefore, defining an optimal
concentration range to obtain monodispersed ENMs should be prioritized when evaluating
the stability of nanoparticles in different aqueous dispersions [65].

Table 2. Hydrodynamic size (nm) of hollow silica nanocontainers (SiNC: 0.01, 0.5 and 1.0 mg/L) or
with encapsulated DCOIT (SiNC-DCOIT 0.01, 0.5 and 1.0 mg/L) in ultrapure water (UP), artificial
seawater (ASW) or f/2-enriched seawater medium (f/2 medium) at 0, 24 and 48 h post-resuspension.
Data are expressed as averaged values ± SD (n = 3). Superscript letters (a, b) indicate statistical
differences (p < 0.05) between test media, within each combination of concentration and time, for
each nanomaterial (SiNC or SiNC-DCOIT). Symbols (*, #, $) denote significant differences (p < 0.05)
over time, within each concentration and test media, for each nanomaterial.

Nanomaterial
Concentration

(mg/L) Time (h)
Size (nm)

UP ASW f/2 Medium

SiNC

0.01
0 148 ± 11.0 (a,*) 161 ± 36.6 (a,*) 365 ± 43.9 (b,#)

24 272 ± 51.2 (#) 269 ± 70.7 (#) 279 ± 27.4 (*)

48 451 ± 40.1 (b,$) 262 ± 51.9 (a,#) 276 ± 21.6 (a,*)

0.5
0 103 ± 44.4 (a,*) 257 ± 103.2 (ab) 374 ± 55.5 (b)

24 320 ± 112.0 (#) 223 ± 22.5 312 ± 30.2
48 318 ± 119.3 (#) 287 ± 12.9 310 ± 60.5

1.0
0 235 ± 113.7 176 ± 122.6 336 ± 47.0

24 456 ± 203.6 224 ± 57.7 334 ± 14.5
48 264 ± 63.8 235 ± 29.9 363 ± 13.8

SiNC-DCOIT

0.01
0 169 ± 53.5 (a,*) 233 ± 26.0 (b) 196 ± 94.8 (b)

24 262 ± 18.6 (b,#) 200 ± 25.4 (a) 190 ± 5.5 (a)

48 209 ± 15.6 (ab,*#) 266 ± 9.1 (b) 203 ± 45.2 (a)

0.5
0 194 ± 6.1 195 ± 56.6 180 ± 32.2

24 246 ± 29.5 201 ± 3.6 199 ± 58.8
48 212 ± 9.1 192 ± 55.1 169 ± 24.6

1.0
0 152 ± 20.3 (*) 189 ± 69.0 254 ± 90.2 (*)

24 241 ± 23.5 (#) 220 ± 69.6 344 ± 61.0 (#)

48 237 ± 43.2 (#) 240 ± 104.0 310 ± 84.6 (*#)

Time promoted the formation of agglomerates of larger dimensions for both ENMs
in the conditions tested, but the effects were more evident with low ionic strength media.
In UP water, particle complexes with average dimensions of 451, 318 and 264 nm were
reported at 48 h for 0.01, 0.5 and 1.0 mg/L SiNC, respectively. Meanwhile, in ionic-rich
media, the minimum and maximum hydrodynamic sizes detected were 235–287 nm for
ASW and 276–363 nm for f/2 medium. In SiNC-DCOIT, unimodal dispersions and particle
enlargement were evident in UP water by the end of the assay (209, 212 and 237 nm for
0.01, 0.5 and 1.0 mg/L SiNC, respectively), but differences between time points were only
significant at 1.0 mg/L in f/2 medium.

Because particle enlargement occurred along with variations on the ζP value for SiNC,
as described in Section 3.2, it is hypothesized that aggregation promoted the electrostatic
stabilization of SiNC by reducing the surface energy, as reported for other ENMs [51,64].
The same was not verified for SiNC-DCOIT, highlighting that biocide chemistry modulates
nanomaterial surface reactivity and the agglomeration state.

A decrease in the particle size was registered in 1.0 mg/L SiNC suspended in UP water
after 48 h, suggesting the removal of SiNC from the water column by settling, while in the
f/2 medium, the same was recorded after 24 h in 1.0 mg/L SiNC. These results indicate
faster deposition of ENM aggregates in seawater and differ from what was reported for
SiO2 NPs, which can last for months in the water column [39]. In SiNC-DCOIT, the average
particle size was reduced from 24 h to 48 h in 0.5 and 1.0 mg/L in UP water and in 1.0 mg/L
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in the f/2 medium. Information on the sedimentation time of ENMs is critical to predicting
shelf time and the potential environmental sink and impacts of those ENMs.

4. Conclusions

The agglomeration pattern observed in SiNC (widely used in nanotechnology) and
SiNC-DCOIT (the novel antifouling nanomaterial) indicates a lack of colloidal stability of
manufactured nanomaterials in both low- and high-ionic-strength media, as confirmed by
the zeta potential and hydrodynamic size estimations. The encapsulation of DCOIT biocide
in SiNC contributed to stabilizing the nanomaterial when dispersed. However, the extent
of electrostatic repulsive forces was insufficient to prevent particle agglomeration.

Saline media, either a natural matrix or presenting as a defined composition, are
characterized by high ionic content and complexity. Given the lack of specific nanosafety
guidelines for marine water quality, this dataset is paramount to interpreting ecotoxicologi-
cal results more reliably, as confirmed by the agglomeration or aggregation of nanoparticles
and, eventually, sedimentation occurring in high-ionic media.

The present results highlight the aggregation of these novel ENMs and the increased
bioavailability of these nanomaterials to sessile and sediment-dwelling marine organisms.
Despite the benefits of reduced toxicity described for SiNC-DCOIT compared to free DCOIT,
the risks associated with the release of coating pain particles containing ENMs should not
be neglected.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano13111738/s1. Figure S1: Histograms with particle size distribution
(nm) based on the dynamic light scattering properties of hollow silica nanocontainers (SiNC) in
ultra-pure water at distinct concentrations (0.01, 0.5 and 1.0 mg/L of SiNC) and timepoints (0, 24,
48 h); Figure S2: Histograms with particle size distribution (nm) based on the dynamic light scattering
properties of DCOIT encapsulated in silica nanocontainers (SiNC-DCOIT) in ultra-pure water at
distinct concentrations (0.01, 0.5 and 1.0 mg/L of SiNC) and timepoints (0, 24, 48 h); Figure S3: Zeta
potential (ζP, mV) in suspensions of 0.01, 0.5 and 1.0 mg/L of (a) hollow silica nanocontainers (SiNC)
or (b) with encapsulated DCOIT (SiNC-DCOIT), dispersed in ultra-pure water, at 0, 24 and 48 h.
Data is expressed as averaged values ± SD (n = 3); Table S1: Textural properties of hollow silica
nanocontainers (SiNCs) and DCOIT encapsulated in silica nanocontainers (SiNC-DCOITs); Table S2:
Chemical composition of artificial seawater, 35 salinity; Table S3: ASW enrich f/2 media recipe,
dissolving the list of inorganic reagents in ASW; Table S4: Analysis of Variance (Two-way ANOVA,
main effects) testing for effects due to time (0, 24, 48 h) and test media (ultrapure water (UP); artificial
seawater (ASW) or f/2-enrich in ASW (f/2)) on the values of hydrodynamic size to hollow silica
nanocontainers (SiNC). Significant differences (p = 0.05) are indicated in bold. Abbreviations: sum-of-
squares (SS), degrees of freedom (df ), mean squares (MS), the F ratio (F) and the P value (P); Table S5:
Analysis of Variance (Two-way ANOVA) testing for effects due to time (0, 24, 48 h) and test media
(ultrapure water (UP); artificial seawater (ASW) or f/2-enrich in ASW (f/2)) on the hydrodynamic
size to DCOIT containing silica nanocontainers (SiNC-DCOIT). Significant differences (p = 0.05) are
indicated in bold. Abbreviations: sum-of-squares (SS). degrees of freedom (df ). mean squares (MS).
the F ratio (F) and the P value (P). References [66,67] are cited in the Supplementary Materials.
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