

Nanostructures as Electrocatalysts for Water Splitting

Yange Wang, Rongming Wang * D and Sibin Duan * D

Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China * Correspondence: rmwang@ustb.edu.cn (R.W.); sibinduan@ustb.edu.cn (S.D.)

Abstract: Electrocatalytic water splitting, as a sustainable, pollution-free and convenient method of hydrogen production, has attracted the attention of researchers. However, due to the high reaction barrier and slow four-electron transfer process, it is necessary to develop and design efficient electrocatalysts to promote electron transfer and improve reaction kinetics. Tungsten oxide-based nanomaterials have received extensive attention due to their great potential in energy-related and environmental catalysis. To maximize the catalytic efficiency of catalysts in practical applications, it is essential to further understand the structure–property relationship of tungsten oxide-based nanomaterials by controlling the surface/interface structure. In this review, recent methods to enhance the catalytic activities of tungsten oxide-based nanomaterials are reviewed, which are classified into four strategies: morphology regulation, phase control, defect engineering, and heterostructure construction. The structure–property relationship of tungsten oxide-based nanomaterials affected by various strategies is discussed with examples. Finally, the development prospects and challenges in tungsten oxide-based nanomaterials are reviewed in the conclusion. We believe that this review provides guidance for researchers to develop more promising electrocatalysts for water splitting.

Keywords: tungsten oxide; electrocatalysis; structure-property relationship; water splitting

1. Introduction

With the rapid development of global modernization, the excessive consumption of non-renewable energy sources, such as oil and coal, has resulted in the crisis of greenhouse effect, energy shortage, and severe environmental pollution [1-5]. It is urgent to develop clean and sustainable energy to alleviate energy pressure and ameliorate environmental problems. Therefore, sustainable clean energy resources, such as wind, solar, tidal, and hydropower, have been extensively studied [6–11]. However, these energy sources have the disadvantages of uneven geographical distribution and intermittency, which seriously restrict their popularization and application [12]. Hydrogen fuel is expected to play a significant role in developing sustainable clean energy due to its high energy density, high energy yield (122 kJ/g), and environmentally friendly characteristics [13-15]. However, it is estimated that nearly 96% of worldwide hydrogen comes from the conversion of fossil fuels, where the pollution byproducts cause environmental problems, such as climate warming [14,16–19]. Electrochemical water splitting, as a sustainable method of producing hydrogen with simple operation, mild reaction conditions, environmental protection, and low cost, has attracted much attention from researchers [13,20–22]. The water-splitting process involves two half-reactions, i.e., hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). However, due to the slow-kinetic four-electron transfer process with a high reaction barrier, the potential required for water splitting is always higher than the theoretical decomposition potential of water (1.23 V), resulting in additional electrical power consumption [23,24]. Effective electrocatalysts are required to reduce

Citation: Wang, Y.; Wang, R.; Duan, S. Optimization Methods of Tungsten Oxide-Based Nanostructures as Electrocatalysts for Water Splitting. *Nanomaterials* **2023**, *13*, 1727. https://doi.org/10.3390/ nano13111727

Academic Editor: Adriano Sacco

Received: 29 April 2023 Revised: 19 May 2023 Accepted: 23 May 2023 Published: 25 May 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). the reaction barrier and accelerate the reaction kinetics. Generally speaking, noble metal (Pt, Ir)-based catalysts show ideal electrocatalytic performance due to their appropriate hydrogen adsorption-free energy. However, the scarcity and high prices of noble metals have prevented their widespread application [25,26]. Therefore, it is essential to develop effective catalysts that are affordable, stable, and low in noble metals.

Among all the candidates, tungsten oxide has attracted much attention because of its abundant reserves, affordable price, and great stability. It is worth noting that tungsten oxides are typical n-type semiconductors with band gaps of 2.6–3.0 V [27], which have a variety of morphologies and crystal phases, and they exhibit reversible surface oxygen ion exchange and excellent redox capacity, owing to their oxidation states flexibly converting between W^{6+} , W^{5+} , and W^{4+} [28–30]. Consequently, tungsten oxide is expected to be a superior substitute for noble metals [29,31]. The fundamental crystal unit of tungsten oxide is WO₆, an octahedral structure. Tungsten oxide possesses a variety of crystal phases, including tetragonal, orthorhombic, monoclinic I, hexagonal, triclinic, and monoclinic II, due to the varying tilt angles and rotation directions of WO_6 units [30,32]. Notably, the WO_6 octahedral units can form shared angles or shared edges, and the more shared angles/edges there are, the more oxygen vacancies and low valence W species are generated, forming a WO_x structure with a non-stoichiometric ratio [28,33,34]. The oxygen vacancy is accompanied by the accumulation of free electrons, which transform the semiconductor into a degenerate semiconductor with metallic characteristics, thus improving the conductivity of materials [28,35,36]. Oxygen vacancies also offer unsaturated coordination sites that alter the electron structure, charge density, and conversion in the p-band center of materials, thus improving its inherent electron transport frequency and catalytic performance [29,37–39]. Despite these benefits, the Schottky barrier forms at the surface/interface of the electrocatalyst and electrode or electrolyte results in the poor conductivity and the low number of active sites of WO₃, which hinders the catalytic performance [37,40]. Therefore, the composition and structure of tungsten oxide are designed to modify the electronic structure, improve the conductivity, and increase the number of catalytic active sites [36].

Various effective strategies have been developed to optimize nanostructures of tungsten oxide, thus further enhancing its catalytic properties, as shown in Figure 1. (1) Crystal phase regulation: different crystal phases of the samples have different degrees of interatomic *d-sp* orbital hybridization and lattice expansion, thus showing different band gaps and catalytic activities [41–43]. Tungsten oxide exhibits tunable catalytic properties due to its adaptable conversion between stoichiometric and non-stoichiometric crystal phases. (2) Morphology regulation: preparing tungsten oxides with various morphologies to expose different surfaces can optimize their adsorption free energy and intrinsic activity, which is of great significance to improve catalytic performances. Additionally, it is shown that the morphology regulation of tungsten oxide can effectively adjust the band gaps and the number of active sites [44]. (3) Defect engineering, including controlling the lattice vacancy and hetero atom doping, has also been used to enhance the intrinsic catalytic activity of tungsten oxide by effectively regulating the electronic structure and increasing the number of active sites [45–47]. Numerous experimental and theoretical findings have demonstrated that the introduction of defects to construct tungsten oxide with a non-stoichiometric ratio is more conducive to the adsorption/desorption of intermediate molecules (*H for HER; *OH and *OOH for OER) at the oxygen vacancy and doping sites [35,48,49]. (4) Benefiting from the synergistic effect, the construction of a heterostructure with specific interface configurations has been proved to be an effective way of reducing the reaction barrier of water splitting and promoting the adsorption and desorption of protons [36,50–53]. In this case, the highly efficient catalytic electrodes possess high electron transport capacity and large active surface area, which might provide sufficient active sites and appropriate adsorption strength. Numerous heterostructures with stable structures, high specific surface areas, and abundant active sites, including semiconductor–WO_x, WO_x–C, and metal–WO_x heterostructures, have been developed [54–57]. These fantastic efforts substantially promoted the development of tungsten oxide-based electrocatalysts.

Figure 1. Strategies for improving the electrocatalytic performances of WOx-based electrocatalysts.

Tungsten oxides are widely utilized in energy storage [58–63], sensors [64–68], catalysis [69–74], and other fields because of their adjustable valence states (W⁴⁺, W⁵⁺, and W⁶⁺) and band gaps [31,75,76], various morphologies from zero to three dimensions [44,77], and different crystal phases. Here, the research progress of tungsten oxide-based electrocatalysts for water splitting over the last few years is reviewed. Emphatically discussed are the impacts of crystal phase, morphology, defect engineering, and heterojunction effects on the electronic structure and catalytic activity of tungsten oxide-based nanomaterials. We also present a brief summary and outlook of the tungsten oxide catalyst research, with the intention that this review may provide some insights into the construction of high-efficiency oxide catalysts.

2. Phase Control

Controlling the crystal phase of tungsten oxide and optimizing its physical and chemical properties have been proven effective in improving catalytic performance [41,42]. The WO_x is not simply composed of W⁶⁺ and O²⁻ ions, which mainly consist of hybrid conduction and valence band states of W 5d and O 2p [32]. The electronic structure of WO_x in different crystal phases, such as monoclinic, orthorhombic, and hexagonal phases, is affected by the W–O bond length [32,78,79]. Consequently, it is possible to optimize their catalytic performances by carefully adjusting the crystal phases [30,32,80]. The relatively stable monoclinic and metastable hexagonal phases have attracted extensive research for electrocatalytic performances due to their tunnel structure and rich intercalation [81]. The synthesis methods and the properties (electrolyte, over-potentials at 10 mA cm⁻², and Tafel slopes) of tungsten oxide-based electrodes with different phases are summarized in Table 1.

Electrocatalyst	Synthesis Method	Electrolyte	Application	Scanning Speed (mV s ⁻¹)	Overpotential at 10 mA cm ⁻² (mV)	Tafel Slope (mV dec ⁻¹)	Ref.
Monoclinic WO ₃ ·2H ₂ O	Wet-chemical route	chemical route 0.5 M H ₂ SO ₄ HER		5	117	66.5	- [40] -
Orthorhombic WO ₃ ·H ₂ O			HER		209	198	
Orthorhombic WO ₃ ·0.33H ₂ O					276	376.5	
Hexagonal-WO ₃			LIED	2	83	48	- [42]
Monoclinic-WO ₃	Hydrothermal method	$0.5 \text{ M H}_2 5 \text{O}_4$	HEK		106	78	
m-WO ₃	Hydrothermal method,	0 E M H SO	LIED	-	168	83	[41]
h-WO ₃	thermal treatment	$0.5 \text{ M} \text{ H}_2 \text{ S} \text{ O}_4$	HEK	5	257	157	[41]
Monoclinic WO ₃	In ethanol and kept under ambient temperature, thermal treatment	ſ		73	39.5		
Orthorhombic WO ₃ ·H ₂ O		$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	HER	1	147	43.9	[82]

Table 1. Application of tungsten oxide-based catalyst with different phases in water splitting.

Heat treatment is an effective way to control the crystal phase of WO_x-based nanomaterials, in which the temperature is a vital factor. For instance, Guninel et al. annealed orthotropic WO₃·H₂O in air, and they found that the crystal structure transformed to monoclinic WO₃ with the disappearance of water molecules in the structure. The detailed dehydration process is shown in Figure 2a [83]. Pradhan et al. also have prepared the monoclinic WO₃ by annealing orthotropic tungsten oxide hydrate at 400 $^{\circ}$ C in the air (Figure 2b) [82]. It shows that the double-layer capacitance (C_{dl}) of monocline WO₃ is 2.83 times that of the original $WO_3 \cdot H_2O$, providing more active surfaces during the catalytic reaction. As a result, the monoclinic WO_3 exhibits an over-potential of 73 mV at 10 mA cm⁻² in 0.5 M H₂SO₄, which is much lower than that of orthorhombic tungsten oxide hydrate (147 mV). The density functional theory (DFT) results (Figure 2c) proved that the hydrogen proton adsorption energy on P2 1/n monocline WO₃ (200) is more suitable than that of Pt (111). Halder's group investigated the effect of heat treatment temperatures on the phase transition. With the increase in calcination temperature, the crystal phase of WO_3 changed from hexagonal to monoclinic and then to cubic phase [84]. The phase transformation process from hexagonal to monoclinic at 550 °C was further observed by in situ transmission electron microscopy (TEM). The monoclinic WO_{3-x} obtained at this temperature exhibits the best HER activity because of the highest oxygen vacancy concentration.

Certain additives also have an impact on the crystal phase of tungsten oxide during the preparation process. Song's team precisely prepared the orthorhombic $WO_3 \cdot 0.33H_2O$ and monoclinic $WO_3 \cdot 2H_2O$ by utilizing ethylene diamine tetra acetic acid and DL–malic acid at room temperature, respectively (Figure 2d) [40]. It demonstrated that a lower over-potential (117 mV) and Tafel slope (66.5 mV dec⁻¹) of monoclinic $WO_3 \cdot 2H_2O$ were required to reach a current density of 10 mA cm⁻² in 0.5 M H₂SO₄ (Figure 2e).

Hajiahmadi et al. explored the reaction mechanism and adsorption model of hex-WO₃ (001) in acid oxygen evolution reaction (OER) (Figure 3) [85]. There are six adsorption models involved: (1) Initial state. The H₂O adsorbs at the top of the central W site due to the lack of coordination of the central tungsten. (2) Water decomposes to form OH* and H⁺, which are the most stable configurations co-adsorbed at the top W site and adjacent O site, respectively. (3) Dehydrogenation of OH* to form O*. The dissociated hydrogen is adsorbed to another nearby oxygen. (4) The adsorption of water molecule on O*. (5) Dehydrogenation of O*H₂O to form OOH*. (6) Dehydrogenation of OOH* to form O₂.

Figure 2. (a) Schematic of the orthorhombic unit cell of tungstite, which converts to the monoclinic tungsten oxide unit cell by dehydration at elevated temperatures (\geq 300 °C). Reprinted with permission from [83], with permission from Springer, 2014. (b) XRD patterns of orthorhombic WO₃·H₂O and monoclinic WO₃. (c) Calculated energy landscapes of the HER on WO₃ (200) and Pt (111). Reprinted with permission from [82], with permission from American Chemical Society, 2017. (d) Synthesis process and (e) linear sweep voltammograms at 2500 of hydrated tungsten oxide (WO₃·nH₂O, n values 0.33, 1.00, or 2.00) at room temperature. Reprinted with permission from [40], with permission from American Chemical Society, 2020.

Figure 3. Optimized geometries of hex-WO₃ at each step in the acid oxygen evolution reaction, top and side view. O: red, W: purple, H: white. Reprinted with permission from [85], with permission from Elsevier, 2022.

3. Morphology Control

Due to their flexible crystal structures, WO_x nanomaterials with rich morphologies exhibit different physical and chemical properties. Reasonable design of catalyst morphology may increase the contact area between catalyst and electrolyte, thus improving the electrocatalytic performance. The impact of morphology on the catalytic performance of WO_x has been studied recently, and some advancements have been made [42,86,87].

One-dimensional nanostructures, such as nanorods [38] and nanowires [88–90], have been extensively studied in tungsten oxide-based nanomaterials. For example, Liang's group prepared WO₃ nanowires with rich oxygen vacancy (WO₃-V_O NWs) by hydrothermal method combined with plasma sputtering [89]. The WO₃-V_O NWs grew along the [001] direction (c axis) and exhibited stable electrocatalytic oxygen evolution activity under acidic conditions. Two-dimensional nanostructures have also attracted extensive attention due to their increased surface area, abundant active sites, and appropriate adsorption of intermediates in recent years. Pradhan et al. prepared tungsten oxide hydrate nanoplates with apparent gaps between the stacked nanoplates using the hydrothermal method [82]. Guo's group prepared hierarchical WO_3 nanowire arrays on nanosheet arrays (WO_3 NWA-NSAs) by the hydrothermal method for alkaline OER [29]. The WO₃ NWA-NSAs electrocatalyst only requires an over-potential of 230 mV to reach the current density of 10 mA cm⁻² because of its unique hierarchical structure. By changing the composition of surfactants and synthesis parameters of hydrothermal processes, Rajalakshmi et al. prepared various WO₃ nanomaterials, including one-dimensional nanowires and nanorods, two-dimensional nanoflakes and nanobelts, and three-dimensional nanoparticles, which are star-like and globule-like structures (Figure 4a–g). The influence of morphology on the band gap width and hydrogen evolution performance was also investigated [44]. It was found that the band gaps of tungsten oxide with different morphologies are inconsistent. Among them, WO_3 nanorods have a higher aspect ratio and better bandgap and adsorption energy in conjunction with the precise cutting of crystal facets along the (001) direction. As a result, the HER performance of one-dimensional WO₃ nanorods exceeds other morphologies in an acidic electrolyte. For the three-dimensional nanostructure, our group investigated the effect of the etching agent concentration on the morphologies and the alkaline OER performances of Ni–WO₃ nanostructures [91]. The Ni–WO₃ octahedral structure (Figure 4h) was in situ etched with (NH₄)₂SO₄, and the serrated Ni–WO₃ (Figure 4i) was obtained. It was found that the crystal phase of $Ni-WO_3$ was unaffected by the concentration of the etching agent, but the serrated Ni–WO₃ dramatically improves OER performance (an over-potential of only 265 mV at 10 mA cm⁻²) compared with octahedral Ni–WO₃ (365 mV).

Figure 4. FESEM image and of bandgap (**a**) WO₃ nanowires (W–NW), (**b**) WO₃ nanorods (W–NR), (**c**) WO₃ nanoflakes (W–NF), (**d**) WO₃ nanobelts (W–NB), (**e**) WO₃ nanoparticles (W–NP) of W–NP, (**f**) WO₃ star-like structures (W–S), and (**g**) WO₃ globule-like structures (W–G). Reprinted with permission from [44], with permission from Elsevier, 2022. FESEM image of octahedron-like (**h**,**i**) serrated Ni–WO₃. Reprinted with permission from [91], with permission from Elsevier, 2022.

4. Defect Engineering

Defect engineering, including oxygen vacancy construction and hetero atom doping, reduces the atomic coordination numbers in the material and, thus, regulates the electronic structure [89,92]. The band gap and the adsorption-free energy of the catalyst could be optimized by regulating the electronic structure of the catalyst, thus reducing the catalytic

reaction barrier and improving the reaction kinetics. These doping and defect sites can also potentially increase the number of active sites and the concentration of free carriers, which are essential for reducing the reaction barrier and increasing the electron transfer efficiency [93]. The synthesis methods and the properties (electrolyte, over-potentials at 10 mA cm^{-2} , and Tafel slopes) of tungsten oxide-based electrodes modified by defect engineering are summarized in Table 2.

Table 2. Application of tungsten oxide-based catalyst modified by defect engineering in water splitting.

Electrocatalyst	Synthesis Method	Electrolyte	Application	Scanning Speed (mV s ⁻¹)	Overpotential at 10 mA cm ⁻² (mV)	Tafel Slope (mV dec ⁻¹)	Ref.
WO _{3-r}	Liquid exfoliation	0.5 M H ₂ SO ₄	HER	2	38	38	[94]
WO _{3-x}	Electrospinning	0.5 M H ₂ SO ₄	HER	5	185	89	[95]
Meso-WO _{2.83}	H ₂ reduction	0.5 M H ₂ SO ₄	HER	5	287	95	[35]
WO _{2.9}	Wet grinding method, thermally treated	0.5 M H ₂ SO ₄	HER	5	70	50	[96]
Oxygen vacancies-rich tungsten oxides	Hydrothermal method, thermal treatment	1 M KOH	HER	5	25	49.25	[97]
W O	Microwave-solvothermal	$0.5 \text{ M H}_2\text{SO}_4$	LIED	F	54	30	[00]
W ₁₈ O ₄₉	treatment	0.1 M Na ₂ SO ₄	HEK	5	~200	80	- [98]
Ta-doped WO ₃	Hydrothermal method	$1 \text{ M H}_2\text{SO}_4$	HER	2	480	65	[99]
			OER		258	48.9	
Ir-doped WO ₃	Hydrothermal method, thermal treatment	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	HER	1	36	92	[100]
	theman treatment		OWS		1.56	Tafel Slope 38 38 995 50 49.25 30 80 65 48.9 92 74.5 74.5 138 - 52.4 27 74.5 138 - 52.4 27 79 47 47 47 86 57.9 100	-
W/WO ₂	Hydrothermal method, thermal treatment	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	HER	5	297	74.5	[101]
4% Sm doped WO ₃			HER		54	74.5	
5% Sm doped WO ₃	Hydrothermal method	0.5 M H ₂ SO ₄	OER	5	90	138	[102]
4% Sm doped WO ₃ 5% Sm doped WO ₃			OWS		1.6 V	-	
Ag-WO ₃	Sonochemical method	$0.5 \text{ M H}_2\text{SO}_4$	HER	2	207	52.4	[103]
Pt-SA/ML-WO ₃	Space confined strategy, thermal treatment	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	HER	2	22	27	[104]
Ni-WO ₂ /CP	Hydrothermal method,		LIED	F	83	79	[105]
Ni-WO ₂ /NF	thermal treatment	ТМКОП	TIEK	5	41	47	- [105]
Fe-P/WO ₂	Organic-inorganic hybridization method	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	HER	5	48	47	[106]
			OER		240	47	
Ni _{0.19} WO ₄	Hydrothermal method,	- 1 M KOH	HER	200	78	[107]	
	thermal treatment		OWS		1.59 V	-	-
Co-WO _{2.7-x}	Hydrothermal method, thermal treatment	1 M KOH	HER	5	59	86	[48]
			HER		42	57.9	
Ni/WO _x	Hydrothermal method, thermal treatment	1 M KOH	OER	5	395.7@100 mA cm ⁻²	100	[108]
		-	OWS		1.52	-	

Electrocatalyst	Synthesis Method	Electrolyte	Application	Scanning Speed (mV s ⁻¹)	Overpotential at 10 mA cm ⁻² (mV)	Tafel Slope (mV dec ⁻¹)	Ref.
			HER		90	92	
Ni-doped W ₁₈ O ₄₉	Hydrothermal method, thermal treatment	1 M KOH	OER	2	240@20 mA cm ⁻²	106	[93]
			OWS		1.56 V	-	-
10 wt%	Solvothermalsonication	0.5 M H ₂ SO ₄		_	41	38	- [109]
lr/W ₁₈ O ₄₉ nanowire	and dispersion, thermal	1 M PBS	- HER	5	83	66	
Fe-WO _x	Hydrothermal	1 M KOH	OER	-	380	51.7	[110]
Ni _{0.78} WO _{2.72}	Wet chemical,thermal treatment	0.1 M KOH	OER	10	270	-	[111]
$PtSA/WO_{3-x}$	Incipient wetness impregnation method	0.5 M H ₂ SO ₄	HER	5	47	45	[112]
Ru-WO _{2.72}	Hydrothermal method, self reduction	0.5 M H ₂ SO ₄	HER	5	40	50	[113]
Ag/WO _{3-x}	Situ reduction method	$0.5 \text{ M H}_2\text{SO}_4$	HER	5	30	40	[114]
Mo-W ₁₈ O ₄₉	Hydrothermal method	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	HER	5	45	54	[115]
NiFe-W ₁₈ O ₄₉	Hydrothermal method	0.1 M KOH	OER	5	325	42	[116]
5 at% Pd doped W ₁₈ O ₄₉	Solvothermal method	0.5 M H ₂ SO ₄	HER	1	137	35	[117]
1 at% Mo incorporated W ₁₈ O ₄₉ nanofibers	Solvothermal method	0.5 M H ₂ SO ₄	HER	1	262	49	[118]
Co _{0.5} Fe _{0.5} WO ₄	A polyol route	1 M KOH	OER	1	360	36.3	[119]
Pt/def-WO ₃	Hydrothermal method and deposition–precipitation	0.5 M H ₂ SO ₄	HER	1	42	61	[120]

Table 2. Cont.

4.1. Oxygen Vacancy

method

Tungsten oxide-based nanomaterials with abundant oxygen defects show great potential for water splitting. Abundant oxygen vacancies can improve the conductivity and promote the adsorption of OH^- , thus effectively increasing the oxygen evolution activity [89]. For example, Guo's research group prepared WO₃ with rich oxygen vacancies by hydrothermal method, and they explored its oxygen evolution properties in the alkaline electrolyte [29]. The abundant oxygen vacancy not only improves the conductivity of WO₃, but also modifies its electronic structure, so that WO₃ only needs 230 mV overpotential to reach the current density of 10 mA cm⁻².

Effect of oxygen vacancy on morphology and properties of WO_x. Two extra electrons are produced when an O atom is removed from the WO₃ structure. One or two electrons can be transferred to a neighboring W atom to form the W⁵⁺ or W⁵⁺-W⁵⁺ centers [32]. Additionally, introducing the O-vacancy modifies the splitting of the W-O bond, increases the W–W distance at the O-vacancy position, and narrows the WO₃ band gap accordingly (Figure 5a–d) [79]. The electrode's conductivity is improved as a result of abundant oxygen vacancies, which can turn an n-type WO_x semiconductor into a degenerate semiconductor with metallic characteristics (Figure 5e) [35,89]. Besides, a high oxygen vacancy concentration will increase the material's surface roughness and the area in contact with the electrolyte. For example, the surface of tungsten oxide with a smooth hexahedral structure (Figure 5g) [121]. As shown in Figure 5h,i, the porous WO₂ HN/NF has a BET surface area, pore size, and specific volume of 22.8 m² g⁻¹, 10–100 nm, and 0.138 cm³ g⁻¹, respectively. Owing to the highly concentrated oxygen vacancies that provide more active

sites and narrower band gaps, the porous WO₂ HN/NF electrode showed lower potential and excellent catalytic stability in HER, OER, and overall water splitting.

Figure 5. (a) Ball-and-stick model of RT monoclinic WO₃ unit cell with 32-atom or 64-atom. The large green (gray) and small red (dark) balls represent the W and O atoms, respectively. The *x* (b), *y* (c), and *z* (d) direction -W-O-W- chains with $(WO_{3-x}, x = 0.12 \text{ for } 32\text{-atom}, x = 0.06 \text{ for } 64\text{-atom})$ and without (WO₃) oxygen vacancy. Distances are in Å. The two excess electrons are created by removing a neutral O atom from WO₃, which can be either paired up in a singlet (closed shell) spin state or unpaired in a triplet spin state. Reprinted with permission from [79], with permission from the American Physical Society, 2011. (e) Schematic illustration of the band structures of Meso-WO_{2.83} and Meso-WO₃. Reprinted with permission from [35], with permission from the Royal Society of Chemistry, 2018. SEM of the WO₂ hexahedral networks supported on nickel foam before (f) and after (g) calcination. (h) N₂ adsorption-desorption isotherms of porous WO₂ HN/NF and (i) corresponding pore size distribution. Reprinted with permission from [121], with permission from the Royal Society of Chemistry, 2017.

Oxygen vacancy recognition. First, the O vacancy can be directly observed by atomic high-resolution TEM (HRTEM), where the variation in atomic column intensity indicates the variation in oxygen atomic occupation. As shown in Figure 6a, the tiny pits shown by the arrows indicate the presence of oxygen vacancies [89]. The variations in intensity and contrast were further highlighted in the colored image and the line profile (Figure 6b). Second, UV-vis diffuse reflectance spectroscopy and UV-vis absorption spectroscopy are also used to identify oxygen vacancy defects. As shown in Figure 6c,d, a stronger photoresponse in the visible to infrared region indicates a higher O vacancy concentration in the material [35,40,122]. Besides, electron paramagnetic resonance (EPR), a technique for detecting the chemical environment of unpaired electrons in atoms or molecules, can be used to confirm the existence of oxygen vacancies (Figure 6e). When oxygen vacancies capture electrons, symmetrical EPR signals appear at the position $g \approx 2.002$. The stronger the intensity of the EPR signal, the higher concentration of oxygen vacancies present in the material [35,89]. Notice that the oxygen vacancy also changes the metal valence in the metal oxide. Therefore, in addition to the direct characterization methods of oxygen vacancies, alternative techniques, such as X-ray photoemission spectroscopy (XPS) and synchrotron X-ray absorption fine structure (XAFS), can also be employed to infer the existence of oxygen vacancies. As shown in Figure 6f, after the oxygen vacancy was introduced, the XPS peaks of W 4f were moved to the lower binding energy region [35,38,122]. For O1s XPS, the peak at \sim 531.3 eV corresponds to the oxygen vacancy [35,123–125].

Figure 6. (a) TEM images (Numerous small pits shown by the arrows provide more coordinated unsaturated sites for OER electrocatalysis) and (b) colored atomic-resolution TEM image of WO_3-V_0 with a line profile of nine atoms (indicated by a box), the differences in intensity and contrast are further highlighted in the colored image and the line profile. Reprinted with permission from [89], with permission from the Chinese Chemical Society, 2020. (c) UV/vis diffuse reflectance spectra of Meso-WO₃ and Meso-WO_{2.83}. Reprinted with permission from [35], with permission from the Royal Society of Chemistry, 2018. (d) UV-vis absorption spectra of WO₃·H₂O, WO₃·0.33H₂O, and WO₃·2H₂O. Reprinted with permission from [40], with permission from the American Chemical Society, 2020. (e) EPR spectra at room and (f) XPS of Meso-WO₃ and Meso-WO_{2.83}. (g) UV/vis diffuse reflectance spectra and (h) the overpotential comparison at the current density of 10 mA cm⁻² of the Meso-WO_{2.83} products upon air exposure time. Reprinted with permission from [35], with permission from the Meso-WO_{2.83} products upon air exposure time. Reprinted with permission from [35], with permission from the Royal Society of Chemistry, 2018. (i) Free-energy diagram for hydrogen adsorption at the W site on the WO₃ (010) slab with different O vacancies. Reprinted with permission from [94], with permission from the American Chemical Society, 2017.

Effect of oxygen vacancy concentration on performance. To further investigate the impact of oxygen vacancy concentration on catalytic performance, Thomas et al. explored the relationship between the electrocatalytic performance of Meso-WO_{2.83} and surface oxidation degree brought on by exposure to air (Figure 6g,h) [35]. With the increase in exposure time, the plasmon resonance of Meso-WO_{2.83} was weakened, accompanied by a red shift, and its electrocatalytic activity gradually decreased, as well. This indicates that abundant oxygen vacancies are advantageous for enhancing catalytic activity. Zeng et al. demonstrated that abundant oxygen vacancies could optimize the hydrogen adsorption Gibbs free energy (ΔG_{H^*}) using the DFT (Figure 6i) [94].

Method of producing oxygen vacancy. Oxygen vacancies are widespread in transition metal oxides because of their low formation energy [35,39]. Representative methods of producing oxygen vacancies in metal oxides include heat treatment, reductive treatments, and other methods [38,126]. The first method is heat treatment, which involves removing a small amount of lattice oxygen from metal oxides in low-oxygen conditions at high temperatures without causing bulk phase transition. The oxygen vacancy concentration can be adjusted by controlling the heat treatment temperature or the inert gas flow rate. For instance, Halder's group thermally treated WO₃ in a vacuum environment to produce WO_{3-x} with rich oxygen vacancies [84]. The second method of producing oxygen vacancies in tungsten oxide is reductive treatments, which create oxygen vacancies with the aid of

reducing agents, such as H₂ [123], NaBH₄ [127,128], and sodium dodecyl sulfate [29]). Taking the reduction in hydrogen as an example, with the extension of reduction time, WO₃ gradually evolved into WO_{3-x}, WO₂, and finally, metallic W⁰ [129]. Thomas et al. prepared Meso-WO_{2.83} with oxygen-rich vacancies by replacing bulk materials with mesoporous materials to increase the reduction rate in the hydrogen atmosphere [35]. Due to the slow diffusion of H₂ molecules in bulk materials, the use of mesoporous WO₃ with a higher surface area and thin nanoscale pore wall allows H₂ molecules to diffuse and migrate more easily on its surface and inside. The results show that the mesoporous structure not only dramatically reduces the H₂ reduction temperature, but also selectively generates WO_{2.83}. Other methods of producing oxygen vacancies include plasma treatment, flame, mechanical exfoliation, and hydrothermal methods [29,89,130,131]. For example, as a surface treatment technology, plasma has a certain reduction ability, and the oxygen vacancy generated by it only exists on the surface of the sample [131].

4.2. Hetero Atom Doping

Hetero atom doping is also an effective strategy to prepare tungsten oxide-based nanomaterials with abundant defects, which achieve a significant leap in catalytic performance by regulating the electronic coordination environment, the number of active sites, and the adsorption strength of intermediates [48,113]. In practical applications, atom-doped materials usually contain both hetero atoms and oxygen vacancies, which can cooperatively promote the catalytic activity [93,118,132]. The effect of doping on catalytic performance can be adjusted by changing the type [48,105] and concentration [115,118,133] of hetero atoms. Atom doping could be divided into noble metal atomic doping and non-noble metal atomic doping. For the former, the noble metal atoms typically exist as single atoms or atomic clusters to reduce the costs and improve the utilization rate of noble metal atoms [112,113,134–136]. For example, Hou et al. reported Pt sing-atoms supported on monolayer WO_3 (Pt-SA/ML-WO₃) for HER [104]. The high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images (Figure 7a,b) and ICP result showed that 0.20 wt% Pt atoms were immobilized on ML-WO₃. HRTEM images demonstrate the existence of defects, including lattice distortion, as well as W and O vacancies (Figure 7c,d). The HER performance of $Pt-SA/ML-WO_3$ (over-potential of 22 mV at 10 mA cm⁻², Tafel slope of 27 mV dec⁻¹) was even better than that of 20% Pt/C (over-potential of 34 mV at 10 mA cm⁻², Tafel slope of 28 mV dec⁻¹). The improved performance is mainly attributed to the strong interaction between Pt single atoms and ML-WO₃, which drastically tunes the electronic structure of the catalyst, endowing Pt-SA/ML-WO₃ with a strong conductivity and an adequate ΔG_{H^*} (Figure 7e). Sun et al. investigated the overall water-splitting performance of the iridium-doped tungsten trioxide array (Ir-doped WO_3) in acidic conditions [100]. Ir can preempt some of the electrons in the WO_3 matrix to optimize its electronic structure because Ir⁴⁺ has a smaller radius and a higher atomic number than W^{6+} . The Ir-doped WO₃ exhibited low cell voltages of 1.56 and 1.68 V to drive the current densities of 10 and 100 mA cm⁻², respectively. Ma's group analyzed the effects of oxygen vacancy and Ru doping on electronic states and *d*-band center of WO₃ by density functional theory (DFT) calculations [136]. As shown in Figure 7f, when only oxygen vacancies exist, the electrons produced by oxygen vacancies are transferred to neighboring W atoms. After doping Ru atom, electrons are mainly transferred from Vo site to adjacent Ru site, and a few electrons are transferred to an adjacent W site. Therefore, Ru sites with sufficient electrons in $Vo-WO_3/Ru$ SAs may be active centers for adsorption intermediates in acidic media. In alkaline and neutral solutions, the oxygen atoms in water molecules are more easily captured by the electron-deficient W site, and the generated H* migrates to the nearby Ru site to form H_2 . In addition, the *d*-band center of Vo-WO₃/Ru SAs (-5.180 eV) is much lower than that of WO₃ (-3.252 eV) and Vo-WO₃ (-4.133 eV), indicating that the strength of H^* bond is weakened (Figure 7g), which is conducive to the desorption of H^{*} from the surface and the promotion of HER.

Figure 7. (a) HAADF-STEM image, (b) magnified HADDF-STEM image and corresponding intensity profiles of the line section, and (c,d) magnified HADDF-STEM images of Pt-SA/ML-WO₃. (e) Calculated free energy profiles of HER at the equilibrium potential for WO₃, WO₃-V_{O/W}, Pt-SA/WO₃-V_O, Pt-SA/WO₃-V_W, and metal Pt (111). Reprinted with permission from [104], with permission from Wiley, 2021. (f) Electron density difference isosurfaces (where red and blue areas indicate the charge accumulation and depletion, respectively) and (g) partial electronic density of states of WO₃, Vo-WO₃, and Vo-WO₃/Ru SAs. Reprinted with permission from [136], with permission from Elsevier, 2022.

In addition to doping the noble metal atoms, doping of non-noble metal atoms (Co, Fe, Ni, F, and Mo) could also regulate the physicochemical properties of the catalyst and effectively improve the catalytic performance of tungsten oxide-based nanomaterials [48,107,111,115,116,133,137,138]. For example, Xiao et al. simulated the d-orbital hybridization of WO₂ by a series of transition metal heteroatoms using first principles and explored HER properties of M-WO₂ (M = Fe, Co, Ni, and Cu atoms) [105]. The Fe, Co, Ni, or Cu heteroatoms replace one of the W atoms (W-M bond) to form higher *d*-band packed atomic coordination, resulting in increased filling of W–M bond antibonding orbitals and weakening of bond strength (Figure 8a). The DFT result showed that the Ni-W site has modest hydrogen adsorption ($\Delta G_{H^*} = -0.43 \text{ eV}$) due to the dynamic transfer of some bonded electrons from the W-W/Ni bonds to the Ni-O bonds after the substitution of W atoms by Ni, which reduces the free energy, weakens the metal-metal bond, and increases the bond length of W-W/Ni (Figure 8b). Therefore, Ni-WO₂ only needs 83 mV to reach the current density of 10 mA cm⁻² in an alkaline environment. To investigate the effect of Ni atom doping on the localized structure of tungsten oxide, the author compared the W L_3 -side X-ray absorption near side structures (XANES) and further proved that the addition of Ni atoms can effectively reduce the d-band occupation state on W atoms. Comparing the whole contour plots of wavelet transform (WT) (Figure 8c,d) and the charge density difference slices (Figure 8e,f) of WO₂ and Ni-WO₂, it was found that the R-value at about k = 12.2 Å⁻¹ in the WT spectrum of Ni-WO₂ is increased, and the charge density between Ni–W is significantly decreased. All these results indicate that Ni doping can effectively regulate the coordination strength between metal atoms and reduce the ability to capture electrons of W atoms, which is closely related to the absorption/desorption behavior on the catalyst surface.

Figure 8. (a) Schematic illustration of the W 5d-M 3d orbital modulation of M-WO₂ (M = Fe, Co, Ni, Cu, etc.). (b) The calculated hydrogen adsorption Gibbs free energy on different reaction sites of M–WO₂ (011). The whole contour plots of wavelet transform (WT) of (c) WO₂ and (d) Ni–WO₂. The top-view electron density difference of (e) WO₂ (011) and (f) Ni–WO₂ (011), ranging from -0.1 to $0.1 \text{ e} \text{ Å}^{-3}$. Reprinted with permission from [105], with permission from Wiley, 2022.

5. Heterostructure Construction

Constructing heterostructured nanomaterials composed of tungsten oxide and another material is an effective strategy to improve the catalytic performance of tungsten oxide [139–141]. The heterostructured nanomaterials reaches the catalytic performance of 1 + 1 > 2 by exposing more active sites and promoting interfacial electron transfer, which is called the "spillover" mechanism of the system [52,141]. The synthesis methods and the catalytic properties of tungsten oxide-based heterostructure electrodes with different morphologies (such as nanowires, nanoflakes, nanospheres, urchin-like, and so on) are summarized in Table 3. Here, tungsten-oxide heterostructures are divided into three types according to the different components: (1) semiconductor–WO_x; (2) WO_x–C; and (3) metal–WO_x.

Table 3. Application of tungsten oxide-based heterostructured catalysts in water splitting.

Electrocatalyst	Synthesis Method	Electrolyte	Application	Scanning Speed (mV s ⁻¹)	Overpotential at 10 mA cm ⁻² (mV)	Tafel Slope (mV dec ⁻¹)	Ref.
WO ₂ -C nanowires	Calcination	$0.5 \text{ M H}_2\text{SO}_4$	HER	2	58	46	[142]
WO ₃	Sonochamical mathad		OER	1	1 320	48	[143]
nanoflakes/B-AC	Sonochemical method	I M KOIT	HER	1	360	14	- [143]
WO3@NPRGO	Redox reaction and carbonization	0.5 M H ₂ SO ₄	HER	5	225	87	[144]

Electrocatalyst	Synthesis Method	Electrolyte	Application	Scanning Speed (mV s ⁻¹)	Overpotential at 10 mA cm ⁻² (mV)	Tafel Slope (mV dec ⁻¹)	Ref.
Carbon-based shell coated tungsten oxide nanospheres	Hydrothermal method, thermal treatment	1 M NaOH	OER	5	317@50 mA cm ⁻²	70	[145]
WO _x NWs/N-rGO	Hydrothermal method, thermal treatment	0.5 M H ₂ SO ₄	HER	2	40	38.2	[146]
WO_x/C nanowires	Thermal treatment	0.5 M H ₂ SO ₄	HER	2	108	46	[147]
Urchin-like	Hydrothermal-calcining-	0.5 M H ₂ SO ₄			17	54.7	
CC@WO ₃ /Ru	galvanostatic	1 M KOH	HER	2	34	57.5	[136]
SA-450	deposition	1 M PBS	-		64	91.9	-
NiWO ₄ /WO ₃	Electrospinning schematic	$0.5 \text{ M H}_2\text{SO}_4$	LIED	$1 m \Lambda / m^2$	80	50.27	- [132]
fibers	Electrospinning benchnute	0.1 M KOH	- HEK	1 IIIA/ CIII	60	41.97	- [102]
IrO_2/WO_3	Wet-chemical route	0.1 M HClO ₄	OER	10	-	65	[50]
WO ₃ -TiO ₂ particles	Acid catalyzed peptization method	32% of NaOH	HER	-	120	98	[148]
WS ₂ /WO ₃ nanosheets	Hydrothermal method	0.5 M H ₂ SO ₄	HER	2	395	50	[149]
WO ₃ /Ni ₃ S ₂	Hydrothermal method, thermal treatment	1 M KOH	HER	5	249@100 mA cm ⁻²	45.06	[51]
Ni ₁₇ W ₃ /WO ₂ nanoparticles	Hydrothermal method, thermal treatment	1 M KOH	HER	5	35	41.6	[150]
	Hydrothermal method.		OER		250@20 mA cm ⁻²	85	- [49]
$W_{18}O_{49}/101WO_4$	thermal treatment	I M KOH	HER	2	147@20 mA cm ⁻²	101	
WO ₃ ·2H ₂ O/WS ₂	Anodic treatment	0.5 M H ₂ SO ₄	HER	2	152@100 mA cm ⁻²	54	[141]
NE R WO	Electrodeposition process,	$0.5 \text{ M H}_2\text{SO}_4$	LIED	0.5	107	55.9	[151]
11121 - 1103	phosphating treatment	1 M KOH	- HEK	0.5	105	64.2	- [131]
a WO /WC	Carburization process	0.5 M H ₂ SO ₄	– HFR	-	233@20 mA cm ⁻²	69	[50]
a - WO_x / WC	Carbunzation process	0.1 M PB	- HEK	5	292@20 mA cm ⁻²	82	- [32]
R-Ni ₁₇ W ₃ /WO ₂	Hydrothermal method, thermal treatment	1 M KOH	HER	5	48	33	[152]
W ₁₇ O ₄₇ -MoS ₂	Wet chemical, thermal treatment	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	HER	10	145	41	[57]
WO2@C3N4	Hydrogen thermal process and calcination	0.5 M H ₂ SO ₄	HER	5	98	94.4	[36]
MoS ₂ @dWO ₃	In situ wet etching	0.5 M H ₂ SO ₄	HER	2	191	42	[153]
Fe ₂ P-WO _{2.92}	Hydrothermal method, thermal treatment	1 M KOH	OER	0.2	215	46.3	[72]
O _v -WO _x @NC-Ni	Precursor growth and pyrolysis reaction	1 M KOH	HER	5	$67@20 \text{ mA} \ \text{cm}^{-2}$	62	[154]
WS ₂ /WO _x /C	Spin-coated and thermal treatment	0.5 M H ₂ SO ₄	HER	5	120	36	[155]
Pt@WO ₃ /C	Microemulsion method and annealing treatment	1 M PBS	HER	5	149	150	[156]
Ru ₂ P/WO ₃ /NPC	Hydrothermal method, thermal treatment	1 M KOH	HER	5	15	18	[157]

Table 3. Cont.

Electrocatalyst	Synthesis Method	Electrolyte	Application	Scanning Speed (mV s ⁻¹)	Overpotential at 10 mA cm ⁻² (mV)	Tafel Slope (mV dec ⁻¹)	Ref.
			HER		36	68	
(Co _{5.47} N-CO ₂)@C	Hydrothermal method,	1 M KOH	OER	5	270	60	[158]
	thermal treatment		OWS		1.54	68 60 - 77.6 121 40.5 69 45 37 83 36.8 108 351 - 101.9 42.2 63.37 41.99 50 48	-
WO ₃ @F-GS	Plasma-induced assembly method	1 M KOH	OER	5	298	77.6	[133]
CoSe ₂ /WSe ₂ /WO ₃ NWs	Hydrothermal method, thermal treatment	1 M KOH	HER	5	115	121	[159]
Ru/N-doped Carbon@WO ₃ - W ₂ C	Co-precipitation method and polyol reduction method	1 M KOH	HER	-	31	40.5	[160]
NiWO ₄ -WO ₃ -	Electrospinning method,	0.5 M H ₂ SO ₄	LIED	2	40	69	[[]]]
WO _{2.9}	thermal treatment	0.1 M KOH	- HER	2	50	45	- [53]
rGO/WS ₂ /WO ₃	One-step aerosolization	0.5 M H ₂ SO ₄	HER	-	113	37	[161]
WNi ₄ @W-WO ₂	Hydrothermal method, thermal treatment	1 M KOH	HER	-	83	83	[162]
Pt ₂ W/WO ₃ /RGO	Co-deposition	$0.5 \text{ M H}_2\text{SO}_4$	HER	5	394@500 mA cm ⁻²	36.8	[163]
	The same of a second state of the second state		HER		49	108	
2D-Ni(Co,Fe)P/	electrodeposition–thermal treatment	1 M KOH	OER	2	270	351	[164]
$1D-WO_{\rm X}$			OWS		1.51 V	-	
N-doped graphene/WSe ₂ - WO ₃	Liquid-phase physical co-exfoliation and heat treatment	0.5 M H ₂ SO ₄	HER	5	257	101.9	[165]
WO ₂ -Na _x WO ₃ @ FeOOH/NF	Hydrothermal method, thermal treatment, FeOOH coating	1 M KOH	OER	1	220@20 mA cm ⁻²	42.2	[166]
TA-Fe@Ni-WO _x	Hydrothermal method, thermal treatment-FeOOH coating	1 M KOH	HER	2	240@20 mA cm ⁻²	63.37	[167]
Fe-WO _x P/rGO	Hydrothermal, CVD method	0.5 M H ₂ SO ₄	HER	2	54.6	41.99	[168]
WO _(3-x) - WC _y /CDs	Hydrothermal method	0.5 M H ₂ SO ₄	HER	5	65	50	[140]
SiO ₂ /WO ₃ /NiWO ₄	Electrospinning method, carbonization process	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	HER	2	320	48	[169]
Pt-WO ₃ /rGO aerogel	Solvothermal method, electrodeposition	$0.5 \text{ M H}_2\text{SO}_4$	HER	5	42	30	[71]
WS ₂ -WC-WO ₃ NHs	Hydrothermal method	$0.5 \text{ M H}_2\text{SO}_4$	HER	5	352	59	[170]
NC/Vo-WON	Hydrothermal and hydrogenation/ nitridation-induced strategy	1 М КОН	HER	2	16	33	[171]
		0.1 M KOH			24		
WO _x -PtNi@Pt DNWs	Wet-chemical method	0.1 M HClO ₄	HER	10	5		[55]
DINVIS		0.5 M PBS			22		

Table 3. Cont.

5.1. Semiconductor– WO_x

The interaction between tungsten oxide and another semiconductor is conducive to adjusting its electronic structure. When tungsten oxide comes into contact with a semiconductor with different Fermi levels, the electrons will spontaneously diffuse from the semiconductor with a high Fermi level to another component until the chemical potential of the two parts is equal, thus forming a semiconductor– WO_x heterojunction structure [172]. Consequently, net charges accumulate at the contacting interface, which lowers the initially higher Fermi level and raises the initial lower Fermi level. Meanwhile, the electronic band of the contacting semiconductor bends over subject to the movement of Fermi levels, generating different types of band alignments. Due to the synergistic effect and electronic effect between the components, the catalytic performance of the composites is improved. Wang and his colleagues prepared the Ni₂P–WO₃ nanoneedle structure on carbon cloth using a combination of in situ electrodeposition and phosphating treatment methods [151]. The XPS results demonstrate the electrons transfer from Ni to P in Ni₂P–WO₃. Benefiting from the heterojunction structure, Ni₂P–WO₃ exhibits excellent HER catalytic performance in both acidic (over-potential of 107 mV at a current density of 10 mA cm⁻²) and alkaline (over-potential of 105 mV at a current density of 10 mA cm^{-2}) environments. Peng et al. designed a Fe₂P–WO_{2.92} heterostructure on nickel foam by a facile consecutive three-step synthesis method [72]. The oxygen vacancies and the synergistic effect between $WO_{2,92}$ and Fe₂P facilitated a drastic reduction in over-potential for the catalytic OER performance of Fe₂P–WO_{2 92}/NF (over-potential of 215 mV at 10 mA cm⁻² in 1.0 M KOH solution).

Moreover, the interfacial richness of the two phases in the semiconductor-WO_x heterostructure directly affects the number of active sites. Yang's group prepared $Ni_{17}W_3/WO_2$ heterojunction on nickel foam ($WO_2/Ni_{17}W_3/NF$) by the hydrothermal and annealing method (Figure 9a) [150]. $WO_2/Ni_{17}W_3$ heterojunctions increase the exposure of active edge sites and facilitate the water dissociation and H intermediates association during HER kinetics. Therefore, WO₂/Ni₁₇W₃/NF demonstrated high catalytic efficiency for HER with a low over-potential of 35 mV at 10 mA cm⁻². Following this work, Liu's group prepared R-Ni₁₇W₃/WO₂ catalysts on Ni foam and explored the effect of Ni₁₇W₃ particle size decorated on the NiWO₄/WO₂ substrate for hydrogen evolution reaction (Figure 9b) [152]. The R-Ni₁₇W₃/WO₂ with larger Ni₁₇W₃ particles exhibited superior HER catalytic activity (over-potential of 48 mV at 10 mA cm⁻²), resulting from more interfaces and more active sites (Figure 9c). For R-Ni₁₇W₃/WO₂/NiWO₄, H₂O adsorption/deionization occurred at the $Ni_{17}W_3/NiWO_4$ interface, and H_{ads} and OH_{ads} were adsorbed on $Ni_{17}W_3$ and $NiWO_4$, respectively. The H_{ads} on Ni₁₇W₃ overflow to WO₂ preferentially in Ni₁₇W₃/WO₂ interface, which is conducive to the desorption of H_2 (Figure 9d). Our group also prepared a TA-Fe@Ni– WO_x hierarchical structure by the interfacial coordination assembly process. After the introduction of the TA–Fe layer, the electrons transfer from W and Ni to TA–Fe, and as a result, the TA–Fe@Ni–WO_x has an upward-moving Fermi energy, a smaller ionization potential, and a more electron-rich environment, which is more conducive to OER [167].

5.2. WO_x-C

Creating a heterostructure with another conductive material is a typical way to increase the electrocatalyst's overall electronic conductivity. Carbon materials, including graphene oxide (GO), carbon nanotube (CNT), carbon paper, and carbon cloth, are often used due to their superior electronic conductivity, high specific surface area, and excellent chemical durability [56,173–176]. WO_x/carbon composites have been widely used in electrocatalytic water splitting [71,142,143,145,146,177]. In this case, carbon-encapsulated WO_x with rich oxygen vacancies was synthesized by pyrolyzing carbon/tungsten mixture (Figure 10a,b) [95,144,178,179], which has a favorable impact on enhancing charge transfer and compensating for the weak hydrogen adsorption of the tungsten oxide. The effects of W content [95], annealing time [179], and annealing temperature [178] on HER performance of WO_x/C have been deeply explored. For example, Yin et al. studied the effects of different annealing times and temperatures on hydrogen evolution properties of WO_x/C in 0.5 M H_2SO_4 (Figure 10c) [179]. Pan's group introduced 15 nm thick carbon-based shells on the surface of tungsten oxide nanospheres (CTO) and investigated its catalytic performance in alkaline OER [145]. It was found that the overpotential of nanoparticles at 50 mA cm^{-2} decreased from 360 to 317 mV after the introduction of a carbon-based shell (Figure 10d). The improved catalytic performance is attributed to the carbon-based shell that speeds up the electron transfer between the catalyst and the reactant, provides the catalytic active site, and promotes the adsorption of the catalyst to the reactant and the dissociation of the O–H bond.

Figure 9. (a) TEM image of the $Ni_{17}W_3/WO_2$. Reprinted with permission from Reprinted with permission from [150], with permission from the American Chemical Society, 2019. (b) HRTEM image and size distribution plots for R-Ni₁₇W₃/WO₂ nanoparticles. (c) Polarization curves for Pt foil, Ni foam, P-Ni₁₇W₃/WO₂, and R-Ni₁₇W₃/WO₂. (d) Schematic diagram of R-Ni₁₇W₃/WO₂ nanoparticles accelerating the rate of hydrogen evolution reaction. Reprinted with permission from [152], with permission from the American Chemical Society, 2021.

Figure 10. (a) Schematic diagram of WO_{3-x} synthesis. Reprinted with permission from [95], with permission from the American Chemical Society, 2016. (b) Schematic diagram of WO_x/C synthesis steps. (c) Polarization curves with *iR* compensation of the WO_x/C in 0.5 M H₂SO₄ aqueous solution. Reprinted with permission from [179], with permission from Elsevier, 2021. (d) LSV polarization curves measured at a scan rate of 5 mV s⁻¹ in 1 M NaOH. Reprinted with permission from [145], with permission from the American Chemical Society, 2020.

5.3. $Metal-WO_x$

Conductive metal is also widely used to increase the electrocatalyst's overall electronic conductivity and adjust the electronic structure of WO_x . In order to reduce the cost of the catalyst, the metal part in metal– WO_x heterostructure often exists in the form of single atoms, clusters, or nanoparticles [71,120,156]. Li et al. prepared Pt@WO₃/C with three-dimensional nano architectures for HER via the water–oil two-phase microemulsion

method and the annealing treatment [156]. Pt nanoparticles with a diameter of about 4 nm were monodispersed on the surface of WO_3/C structures (Figure 11a,b). The overpotential at 10 mA cm⁻² of Pt@WO₃/C as HER electrocatalyst was 149 mV (Figure 11c), which was smaller than that of WO_3/C (244 mV). The mechanism of HER consists of three main steps, including H_2O adsorption, H_2O dissociation, and H^* desorption (Figure 11d). The corresponding free energy calculation results show that the introduction of Pt has no obvious effect on water absorption, but it can promote the water dissociation and H^{*} desorption of WO₃, thus accelerating the HER process (Figure 11e). The XPS results (Figure 11f) also confirm that the peaks of W 4f were positively shifted after the introduction of Pt due to the difference in electronegativity between W and Pt atoms, resulting in the transfer of electrons from W to Pt. In another work, $Pt-WO_{3-x}$ nanodots were anchored on rGO for water splitting [37]. The optimized composite $Pt-WO_{3-x}$ @rGO exhibited the highest HER, OER, and overall water-splitting activities in alkaline environments (overpotentials of about 34 mV, 174 mV, and 1.55 V at 10 mA cm⁻², respectively). At the same time, its overall water-splitting performance showed excellent durability at 1.55 V, where 93.3% initial potential could be maintained after 14 h of cycling.

Figure 11. (a) FESEM and (b) HRTEM images of $2Pt@WO_3/C$. Insert of (a) is the size distribution. The white circle in (b) are Pt particles. (c) The polarization curves of WO₃/C, $1Pt@WO_3/C$, $2Pt@WO_3/C$, and $3Pt@WO_3/C$. (d) the HER process and corresponding chemisorption models of Pt-WO₃ in neutral media, and (e) the corresponding free energy level diagram. (f) XPS of WO₃/C and $2Pt@WO_3/C$. Reprinted with permission from [156], with permission from Elsevier, 2022.

6. Summary and Outlook

In this review, we focus on the recent research progress of tungsten oxide-based nanomaterials for water splitting, especially revealing the mechanism of structural design and component regulation to improve the electrocatalytic performances, which is expected to guide the preparation of high-performance tungsten oxide-based electrocatalysts. The practical strategies for improving the performance of tungsten-oxide catalysts are discussed in this review. The band gap and contact area of a tungsten oxide-based electrode can be adjusted by controlling the morphology and crystal phase, thus improving its catalytic performance. The electronic structure of WO_x can also be optimized through defect engineering to provide more active sites and an excellent electronic environment for catalytic reactions. Additionally, the synergistic effect can boost the electron transfer of tungsten oxide and provide more active boundaries, which is another commonly used effective strategy for enhancing catalytic performance. Due to the adjustment of structure and composition, noble metal single atom/tungsten oxide/carbon, the best tungsten-based catalyst at present, greatly reduces the cost on the premise of excellent catalytic performance. Despite the advancement of these methods, the practical application of tungsten-based materials in water splitting is still in the early stage, and there are still many problems and challenges.

First, defect engineering has been widely used in regulating the electronic structure of tungsten oxide and promoting its catalytic performance. However, the precise control of the defect location and concentration is difficult, and the characterization technology of defect types and concentration is insufficient. Therefore, the improvement of catalytic performance by defect engineering lacks an intrinsic understanding. The development and utilization of more advanced in situ preparation and characterization technologies may somewhat solve this problem. For example, in situ atmospheric spherical correction

process in nanomaterials and the resulting crystal phase changes. Besides, the current research on the structure–property relationship mainly adopts the post-analysis method, which compares the electrocatalyst's structure before and after the catalytic reaction and infers the structure evolution during the reaction based on the static characterization results. However, the structure of tungsten oxide dynamically evolves in the catalytic reaction process. The morphology, chemical composition, and electronic structure of tungsten oxide are constantly changing and recycling. As a result, the structure differences before and after long-lasting catalytic reactions may not reflect the real active sites. To further understand the structure–property mechanism of tungsten oxide-based electrocatalysts, it is necessary to develop and utilize in situ characterization methods, such as in situ electron microscope and the in situ XRD technique, to record the dynamic structural changes of the catalysts in real-time during the reaction.

transmission electron microscopy can be used to directly observe the defect formation

We believe that the growth mechanism of material preparation and structure–property relationship can be better understood by in situ observation of the structure and defect location and concentration, as well as in situ characterization of catalytic processes. Combined with advanced theoretical simulation techniques, it is possible to obtain tungsten oxidebased electrocatalysts with high intrinsic activity. All these developments will significantly contribute to the rapid development of renewable energy storage and conversion.

Author Contributions: Y.W. did the writing and literature research for the paper. S.D. contributed to conception, and conceptualization. R.W. guided and supervised the work. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Beijing Natural Science Foundation (No. 2212034), the National Natural Science Foundation of China (Nos. 12034002 and 51971025), and the 111 Project (No. B170003).

Data Availability Statement: In this review manuscript, no new data were created.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Xue, S.; Zhang, W.; Zhang, Q.; Du, J.; Cheng, H.-M.; Ren, W. Heterostructured Ni-Mo-N nanoparticles decorated on reduced graphene oxide as efficient and robust electrocatalyst for hydrogen evolution reaction. *Carbon* **2020**, *165*, 122–128. [CrossRef]
- 2. Zhang, D.; Zhao, H.; Huang, B.; Li, B.; Li, H.; Han, Y.; Wang, Z.; Wu, X.; Pan, Y.; Sun, Y.; et al. Advanced ultrathin RuPdM (M = Ni, Co, Fe) nanosheets electrocatalyst boosts hydrogen evolution. *ACS Cent. Sci.* **2019**, *5*, 1991–1997. [CrossRef] [PubMed]
- Tan, Y.; Che, Q.; Li, Q. Constructing double-layer CoP/CeO₂-FeO_xH hybrid catalysts for alkaline and neutral water splitting. ACS Sustain. Chem. Eng. 2021, 9, 11981–11990. [CrossRef]
- 4. Shao, X.; Liang, M.; Kumar, A.; Liu, X.; Jin, H.; Ajmal, S.; Bui, V.Q.; Bui, H.T.D.; Lee, J.; Tran, N.Q.; et al. Amorphization of metal nanoparticles by 2D twisted polymer for super hydrogen evolution reaction. *Adv. Energy Mater.* **2022**, *12*, 2102257. [CrossRef]
- 5. Yang, M.; Zhang, C.H.; Li, N.W.; Luan, D.; Yu, L.; Lou, X.W. Design and synthesis of hollow nanostructures for electrochemical water splitting. *Adv. Sci.* 2022, *9*, 2105135. [CrossRef]
- 6. Zhang, X.-Y.; Yu, W.-L.; Zhao, J.; Dong, B.; Liu, C.-G.; Chai, Y.-M. Recent development on self-supported transition metal-based catalysts for water electrolysis at large current density. *Appl. Mater. Today* **2021**, *22*, 100913. [CrossRef]
- 7. Coles, D.; Wray, B.; Stevens, R.; Crawford, S.; Pennock, S.; Miles, J. Impacts of tidal stream power on energy system security: An Isle of wight case study. *Appl. Energy* **2023**, *334*, 120686. [CrossRef]
- 8. Gao, C.Y.; Yu, X.Y.; Nan, H.P.; Zhang, Z.Y.; Wu, L.C.; Men, C.; Cai, Q.S. Advancement and capacity allocation analysis of variable speed hydropower units for suppressing wind power fluctuations. *Front. Energy Res.* **2023**, *10*, 1030797. [CrossRef]

- 9. Kakoulaki, G.; Sanchez, R.G.; Amillo, A.G.; Szabo, S.; De Felice, M.; Farinosi, F.; De Felice, L.; Bisselink, B.; Seliger, R.; Kougias, I.; et al. Benefits of pairing floating solar photovoltaics with hydropower reservoirs in Europe. *Renew. Sustain. Energy Rev.* **2023**, *171*, 112989. [CrossRef]
- 10. Ogunjo, S.; Olusola, A.; Olusegun, C. Potential of using floating solar photovoltaic and wind farms for sustainable energy generation in an existing hydropower station in Nigeria. *Clean Technol. Environ. Policy* **2023**. [CrossRef]
- 11. Xiao, L.; Wang, J.; Wang, B.L.; Jiang, H. China's hydropower resources and development. Sustainability 2023, 15, 3940. [CrossRef]
- 12. Morales-Guio, C.G.; Tilley, S.D.; Vrubel, H.; Grätzel, M.; Hu, X. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. *Nat. Commun.* **2014**, *5*, 3059. [CrossRef] [PubMed]
- Jiang, E.; Li, J.; Li, X.; Ali, A.; Wang, G.; Ma, S.; Zhu, J.; Shen, P.K. MoP-Mo₂C quantum dot heterostructures uniformly hosted on a heteroatom-doped 3D porous carbon sheet network as an efficient bifunctional electrocatalyst for overall water splitting. *Chem. Eng. J.* 2022, 431, 133719. [CrossRef]
- 14. Balat, M. Potential importance of hydrogen as a future solution to environmental and transportation problems. *Int. J. Hydrogen Energy* **2008**, *33*, 4013–4029. [CrossRef]
- Escalera-López, D.; Czioska, S.; Geppert, J.; Boubnov, A.; Röse, P.; Saraçi, E.; Krewer, U.; Grunwaldt, J.-D.; Cherevko, S. Phaseand surface composition-dependent electrochemical stability of Ir-Ru nanoparticles during oxygen evolution reaction. *ACS Catal.* 2021, *11*, 9300–9316. [CrossRef]
- 16. da Silva Veras, T.; Mozer, T.S.; da Costa Rubim Messeder dos Santos, D.; da Silva César, A. Hydrogen: Trends, production and characterization of the main process worldwide. *Int. J. Hydrogen Energy* **2017**, *42*, 2018–2033. [CrossRef]
- 17. Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. *Int. J. Hydrogen Energy* **2020**, *45*, 3847–3869. [CrossRef]
- Yuan, H.; Wang, S.; Ma, Z.; Kundu, M.; Tang, B.; Li, J.; Wang, X. Oxygen vacancies engineered self-supported B doped Co₃O₄ nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride. *Chem. Eng. J.* 2021, 404, 126474. [CrossRef]
- Ma, Y.; Chen, M.; Geng, H.; Dong, H.; Wu, P.; Li, X.; Guan, G.; Wang, T. Synergistically tuning electronic structure of porous β-Mo₂C spheres by Co doping and Mo-vacancies defect engineering for optimizing hydrogen evolution reaction activity. *Adv. Funct. Mater.* 2020, 30, 2000561. [CrossRef]
- Zhao, D.; Dai, M.; Liu, H.; Duan, Z.; Tan, X.; Wu, X. Bifunctional ZnCo₂S₄@CoZn₁₃ hybrid electrocatalysts for high efficient overall water splitting. *J. Energy Chem.* 2022, 69, 292–300. [CrossRef]
- Shrestha, N.K.; Patil, S.A.; Han, J.; Cho, S.; Inamdar, A.I.; Kim, H.; Im, H. Chemical etching induced microporous nickel backbones decorated with metallic Fe@hydroxide nanocatalysts: An efficient and sustainable OER anode toward industrial alkaline water-splitting. *J. Mater. Chem. A* 2022, *10*, 8989–9000. [CrossRef]
- Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433. [CrossRef]
- 23. You, B.; Sun, Y. Innovative strategies for electrocatalytic water splitting. ACC. Chem. Res. 2018, 51, 1571–1580. [CrossRef] [PubMed]
- 24. Wu, X.; Chen, J.; Wen, Z. Promotion for full water splitting toward vanadium-incorporated MoO₂-MoNi₄ hybrid nanoarrays. *ACS Sustain. Chem. Eng.* **2021**, *9*, 13225–13232. [CrossRef]
- Ali, A.; Long, F.; Shen, P.K. Innovative strategies for overall water splitting using nanostructured transition metal electrocatalysts. *Electrochem. Energy Rev.* 2022, 6, 1. [CrossRef]
- 26. Al-Naggar, A.H.; Shinde, N.M.; Kim, J.-S.; Mane, R.S. Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. *Coordin. Chem. Rev.* 2023, 474, 214864. [CrossRef]
- Zhou, Y.; Hu, X.C.; Liu, X.H.; Wen, H.R. Core-shell hierarchical WO₂/WO₃ microsphere as an electrocatalyst support for methanol electrooxidation. *Chem. Comm.* 2015, *51*, 15297–15299. [CrossRef] [PubMed]
- 28. Huang, Z.F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.J. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. *Adv. Mater.* **2015**, *27*, 5309–5327. [CrossRef]
- Diao, J.; Yuan, W.; Qiu, Y.; Cheng, L.; Guo, X. A hierarchical oxygen vacancy-rich WO₃ with "nanowire-array-on-nanosheet-array" structure for highly efficient oxygen evolution reaction. *J. Mater. Chem. A* 2019, 7, 6730–6739. [CrossRef]
- 30. Zheng, J.Y.; Song, G.; Hong, J.; Van, T.K.; Pawar, A.U.; Kim, D.Y.; Kim, C.W.; Haider, Z.; Kang, Y.S. Facile fabrication of WO₃ nanoplates thin films with dominant crystal facet of (002) for water splitting. *Cryst. Growth Des.* **2014**, *14*, 6057–6066. [CrossRef]
- 31. Jiang, M.; Zhang, G.; Li, C.; Liu, J.; Guo, K.; Ning, H.; Shi, M.; Guo, D.; Yao, R.; Peng, J. Effects of rapid thermal annealing on wide band gap tungsten oxide films. *Super. Microstruct.* **2020**, *142*, 106541. [CrossRef]
- 32. Johansson, M.B.; Kristiansen, P.T.; Duda, L.; Niklasson, G.A.; Osterlund, L. Band gap states in nanocrystalline WO₃ thin films studied by soft X-ray spectroscopy and optical spectrophotometry. *J. Phys. Condens. Matter* **2016**, *28*, 475802. [CrossRef] [PubMed]
- Chen, X.Y.; Yang, J.; Cao, Y.F.; Kong, L.; Huang, J.F. Design principles for tungsten oxide electrocatalysts for water splitting. *ChemElectroChem* 2021, 8, 4427–4440. [CrossRef]
- 34. Zhu, L.; Zhang, Z.; Ke, X.; Wang, J.; Perepezko, J.; Sui, M. WO₂ triggered nucleation and growth of ultra-long W₁₈O₄₉ structures, from nanobundles to single-crystalline microrod. *Acta Mater.* **2018**, *148*, 55–62. [CrossRef]

- Cheng, H.; Klapproth, M.; Sagaltchik, A.; Li, S.; Thomas, A. Ordered mesoporous WO_{2.83}: Selective reduction synthesis, exceptional localized surface plasmon resonance and enhanced hydrogen evolution reaction activity. *J. Mater. Chem. A* 2018, 6, 2249–2256. [CrossRef]
- Lu, S.-S.; Zhang, L.-M.; Fan, K.; Xie, J.-Y.; Shang, X.; Zhang, J.-Q.; Chi, J.-Q.; Yang, X.-L.; Wang, L.; Chai, Y.-M.; et al. In situ formation of ultrathin C₃N₄ layers on metallic WO₂ nanorods for efficient hydrogen evolution. *Appl. Surf. Sci.* 2019, 487, 945–950. [CrossRef]
- Yin, D.; Cao, Y.-D.; Chai, D.-F.; Fan, L.-L.; Gao, G.-G.; Wang, M.-L.; Liu, H.; Kang, Z. A WO_x mediated interface boosts the activity and stability of Pt-catalyst for alkaline water splitting. *Chem. Eng. J.* 2022, 431, 133287–133297. [CrossRef]
- Qian, K.; Du, L.; Zhu, X.; Liang, S.; Chen, S.; Kobayashi, H.; Yan, X.; Xu, M.; Dai, Y.; Li, R. Directional oxygen activation by oxygen-vacancy-rich WO₂ nanorods for superb hydrogen evolution via formaldehyde reforming. *J. Mater. Chem. A* 2019, 7, 14592–14601. [CrossRef]
- Zhu, K.; Shi, F.; Zhu, X.; Yang, W. The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. *Nano Energy* 2020, 73, 104761. [CrossRef]
- Han, H.; Nayak, A.K.; Choi, H.; Ali, G.; Kwon, J.; Choi, S.; Paik, U.; Song, T. Partial dehydration in hydrated tungsten oxide nanoplates leads to excellent and robust bifunctional oxygen reduction and hydrogen evolution reactions in acidic media. ACS Sustain. Chem. Eng. 2020, 8, 9507–9518. [CrossRef]
- Yang, J.; Chen, X.Y.; Liu, X.Y.; Cao, Y.F.; Huang, J.F.; Li, Y.S.; Liu, F. From hexagonal to monoclinic: Engineering crystalline phase to boost the intrinsic catalytic activity of tungsten oxides for the hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2021, 9, 5642–5650. [CrossRef]
- 42. Zhang, X.; Jin, G.; Wang, D.; Chen, Z.; Zhao, M.; Xi, G. Crystallographic phase and morphology dependent hydrothermal synthesis of tungsten oxide for robust hydrogen evolution reaction. *J. Alloys Compd.* **2021**, *875*, 160054. [CrossRef]
- Li, Q.; Wang, L.; Ai, X.; Chen, H.; Zou, J.; Li, G.D.; Zou, X. Multiple crystal phases of intermetallic tungsten borides and phase-dependent electrocatalytic property for hydrogen evolution. *Chem. Commun.* 2020, *56*, 13983–13986. [CrossRef] [PubMed]
- Rajalakshmi, R.; Rebekah, A.; Viswanathan, C.; Ponpandian, N. Evolution of intrinsic 1-3D WO₃ nanostructures: Tailoring their phase structure and morphology for robust hydrogen evolution reaction. *Chem. Eng. J.* 2022, 428, 132013–132030.
- 45. Wang, J.; Liao, T.; Wei, Z.; Sun, J.; Guo, J.; Sun, Z. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: An electronic structure tuning strategy. *Small Methods* **2021**, *5*, 2000988. [CrossRef]
- Xue, Z.; Liu, Y.; Liu, Q.; Zhang, Y.; Yu, M.; Liang, Q.; Hu, J.; Li, G. Constructing nickel sulfide heterojunctions by W-doping-induced structural transition for enhanced oxygen evolution. *J. Mater. Chem. A* 2022, *10*, 3341–3345. [CrossRef]
- Wang, R.; Yang, Y.; Sun, Z.; Lu, X. Ga doped Ni₃S₂ ultrathin nanosheet arrays supported on Ti₃C₂-MXene/Ni foam: An efficient and stable 3D electrocatalyst for oxygen evolution reaction. *Int. J. Hydrogen Energy* 2022, 47, 2958–2966. [CrossRef]
- Huang, H.; Xu, L.; Yoon Woo, D.; Kim, S.; Min Kim, S.; Kyeong Kim, Y.; Byeon, J.; Lee, J. Refining the surface properties of WO_{2.7} by vacancy engineering and transition metals doping for enhanced alkaline hydrogen evolution reaction. *Chem. Eng. J.* 2023, 451, 138939. [CrossRef]
- 49. Hai, G.; Huang, J.; Cao, L.; Kajiyoshi, K.; Wang, L.; Feng, L. Hierarchical W₁₈O₄₉/NiWO₄/NF heterojunction with tuned composition and charge transfer for efficient water splitting. *Appl. Surf. Sci.* **2021**, *562*, 150145. [CrossRef]
- Tariq, M.; Zaman, W.Q.; Wu, Y.Y.; Nabi, A.; Abbas, Z.; Iqbal, W.; Sun, W.; Hao, Z.; Zhou, Z.H.; Cao, L.M.; et al. Facile synthesis of IrO₂ nanoparticles decorated@WO₃ as mixed oxide composite for outperformed oxygen evolution reaction. *Int. J. Hydrogen Energy* 2019, 44, 31082–31093. [CrossRef]
- 51. Sun, T.M.; Zhong, W.T.; Zhang, M.K.; Tang, Y.F.; Wang, J.; Xu, C.; Hu, L.P.; Wang, M.M. A low-cost 2D WO₃/Ni₃S₂ heterojunction for highly stable hydrogen evolution. *Mater. Chem. Front.* **2021**, *5*, 8248–8254. [CrossRef]
- Cui, Y.L.S.; Tan, X.; Xiao, K.F.; Zhao, S.L.; Bedford, N.M.; Liu, Y.F.; Wang, Z.C.; Wu, K.H.; Pan, J.; Saputera, W.H.; et al. Tungsten oxide/carbide surface heterojunction catalyst with high hydrogen evolution activity. ACS Energy Lett. 2020, 5, 3560–3568. [CrossRef]
- Anis, S.F.; Mostafa, A.O.; Hilal, N.; Hashaikeh, R. Nanocrystalline NiWO₄-WO₃-WO_{2.9} composite strings: Fabrication, characterization and their electrocatalytic performance for hydrogen evolution reaction. *Metall. Mater. Trans. A Phys. Metall. Mater. Sci.* 2020, *51*, 1264–1274. [CrossRef]
- Fominski, V.; Gnedovets, A.; Fominski, D.; Romanov, R.; Kartsev, P.; Rubinkovskaya, O.; Novikov, S. Pulsed laser deposition of nanostructured MoS₃/NP-Mo//WO_{3-y} hybrid catalyst for enhanced (photo) electrochemical hydrogen evolution. *Nanomaterials* 2019, 9, 1395. [CrossRef] [PubMed]
- Zhang, W.; Huang, B.; Wang, K.; Yang, W.; Lv, F.; Li, N.; Chao, Y.; Zhou, P.; Yang, Y.; Li, Y.; et al. WO_x-surface decorated PtNi@Pt dendritic nanowires as efficient pH-universal hydrogen evolution electrocatalysts. *Adv. Energy Mater.* 2021, *11*, 2003192. [CrossRef]
- Liu, J.; Zhang, T.; Liu, T.; Liu, K.; Tan, X.; Yu, X.; Zhao, Q. Oxygen vacancy-rich WO_{3-x}/rGO composite supported Pd catalyst for efficient selective hydrogenation of nitroaromatics. J. Alloys Compd. 2023, 932, 167577. [CrossRef]
- 57. Jiang, R.; He, C.; Guo, C.; Chen, W.; Luo, J.; Chen, Y.; Wang, L. Edge-contact geometry and anion-deficit construction for activating ultrathin MoS₂ on W₁₇O₄₇ in the hydrogen evolution reaction. *Inorg. Chem.* **2019**, *58*, 11241–11247. [CrossRef]
- Kumar, S.; Soni, R.; Kurungot, S. PdP/WO₃ multi-functional catalyst with high activity and stability for direct liquid fuel cells (DLFCs). Sustain. Energy Fuels 2021, 5, 4758–4770. [CrossRef]

- Morka, T.D.; Ujihara, M. Enhanced performance of WO₃/SnO₂ nanocomposite electrodes with redox-active electrolytes for supercapacitors. *Int. J. Mol. Sci.* 2023, 24, 6045. [CrossRef]
- Shi, J.; Tian, X.D.; Wang, H.X.; Ge, L.; Li, J.F.; Lv, B.L. Oxygen deficient sea urchin-like Cu-WO₃ with high capacity and long life for anode of lithium-ion battery. *Appl. Surface Sci.* 2023, 618, 156627. [CrossRef]
- Wang, J.Y.; Zhou, Y.R.; Zhao, W.X.; Niu, Y.T.; Mao, Y.L.; Cheng, W. Amorphous mixed-vanadium-tungsten oxide films as optically passive ion storage materials for solid-state near-infrared electrochromic devices. ACS Appl. Mater. Interfaces 2023, 15, 7120–7128. [CrossRef] [PubMed]
- Wang, L.S.; Zhang, H.Y.; Yin, Y.L.; Zhou, Y.L.; Yin, X.X.; Wang, T.; Zeng, J.; Wang, W.K.; Zhou, W.C.; Tang, D.S. Controlled synthesis of 3D urchinlike niobium tungsten oxide nanostructure for fast hydrogen ion storage. *J. Phys. D Appl. Phys.* 2023, 56, 185501. [CrossRef]
- 63. Wu, C.; Shi, H.S.; Zhao, L.Q.; Chen, X.; Zhang, X.S.; Zhang, C.; Yu, J.M.; Lv, Y.J.; Wei, R.; Gao, T.Y.; et al. High-performance aqueous Zn²⁺/Al³⁺ electrochromic batteries based on niobium tungsten oxides. *Adv. Funct. Mater.* **2023**, *33*, 2214886. [CrossRef]
- 64. Zou, Y.D.; Xi, S.B.; Bo, T.; Zhou, X.R.; Ma, J.H.; Yang, X.Y.; Diao, C.Z.; Deng, Y.H. Mesoporous amorphous Al₂O₃/crystalline WO₃ heterophase hybrids for electrocatalysis and gas sensing applications. *J. Mater. Chem. A* **2019**, *7*, 21874–21883. [CrossRef]
- 65. Mao, Y.; Wen, Y.; Chen, H.; Liao, M.; Zhang, F. Tungsten oxide flow sensor and its performance regulation. *IEEE Trans. Instrum. Meas.* **2022**, *71*, 9506608. [CrossRef]
- 66. Juang, F.-R.; Wang, W.-Y. Ethanol gas sensors with nanocomposite of nickel oxide and tungsten oxide. *IEEE Sens. J.* 2021, 21, 19740–19752. [CrossRef]
- Drmosh, Q.A.; Al-Muhaish, N.A.; Al Wajih, Y.A.; Alam, M.W.; Yamani, Z.H. Surface composite and morphology tuning of tungsten oxide thin films for acetone gas sensing. *Chem. Phys. Lett.* 2021, 776, 138659. [CrossRef]
- 68. Ambardekar, V.; Bhowmick, T.; Bandyopadhyay, P.P. Understanding on the hydrogen detection of plasma sprayed tin oxide/tungsten oxide (SnO₂/WO₃) sensor. *Int. J. Hydrogen Energy* **2022**, *47*, 15120–15131. [CrossRef]
- 69. Mo, Y.S.; Feng, S.Q.; Yu, T.Q.; Chen, J.L.; Qian, G.F.; Luo, L.; Yin, S.B. Surface unsaturated WO_x activating PtNi alloy nanowires for oxygen reduction reaction. *J. Colloid Interface Sci.* **2022**, *607*, 1928–1935. [CrossRef]
- Tang, X.X.; Liu, J.L.; Zhan, K.; Sun, H.; Zhao, B.; Yan, Y. Molybdenum-tungsten oxide nanowires rich in oxygen vacancies as an advanced electrocatalyst for hydrogen evolution. *Chem. Asian J.* 2020, *15*, 2984–2991. [CrossRef]
- Li, Y.; Jiang, K.Y.; Yang, J.; Zheng, Y.Y.; Hubner, R.; Ou, Z.W.; Dong, X.; He, L.Q.; Wang, H.L.; Li, J.; et al. Tungsten oxide/reduced graphene oxide aerogel with low-content platinum as high-performance electrocatalyst for hydrogen evolution reaction. *Small* 2021, 17, 2102159. [CrossRef] [PubMed]
- 72. Peng, Q.M.; He, Q.T.; Hu, Y.; Isimjan, T.T.; Hou, R.B.; Yang, X.L. Interface engineering of porous Fe₂P-WO_{2.92} catalyst with oxygen vacancies for highly active and stable large-current oxygen evolution and overall water splitting. *J. Energy Chem.* **2022**, *65*, 574–582. [CrossRef]
- Bharagav, U.; Reddy, N.R.; Koteswararao, V.N.; Ravi, P.; Pratap, K.; Sathish, M.; Cheralathan, K.K.; Shankar, M.V.; Kumari, M.M. Heterojunction of CdS Nanocapsules-WO₃ nanosheets composite as a stable and efficient photocatalyst for hydrogen evolution. *Energy Fuels* 2020, 34, 14598–14610. [CrossRef]
- Nevolin, V.N.; Fominski, D.V.; Romanov, R.I.; Rubinkovskaya, O.V.; Soloviev, A.A.; Shvets, P.V.; Maznitsyna, E.A.; Fominski, V.Y. Influence of sulfidation conditions of WO₃ nanocrystalline film on photoelectrocatalytic activity of WS₂/WO₃ hybrid structure in production of hydrogen. *Inorg. Mater. Appl. Res.* 2021, 12, 1139–1147. [CrossRef]
- Sudha, A.; Koshy, A.M.; Swaminathan, P. Microstructure tailoring of tungsten oxide for enhanced properties by varying sintering temperatures. *Mater. Lett.* 2022, 316, 132007. [CrossRef]
- Šedivá, R.; Pistonesi, C.; Pronsato, M.E.; Duchoň, T.; Stetsovych, V.; Mysliveček, J.; Mašek, K. 1D tungsten oxide nanostructures on a Cu(110) surface. J. Phys. Condens. Matter 2018, 30, 465001. [CrossRef]
- Dong, C.; Zhao, R.; Yao, L.; Ran, Y.; Zhang, X.; Wang, Y. A review on WO₃ based gas sensors: Morphology control and enhanced sensing properties. J. Alloys Compd. 2020, 820, 153194. [CrossRef]
- 78. Chen, B.; Laverock, J.; Piper, L.F.J.; Preston, A.R.H.; Cho, S.W.; DeMasi, A.; Smith, K.E.; Scanlon, D.O.; Watson, G.W.; Egdell, R.G.; et al. The band structure of WO₃ and non-rigid-band behaviour in Na_{0.67}WO₃ derived from soft X-ray spectroscopy and density functional theory. *J. Phys. Condens. Matter* **2013**, *25*, 165501. [CrossRef]
- Wang, F.; Di Valentin, C.; Pacchioni, G. Semiconductor-to-metal transition in WO_{3-x}: Nature of the oxygen vacancy. *Phys. Rev. B* 2011, *84*, 073103. [CrossRef]
- Al Mohammad, A.; Gillet, M. Phase transformations in WO₃ thin films during annealing. *Thin Solid Films* 2002, 408, 302–309.
 [CrossRef]
- Hernandez-Uresti, D.B.; Sánchez-Martínez, D.; Martínez-de la Cruz, A.; Sepúlveda-Guzmán, S.; Torres-Martínez, L.M. Characterization and photocatalytic properties of hexagonal and monoclinic WO₃ prepared via microwave-assisted hydrothermal synthesis. *Ceram. Int.* 2014, 40, 4767–4775. [CrossRef]
- Nayak, A.K.; Verma, M.; Sohn, Y.; Deshpande, P.A.; Pradhan, D. Highly active tungsten oxide nanoplate electrocatalysts for the hydrogen evolution reaction in acidic and near neutral electrolytes. ACS Omega 2017, 2, 7039–7047. [CrossRef] [PubMed]
- 83. Ahmadi, M.; Sahoo, S.; Younesi, R.; Gaur, A.P.S.; Katiyar, R.S.; Guinel, M.J.F. WO₃ nano-ribbons: Their phase transformation from tungstite (WO₃ center dot H₂O) to tungsten oxide (WO₃). *J. Mater. Sci.* **2014**, *49*, 5899–5909. [CrossRef]

- 84. Sharma, L.; Kumar, P.; Halder, A. Phase and vacancy modulation in tungsten oxide: Electrochemical hydrogen evolution. *ChemElectroChem* **2019**, *6*, 3420–3428. [CrossRef]
- Hajiahmadi, Z.; Azar, Y.T. Computational study of h-WO₃ surfaces as a semiconductor in water-splitting application. *Surf. Interfaces* 2022, 28, 101695. [CrossRef]
- Mohamed, M.M.; Salama, T.M.; Hegazy, M.A.; Abou Shahba, R.M.; Mohamed, S.H. Synthesis of hexagonal WO₃ nanocrystals with various morphologies and their enhanced electrocatalytic activities toward hydrogen evolution. *Int. J. Hydrogen Energy* 2019, 44, 4724–4736. [CrossRef]
- 87. Ham, D.J.; Phuruangrat, A.; Thongtem, S.; Lee, J.S. Hydrothermal synthesis of monoclinic WO₃ nanoplates and nanorods used as an electrocatalyst for hydrogen evolution reactions from water. *Chem. Eng. J.* **2010**, *165*, 365–369. [CrossRef]
- Zhou, H.W.; Shi, Y.T.; Dong, Q.S.; Lin, J.; Wang, A.Q.; Ma, T.L. Surface oxygen vacancy-dependent electrocatalytic activity of W₁₈O₄₉ Nanowires. J. Phys. Chem. C 2014, 118, 20100–20106. [CrossRef]
- 89. Liang, H.F.; Cao, Z.; Xia, C.; Ming, F.W.; Zhang, W.L.; Emwas, A.H.; Cavallo, L.; Alshareef, H.N. Tungsten blue oxide as a reusable electrocatalyst for acidic water oxidation by plasma-induced vacancy engineering. *CCS Chem.* **2021**, *3*, 1553–1561. [CrossRef]
- Sun, S.M.; Wu, J.; Watanabe, M.; Akbay, T.; Ishihara, T. Single-electron-trapped oxygen vacancy on ultrathin WO₃ center dot 0.33H₂O {100} facets suppressing backward reaction for promoted H₂ evolution in pure water splitting. *J. Phys. Chem. Lett.* 2019, 10, 2998–3005. [CrossRef]
- Wang, Y.; Wang, Y.; Bai, J.; Duan, S.; Wang, R.; Lau, W.-M. In-situ etching synthesis of 3D self-supported serrated Ni-WO₃ for oxygen evolution reaction. J. Alloys Compd. 2022, 893, 162134. [CrossRef]
- Wu, X.; Zhang, T.; Wei, J.; Feng, P.; Yan, X.; Tang, Y. Facile synthesis of Co and Ce dual-doped Ni₃S₂ nanosheets on Ni foam for enhanced oxygen evolution reaction. *Nano Res.* 2020, 13, 2130–2135. [CrossRef]
- Hai, G.J.; Huang, J.F.; Cao, L.Y.; Kajiyoshi, K.; Wang, L.; Feng, L.L.; Chen, J. Activation of urchin-like Ni-doped W₁₈O₄₉/NF by electrochemical tuning for efficient water splitting. J. Energy Chem. 2021, 63, 642–650. [CrossRef]
- 94. Zheng, T.T.; Sang, W.; He, Z.H.; Wei, Q.S.; Chen, B.W.; Li, H.L.; Cao, C.; Huang, R.J.; Yan, X.P.; Pan, B.C.; et al. Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution. *Nano Lett.* **2017**, *17*, 7968–7973. [CrossRef]
- Chen, J.D.; Yu, D.N.; Liao, W.S.; Zheng, M.D.; Xiao, L.F.; Zhu, H.; Zhang, M.; Du, M.L.; Yao, J.M. WO_{3-x} nanoplates grown on carbon nanofibers for an efficient electrocatalytic hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 18132–18139. [CrossRef]
- 96. Li, Y.H.; Liu, P.F.; Pan, L.F.; Wang, H.F.; Yang, Z.Z.; Zheng, L.R.; Hu, P.; Zhao, H.J.; Gu, L.; Yang, H.G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. *Nat. Commun.* **2015**, *6*, 8064. [CrossRef]
- Li, D.X.; Xu, Y.; Lu, Y.L.; Chen, Y.Y.; Wu, Y.Y.; Yan, J.; Du, F.K.; Zhao, Y.Z.; Tan, X.C. Defect-rich engineering of Ni-incorporated tungsten oxides micro-flowers on carbon cloth: A binder-free electrode for highly efficient hydrogen evolution reaction. *J. Power Sources* 2022, 520, 230862–230870. [CrossRef]
- Nayak, A.K.; Pradhan, D. Microwave-assisted greener synthesis of defect-rich tungsten oxide nanowires with enhanced photocatalytic and photoelectrochemical performance. J. Phys. Chem. C 2018, 122, 3183–3193. [CrossRef]
- Xie, X.; Mu, W.J.; Li, X.L.; Wei, H.Y.; Jian, Y.; Yu, Q.H.; Zhang, R.; Lv, K.; Tang, H.; Luo, S.Z. Incorporation of tantalum ions enhances the electrocatalytic activity of hexagonal WO₃ nanowires for hydrogen evolution reaction. *Electrochim. Acta* 2014, 134, 201–208. [CrossRef]
- Li, P.; Duan, X.; Kuang, Y.; Sun, X. Iridium in tungsten trioxide matrix as an efficient bi-functional electrocatalyst for overall water splitting in acidic media. *Small* 2021, 17, e2102078. [CrossRef]
- 101. Zhao, Y.; Lv, C.; Huang, Q.; Huang, Z.; Zhang, C. Self-supported tungsten/tungsten dioxide nanowires array as an efficient electrocatalyst in hydrogen evolution reaction. *RSC Adv.* **2016**, *6*, 89815–89820. [CrossRef]
- 102. Rajalakshmi, R.; Viswanathan, C.; Ponpandian, N. Sm³⁺ rare-earth doping in non-noble metal oxide-WO₃ grown on carbon cloth fibre as a bifunctional electrocatalyst for high-performance water electrolysis. *Sustain. Energy Fuels* **2021**, *5*, 5851–5865. [CrossRef]
- Ma, J.W.; Ma, Z.R.; Liu, B.B.; Wang, S.; Ma, R.X.; Wang, C.Y. Composition of Ag-WO₃ core-shell nanostructures as efficient electrocatalysts for hydrogen evolution reaction. *J. Solid State Chem.* 2019, 271, 246–252. [CrossRef]
- Wang, D.L.; Li, H.P.; Du, N.; Hou, W.G. Single platinum atoms immobilized on monolayer tungsten trioxide nanosheets as an efficient electrocatalyst for hydrogen evolution reaction. *Adv. Funct. Mater.* 2021, *31*, 2009770. [CrossRef]
- 105. Liu, J.C.; Tang, C.Y.; Ke, Z.J.; Chen, R.; Wang, H.B.; Li, W.Q.; Jiang, C.Z.; He, D.; Wang, G.M.; Xiao, X.H. Optimizing hydrogen adsorption by d-d orbital modulation for efficient hydrogen evolution catalysis. Adv. Energy Mater. 2022, 12, 2103301. [CrossRef]
- 106. Sun, X.; Yang, F.; Liu, Z.; Zeng, L.; Cui, X. Fabrication of Fe and P Co-doped WO₂ nano-polygonal pyramid as an efficient electrocatalyst for hydrogen evolution reaction. *Chem. Lett.* **2019**, *48*, 1232–1235. [CrossRef]
- Yue, X.; Zheng, Y.; Chen, Y.; Huang, S. Overall water splitting on Ni_{0.19}WO₄ nanowires as highly efficient and durable bifunctional non-precious metal electrocatalysts. *Electrochim. Acta* 2020, *333*, 135554. [CrossRef]
- 108. Jiang, D.L.; Xu, S.J.; Gao, M.H.; Lu, Y.K.; Liu, Y.; Sun, S.C.; Di, L. Synergistically integrating nickel porous nanosheets with 5d transition metal oxides enabling efficient electrocatalytic overall water splitting. *Inorg. Chem.* **2021**, *60*, 8189–8199. [CrossRef]
- Peng, C.L.; Zhao, W.P.; Kuang, Z.Y.; Miller, J.T.; Chen, H.R. Boosting neutral hydrogen evolution reaction on iridium by support effect of W₁₈O₄₉. *Appl. Catal. A-Gen.* 2021, 623, 9. [CrossRef]
- Wang, C.Z.; Wang, R.; Peng, Y.; Chen, J.N.; Li, J.H. Iron tungsten mixed composite as a robust oxygen evolution electrocatalyst. *Chem. Comm.* 2019, 55, 10944–10947. [CrossRef]

- 111. Xi, Z.; Mendoza-Garcia, A.; Zhu, H.Y.; Chi, M.F.; Su, D.; Erdosy, D.P.; Li, J.R.; Sun, S.H. Ni_xWO_{2.72} nanorods as an efficient electrocatalyst for oxygen evolution reaction. *Green Energy Environ.* **2017**, *2*, 119–123. [CrossRef]
- 112. Park, J.; Lee, S.; Kim, H.E.; Cho, A.; Kim, S.; Ye, Y.; Han, J.W.; Lee, H.; Jang, J.H.; Lee, J. Investigation of the support effect in atomically dispersed Pt on WO_{3-x} for utilization of Pt in the hydrogen evolution reaction. *Angew. Chem. Int. Ed.* 2019, *58*, 16038–16042. [CrossRef] [PubMed]
- 113. Peng, L.; Su, L.; Yu, X.; Wang, R.; Cui, X.; Tian, H.; Cao, S.; Xia, B.Y.; Shi, J. Electron redistribution of ruthenium-tungsten oxides Mott-Schottky heterojunction for enhanced hydrogen evolution. *Appl. Catal. B—Environ.* 2022, 308, 121229. [CrossRef]
- Ren, Y.M.; Chen, Z.H.; Yu, X.R. Ultrathin, porous and oxygen vacancies-enriched Ag/WO_{3-x} heterostructures for electrocatalytic hydrogen evolution. *Chem.-Asian J.* 2019, 14, 4315–4321. [CrossRef] [PubMed]
- 115. Zhong, X.; Sun, Y.; Chen, X.; Zhuang, G.; Li, X.; Wang, J.-G. Mo doping induced more active sites in urchin-like W₁₈O₄₉ nanostructure with remarkably enhanced performance for hydrogen evolution reaction. *Adv. Funct. Mater.* 2016, 26, 5778–5786. [CrossRef]
- 116. Hu, W.; Tian, M.; Zeng, K.; Yan, J.; Zhou, J.; Zhang, J.; Rummeli, M.H.; Wang, H.; Yang, R. Tuning the electronic structure of W₁₈O₄₉ via dual doping for efficient oxygen evolution reaction. ACS Appl. Energy Mater. 2022, 5, 3208–3216. [CrossRef]
- 117. Zhao, Y.; Tang, Q.; Yang, P.; He, B. Robust electrocatalysts from metal doped W₁₈O₄₉ nanofibers for hydrogen evolution. *Chem. Comm.* **2017**, *53*, 4323–4326. [CrossRef]
- Zhao, Y.Y.; Tang, Q.W.; He, B.L.; Yang, P.Z. Mo incorporated W₁₈O₄₉ nanofibers as robust electrocatalysts for high-efficiency hydrogen evolution. *Int. J. Hydrogen Energy* 2017, 42, 14534–14546. [CrossRef]
- 119. Nakayama, M.; Takeda, A.; Maruyama, H.; Kumbhar, V.; Crosnier, O. Cobalt-substituted iron-based wolframite synthesized via polyol route for efficient oxygen evolution reaction. *Electrochem. Commun.* **2020**, *120*, 106834–106840. [CrossRef]
- 120. Tian, H.; Cui, X.Z.; Zeng, L.M.; Su, L.; Song, Y.L.; Shi, J.L. Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO₃ electrocatalyst. *J. Mater. Chem. A* 2019, *7*, 6285–6293. [CrossRef]
- 121. Shu, C.; Kang, S.; Jin, Y.S.; Yue, X.; Shen, P.K. Bifunctional porous non-precious metal WO₂ hexahedral networks as an electrocatalyst for full water splitting. *J. Mater. Chem. A* **2017**, *5*, 9655–9660. [CrossRef]
- 122. Song, J.; Huang, Z.-F.; Pan, L.; Zou, J.-J.; Zhang, X.; Wang, L. Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst. *ACS Catal.* **2015**, *5*, 6594–6599. [CrossRef]
- 123. Zheng, X.; Chen, Y.; Bao, X.; Mao, S.; Fan, R.; Wang, Y. In situ formed bimetallic carbide Ni₆Mo₆C nanodots and NiMoO_x nanosheet array hybrids anchored on carbon cloth: Efficient and flexible self-supported catalysts for hydrogen evolution. ACS Catal. 2020, 10, 11634–11642. [CrossRef]
- 124. Zhang, J.; Qian, J.; Ran, J.; Xi, P.; Yang, L.; Gao, D. Engineering lower coordination atoms onto NiO/Co₃O₄ heterointerfaces for boosting oxygen evolution reactions. *ACS Catal.* **2020**, *10*, 12376–12384. [CrossRef]
- 125. Duan, Y.; Yu, Z.Y.; Hu, S.J.; Zheng, X.S.; Zhang, C.T.; Ding, H.H.; Hu, B.C.; Fu, Q.Q.; Yu, Z.L.; Zheng, X.; et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. *Angew. Chem.* 2019, 58, 15772–15777. [CrossRef] [PubMed]
- 126. Miao, X.; Wu, L.; Lin, Y.; Yuan, X.; Zhao, J.; Yan, W.; Zhou, S.; Shi, L. The role of oxygen vacancies in water oxidation for perovskite cobalt oxide electrocatalysts: Are more better? *Chem. Comm.* **2019**, *55*, 1442–1445. [CrossRef]
- 127. Guo, C.; Liu, X.; Gao, L.; Ma, X.; Zhao, M.; Zhou, J.; Kuang, X.; Deng, W.; Sun, X.; Wei, Q. Oxygen defect engineering in cobalt iron oxide nanosheets for promoted overall water splitting. J. Mater. Chem. A 2019, 7, 21704–21710. [CrossRef]
- 128. Cai, Z.; Bi, Y.; Hu, E.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X.; Kuang, Y.; Li, Y.; Yang, X.-Q.; et al. Single-crystalline ultrathin Co₃O₄ nanosheets with massive vacancy defects for enhanced electrocatalysis. *Adv. Energy Mater.* **2018**, *8*, 1701694. [CrossRef]
- 129. Qiao, D.; Wang, Y.; Li, F.; Wang, D.Y.; Yan, B.J. Kinetic study on preparation of substoichiometric tungsten oxide WO_{2.72} via hydrogen reduction process. *J. Therm. Anal. Calorim.* **2019**, *137*, 389–397. [CrossRef]
- Wang, Z.; Zhang, Y.; Neyts, E.C.; Cao, X.; Zhang, X.; Jang, B.W.L.; Liu, C.-j. Catalyst preparation with plasmas: How does it work? ACS Catal. 2018, 8, 2093–2110. [CrossRef]
- Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L. Plasma-engraved Co₃O₄ nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. *Angew. Chem.* **2016**, *128*, 5363–5367. [CrossRef]
- 132. Anis, S.F.; Lalia, B.S.; Mostafa, A.O.; Hashaikeh, R. Electrospun nickel-tungsten oxide composite fibers as active electrocatalysts for hydrogen evolution reaction. *J. Mater. Sci.* 2017, *52*, 7269–7281. [CrossRef]
- 133. Lu, K.; Wang, Z.; Wu, Y.; Zhai, X.; Wang, C.; Li, J.; Wang, Z.; Li, X.; He, Y.; An, T.; et al. Synergistic effect of F doping and WO₃ loading on electrocatalytic oxygen evolution. *Chem. Eng. J.* **2023**, *451*, 138590. [CrossRef]
- 134. Xu, H.; Zhao, Y.; He, G.; Chen, H. Race on engineering noble metal single-atom electrocatalysts for water splitting. *Int. J. Hydrogen Energy* **2022**, 47, 14257–14279. [CrossRef]
- 135. Tomboc, G.M.; Kim, T.; Jung, S.; Yoon, H.J.; Lee, K. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance in hydrogen/oxygen evolution reaction. *Small* **2022**, *18*, 2105680. [CrossRef]
- Li, J.C.; Zhang, C.; Zhang, C.; Ma, H.J.; Yang, Y.; Guo, Z.Q.; Wang, Y.Y.; Ma, H.X. Electronic configuration of single ruthenium atom immobilized in urchin-like tungsten trioxide towards hydrazine oxidation-assisted hydrogen evolution under wide pH media. *Chem. Eng. J.* 2022, 430, 132953–132965. [CrossRef]
- 137. Xu, W.; Ni, X.M.; Zhang, L.J.; Yang, F.; Peng, Z.; Huang, Y.F.; Liu, Z. Tuning the electronic structure of tungsten oxide for enhanced hydrogen evolution reaction in alkaline electrolyte. *ChemElectroChem* **2022**, *9*, e202101300. [CrossRef]

- 138. Liu, L.; Zhao, Y.Z.; Wang, Y.; Zhang, Z.L.; Liu, J.; Wu, T.; Qin, W.J.; Liu, S.J.; Jia, B.R.; Wu, H.Y.; et al. Single-atom Co doped in ultrathin WO₃ arrays for the enhanced hydrogen evolution reaction in a wide pH range. ACS Appl. Mater. Interfaces 2021, 13, 53915–53924. [CrossRef]
- Zhang, H.; Li, X.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S.L.; Maijenburg, A.W.; Wehrspohn, R.B. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. *Adv. Funct. Mater.* 2018, 28, 1706847. [CrossRef]
- 140. Ngo, Y.-L.T.; Bhamu, K.C.; Voronova, A.; Jana, J.; Kang, S.G.; Chung, J.S.; Choi, W.M.; Jang, J.H.; Hur, S.H.; Seo, B. Carbide-directed enhancement of electrochemical hydrogen evolution reaction on tungsten carbide-oxide heterostructure. *Chem. Eng. J.* **2022**, 450, 137915. [CrossRef]
- 141. Yang, L.; Zhu, X.B.; Xiong, S.J.; Wu, X.L.; Shan, Y.; Chu, P.K. Synergistic WO₃ center dot 2H₂O nanoplates/WS₂ hybrid catalysts for high-efficiency hydrogen evolution. *ACS Appl. Mater. Interfaces* **2016**, *8*, 13966–13972. [CrossRef] [PubMed]
- 142. Wu, R.; Zhang, J.F.; Shi, Y.M.; Liu, D.; Zhang, B. Metallic WO₂-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. *J. Am. Chem. Soc.* **2015**, *137*, 6983–6986. [CrossRef] [PubMed]
- 143. Sekar, S.; Ahmed, A.A.; Pawar, S.M.; Lee, Y.; Im, H.; Kim, D.Y.; Lee, S. Enhanced water splitting performance of biomass activated carbon-anchored WO₃ nanoflakes. *Appl. Surf. Sci.* **2020**, *508*, 145127. [CrossRef]
- 144. Hu, G.J.; Li, J.; Liu, P.; Zhu, X.Q.; Li, X.F.; Ali, R.N.; Xiang, B. Enhanced electrocatalytic activity of WO₃@NPRGO composite in a hydrogen evolution reaction. *Appl. Surf. Sci.* **2019**, *463*, 275–282. [CrossRef]
- 145. Peng, X.; Nie, X.; Zhang, L.; Liang, T.; Liu, Y.; Liu, P.; Men, Y.L.; Niu, L.; Zhou, J.; Cui, D.; et al. Carbon-coated tungsten oxide nanospheres triggering flexible electron transfer for efficient electrocatalytic oxidation of water and glucose. ACS Appl. Mater. Interfaces 2020, 12, 56943–56953. [CrossRef]
- 146. Wondimu, T.H.; Chen, G.C.; Chen, H.Y.; Kabtamu, D.M.; Bayeh, A.W.; Wang, K.C.; Huang, H.C.; Wang, C.H. High catalytic activity of oxygen-vacancy-rich tungsten oxide nanowires supported by nitrogendoped reduced graphene oxide for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 19767–19774. [CrossRef]
- 147. Liu, C.H.; Qiu, Y.Y.; Xia, Y.J.; Wang, F.; Liu, X.C.; Sun, X.H.; Liang, Q.; Chen, Z.D. Noble-metal-free tungsten oxide/carbon (WO_x/C) hybrid manowires for highly efficient hydrogen evolution. *Nanotechnology* **2017**, *28*, 445403. [CrossRef]
- 148. Anupama, V.R.; Mideen, A.S.; Shibli, S.M.A. Tuning of electrocatalytic activity of WO₃-TiO₂ nanocomposite electrode for alkaline hydrogen evolution reaction. *Int. J. Hydrogen Energy* **2021**, *46*, 15145–15160. [CrossRef]
- 149. Shang, X.; Rao, Y.; Lu, S.S.; Dong, B.; Zhang, L.M.; Liu, X.H.; Li, X.; Liu, Y.R.; Chai, Y.M.; Liu, C.G. Novel WS₂/WO₃ heterostructured nanosheets as efficient electrocatalyst for hydrogen evolution reaction. *Mater. Chem. Phys.* 2017, 197, 123–128. [CrossRef]
- Han, C.; Wang, D.; Li, Q.; Xing, Z.; Yang, X. Ni₁₇W₃ nanoparticles decorated WO₂ nanohybrid electrocatalyst for highly efficient hydrogen evolution reaction. ACS Appl. Energy Mater. 2019, 2, 2409–2413. [CrossRef]
- Wang, B.Z.; Wang, L.X.; Qian, Y.T.; Yang, Y.T.; Isimjan, T.T.; Yang, X.L. Construction of a self-supporting Ni₂P-WO₃ heterostructure for highly efficient hydrogen evolution under both caustic and acidic conditions. *Sustain. Energy Fuels* 2021, *5*, 2884–2892. [CrossRef]
- Xu, W.; Wang, B.B.; Ni, X.M.; Liu, H.Y.; Wang, W.; Zhang, L.J.; Zhang, H.; Peng, Z.; Liu, Z. Heterogeneous synergetic effect of metal-oxide interfaces for efficient hydrogen evolution in alkaline solutions. ACS Appl. Mater. Interfaces 2021, 13, 13838–13847. [CrossRef] [PubMed]
- Liu, X.N.; Wang, C.W. In situ wet etching of MoS₂@dWO₃ Heterostructure as ultra-stable highly active electrocatalyst for hydrogen evolution reaction. *Catalysts* 2020, 10, 977. [CrossRef]
- 154. Lv, C.; Yan, G.; Wang, X.; Gao, L.; Xu, S.; San, X.; Wang, S.; Li, Y.; Huang, Z. Ni loaded on N-doped carbon encapsulated tungsten oxide nanowires as an alkaline-stable electrocatalyst for water reduction. *Sustain. Energy Fuels* **2020**, *4*, 788–796. [CrossRef]
- 155. Wang, X.; Gan, X.; Hu, T.; Fujisawa, K.; Lei, Y.; Lin, Z.; Xu, B.; Huang, Z.H.; Kang, F.; Terrones, M.; et al. Noble-metal-free hybrid membranes for highly efficient hydrogen evolution. *Adv. Mater.* **2017**, *29*, 1603617. [CrossRef]
- 156. Gong, F.L.; Yao, C.J.; Kong, H.J.; Meng, E.C.; Gong, L.H.; Zhang, Y.H.; Li, F. WO₃/C nanoarchitectures assembled with 1D nanowires: The synthesis, Pt nanoparticles decoration, and highly enhanced hydrogen evolution in neutral media. *J. Phys. Chem. Solids* **2022**, *163*, 110542. [CrossRef]
- 157. Jiang, X.L.; Jang, H.S.; Liu, S.G.; Li, Z.J.; Kim, M.G.; Li, C.; Qin, Q.; Liu, X.; Cho, J. The heterostructure of Ru₂P/WO₃/NPC synergistically promotes H₂O dissociation for improved hydrogen evolution. *Angew. Chem. Int. Ed.* 2021, 60, 4110–4116. [CrossRef]
- 158. Jiang, W.J.; Chen, J.L.; Qian, G.F.; He, H.B.; Zhang, H.; Zhuo, X.Y.; Shen, F.; Luo, L.; Yin, S.B. Interfacial electronic engineering of carbon encapsulated Co_{5.47}N-WO₂ for boosting overall water splitting. *Electrochim. Acta* **2021**, *390*, 138887. [CrossRef]
- Lv, Y.; Liu, Y.; Liu, Y.K.; Chen, Z.; Zhang, M. CoSe₂/WSe₂/WO₃ hybrid nanowires on carbon cloth for efficient hydrogen evolution reaction. J. Alloys Compd. 2018, 768, 889–895. [CrossRef]
- Yang, Y.T.; Shao, X.; Zhou, S.Q.; Yan, P.X.; Isimjan, T.T.; Yang, X.L. Interfacial electronic coupling of NC@WO₃-W₂C decorated Ru clusters as a reversible catalyst toward electrocatalytic hydrogen oxidation and evolution reactions. *ChemSusChem* 2021, 14, 2992–3000. [CrossRef]
- 161. Chen, Y.T.; Ren, R.; Wen, Z.H.; Ci, S.Q.; Chang, J.B.; Mao, S.; Chen, J.H. Superior electrocatalysis for hydrogen evolution with crumpled graphene/tungstendisulfide/tungsten trioxide ternary nanohybrids. *Nano Energy* **2018**, *47*, 66–73. [CrossRef]

- 162. Yang, N.N.; Chen, Z.G.; Ding, D.; Zhu, C.F.; Gan, X.X.; Cui, Y. Tungsten-nickel alloy boosts alkaline hydrogen evolution reaction. J. Phys. Chem. C 2021, 125, 27185–27191. [CrossRef]
- 163. Peng, Y.W.; Shan, C.; Wang, H.J.; Hong, L.Y.; Yao, S.; Wu, R.J.; Zhang, Z.M.; Lu, T.B. Polyoxometalate-derived ultrasmall Pt₂W/WO₃ heterostructure outperforms platinum for large-current-density H₂ evolution. *Adv. Energy Mater.* 2019, *9*, 1900597. [CrossRef]
- Kim, D.; Jeong, Y.; Roh, H.; Lim, C.; Yong, K. Biomimetic 2D-Ni(Co,Fe)P/1D-WO_x nanocoral reef electrocatalysts for efficient water splitting. J. Mater. Chem. A 2021, 9, 10909–10920. [CrossRef]
- 165. Noh, S.; Le, T.H.; Jo, H.; Kim, S.; Yoon, H. Ternary nanohybrids comprising N-doped graphene and WSe₂-WO₃ nanosheets enable high-mass-loading electrodes with long-term stability for hydrogen evolution. ACS Appl. Nano Mater. 2021, 4, 14094–14104. [CrossRef]
- 166. Liu, J.C.; Qian, G.F.; Zhang, H.; Chen, J.L.; Wang, Y.J.; He, H.B.; Luo, L.; Yin, S.B. Amorphous FeOOH coating stabilizes WO₂-Na_xWO₃ for accelerating oxygen evolution reaction. *Chem. Eng. J.* **2021**, *426*, 131253. [CrossRef]
- 167. Wang, Y.; Wang, Y.; Bai, J.; Duan, S.; Wang, R.; Lau, W.-M. Fe ion-chelated tannic acid layer coordinates the electronic structure of Ni-WO_x to enhance oxygen evolution performance. *J. Alloys Compd.* **2022**, *928*, 167225. [CrossRef]
- Wondimu, T.H.; Chen, G.C.; Kabtamu, D.M.; Chen, H.Y.; Bayeh, A.W.; Huang, H.C.; Wang, C.H. Highly efficient and durable phosphine reduced iron-doped tungsten oxide/reduced graphene oxide nanocomposites for the hydrogen evolution reaction. *Int. J. Hydrogen Energy* 2018, 43, 6481–6490. [CrossRef]
- 169. Zhu, M.; Sun, J.; Li, C.; Han, C.; Shan, Y.; He, J.; Jia, J.; Wu, W.; Yang, G. Electrospun SiO₂/WO₃/NiWO₄ decorated carbon nanofibers for an efficient electrocatalytic hydrogen evolution. *Fuller. Nanotub. Carbon Nanostruct.* **2019**, *27*, 506–513. [CrossRef]
- 170. Nguyen, T.V.; Do, H.H.; Tekalgne, M.; Le, Q.V.; Nguyen, T.P.; Hong, S.H.; Cho, J.H.; Dao, D.V.; Ahn, S.H.; Kim, S.Y. WS₂-WC-WO₃ nano-hollow spheres as an efficient and durable catalyst for hydrogen evolution reaction. *Nano Converg.* **2021**, *8*, 28. [CrossRef]
- 171. Zhang, B.; Hou, J.G.; Wu, Y.Z.; Cao, S.Y.; Li, Z.W.; Nie, X.W.; Gao, Z.M.; Sun, L.C. Tailoring active sites in mesoporous defect-rich NC/V_o-WON heterostructure array for superior electrocatalytic hydrogen evolution. *Adv. Energy Mater.* 2019, *9*, 1803693–1803702. [CrossRef]
- 172. Wang, Z.; Lin, Z.; Shen, S.; Zhong, W.; Cao, S. Advances in designing heterojunction photocatalytic materials. *Chin. J. Catal.* **2021**, 42, 710–730. [CrossRef]
- 173. Wu, Z.; Liu, B.; Jing, H.; Gao, H.; He, B.; Xia, X.; Lei, W.; Hao, Q. Porous carbon framework decorated with carbon nanotubes encapsulating cobalt phosphide for efficient overall water splitting. *J. Colloid Interface Sci.* **2023**, 629, 22–32. [CrossRef]
- 174. Zhang, Y.; Chen, L.; Yan, B.; Zhang, F.; Shi, Y.; Guo, X. Regeneration of textile sludge into Cu₈S₅ decorated N, S self-doped interconnected porous carbon as an advanced bifunctional electrocatalyst for overall water splitting. *Chem. Eng. J.* **2023**, 451, 138497. [CrossRef]
- 175. Wang, Q.; Yu, R.; Shen, D.; Liu, Q.; Hong Luo, K.; Wu, C.; Gu, S. Performance of intrinsic heteroatoms in cobalt phosphide loaded ginkgo leave-based carbon material on promoting the electrocatalytic activity during hydrogen evolution reaction and oxygen evolution reaction. *Fuel* **2023**, *333*, 126368. [CrossRef]
- 176. Liu, J.; Zhang, J.; Zhou, H.; Liu, B.; Dong, H.; Lin, X.; Qin, Y. Lignin-derived carbon-supported MoC-FeNi heterostructure as efficient electrocatalysts for oxygen evolution reaction. *J. Colloid Interface Sci.* **2023**, *629*, 822–831. [CrossRef]
- 177. Chen, J.; Yang, H.; Sang, X.; Su, Z.; Li, D.; Wang, Q. Oxygen vacancy rich tungsten oxide with nitrogen doped mesoporous carbon as matrix for overall water splitting and 4-nitrophenol reductive removal. *Solid State Sci.* **2018**, *83*, 23–30. [CrossRef]
- 178. Jing, S.; Lu, J.; Yu, G.; Yin, S.; Luo, L.; Zhang, Z.; Ma, Y.; Chen, W.; Shen, P.K. Carbon-encapsulated WO_x hybrids as efficient catalysts for hydrogen evolution. *Adv. Mater.* **2018**, *30*, e1705979. [CrossRef]
- 179. Lu, J.J.; Qian, G.F.; Luo, L.; He, H.B.; Yin, S.B. Contributions of oxygen vacancies to the hydrogen evolution catalytic activity of tungsten oxides. *Int. J. Hydrogen Energy* **2021**, *46*, 676–682. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.