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Abstract: Nano- and microscale zinc oxide (ZnO) exhibits significant potential as a novel antibacterial
agent in biomedical applications. However, the uncertainty regarding the underlying mechanisms of
the observed antimicrobial action inhibits the realization of this potential. Particularly, the nature of
interactions at the free crystalline surface and the influence of the local bacterial environment remains
unclear. In this investigation, we utilize ZnO particles synthesized via tunable hydrothermal growth
method as a platform to elucidate the effects of interactions with phosphate-rich environments and
differentiate them from those with bacteria. This is achieved using the time- and energy-dependent
surface photovoltage (SPV) to monitor modifications of the surface electronic structure and surface
charge dynamics of the ZnO particles due to these interactions. It is found that there exists a
dramatic change in the SPV transients after exposure to phosphate-rich environments. It also presents
differences in the sub-bandgap surface electronic structure after these exposures. It can be suggested
that these phenomena are a consequence of phosphate adsorption at surface traps corresponding to
zinc deficiency defects. This effect is shown to be suppressed in the presence of Staphylococcus aureus
bacteria. Our results support the previously proposed model of the competitive nature of interactions
between S. aureus and aqueous phosphates with the free surface of ZnO and bring greater clarity to
the effects of phosphate-rich environments on bacterial growth inhibition of ZnO.

Keywords: ZnO; antibacterial; S. aureus; phosphates; antimicrobial; surface photovoltage

1. Introduction

Wurtzite zinc oxide (ZnO) is an abundant type II–VI semiconductor with a wide,
direct band gap of ~3.37 eV at room temperature, which corresponds to the spacing
between the vacant 4s orbitals of Zn2+ and the occupied 2p states of O2− atoms within the
crystalline lattice. Notable physical and chemical stability [1], in addition to a range of
useful optoelectronic properties [1], has resulted in extensive and diverse applications in a
variety of fields. At present, budding applications center around its antimicrobial properties
which are both potent and well documented [2–4]. Such antimicrobial applications are
of critical interest due to the increasing threat to global health and food security posed
by bacterial infections, particularly those antibiotic-resistant strains which are rapidly
becoming both more prevalent and difficult to treat. Powerful bacterial adaptive responses
in the form of genetic mutations and lateral gene transfer make the development of effective
traditional antibiotics increasingly difficult and less profitable, thus necessitating the search
for nontraditional alternatives for usage in sanitation and medicines [5,6].
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Nano- and microscale ZnO is an attractive candidate in this regard, as it exhibits re-
duced toxicity to human cells, is recognized as a safe substance for exterior applications by
the US Food and Drug Administration [7,8], and demonstrates increased selectivity towards
bacteria with efficacy against existing antibiotic-resistant strains [9,10]. ZnO compounds are
seen to exhibit effectiveness against a wide range of both Gram-positive and Gram-negative
bacteria under various conditions with selective toxicity [11,12] and effectiveness in com-
bating biofilm formation. In addition to the inherent antimicrobial characteristics, ZnO is
an inexpensive, readily available material with significant photocatalytic efficiency and
synthesis methods that are both simple and scalable. The properties have led to a proposed
usage as an antibacterial agent in key industries such as healthcare, water treatment, textiles,
food storage, biomedicine, and transportation [3,4,13,14]. The pursuit and development of
efficient, novel bactericidal applications, however, is inhibited by uncertainty surrounding
the underlying mechanisms of the observed antimicrobial action. There exists a debate
surrounding the most suggested mechanisms, namely, the generation of various reactive
oxygen species (ROS), the release of Zn ions, and surface–surface interactions between the
bacterial cell wall and the free crystalline surface of ZnO [15,16]. The relative dominance
of these mechanisms is also subject to debate, thus inhibiting the efficient design of novel
ZnO-based antimicrobials. A definitive description of the fundamental mechanisms under-
lying these behaviors is therefore desirable from the perspectives of both scientific interest
and practical application.

To this end, significant progress has been made of late, with researchers taking a
biological approach and investigating the bacterial response to various ZnO compounds
in varying environments. These works emphasize the role of both the free crystalline
surface and the ambient environment in which these antibacterial interactions are to take
place. Studies such as those by Xu et al. [17] and Liu et al. [18] have highlighted the role
of defects in ROS generation, although their role in other proposed mechanisms is still
unclear. Numerous studies, such as those performed by Zakharova et al. [19], demonstrate
a dependence of bacterial growth inhibition in ZnO on the bacterial growth media, yet
descriptions of the fundamental interactions involved are lacking. Our previous work has
established ZnO microparticles (MPs) as a useful platform for studying the antimicrobial
mechanisms at the nanoscale and they were utilized to outline the general effects of
exposure to phosphate-rich environments on the defect structure of ZnO and differentiate
those with bacteria vs. without bacteria [20]. Within this context, we propose that surface
modification by media of the free crystalline surface of ZnO can inhibit or enhance the
antibacterial efficacy and, specifically, that adsorption of aqueous phosphate species onto
surface defects can inhibit antimicrobial behavior by restricting direct interaction of these
sites with bacteria. To support such a hypothesis, one must confirm the surface specificity
of the interactions in question and provide evidence for specific sites of this adsorption in
comparison to those attributed to antibacterial interactions. Addressing this, we present
both time- and energy-dependent surface photovoltage (SPV) studies of ZnO particles
before and after exposure to Staphylococcus aureus (S. aureus) bacteria in the phosphate-
buffered saline (PBS) solution, as well as exposure to just PBS alone. Phosphate compounds
are abundant in biological environments, and due to their strong metal-complexation
capability, phosphate-induced transformations play an important role in the behaviors and
toxicity of ZnO-based nanomaterials [21]. SPV is very sensitive to changes in the surface
potential associated with the surface charge dynamics, electronic structure, and occupation
of surface defects by impurities [22]. Such experiments are of interest as they allow for the
elucidation of the surface-specific responses of ZnO to bacteria and the local environment.
The usage of ZnO MPs serves to control for internalization effects which are not thought to
be a driving force in the observed bacterial growth inhibition [23]. Exposure of ZnO MPs to
PBS in isolation allows for differentiation of interactions at the surface between bacteria
and the media. These interactions can overlap in nature, and, thus, such control is vital for
the accurate interpretation of results.
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In this work, we find that there exists a dramatic change in the rate and magnitudes
of the processes contributing to the contact potential difference (∆CPD) after exposure to
phosphate-rich environments, particularly for longer-lived processes that may be heavily
influenced by adsorbed species at the surface. We also note that the presence of bacteria
has an impact on faster SPV processes and suppresses the effect of PBS media at longer
timescales. In addition, the SPV spectra demonstrate changes in the electronic structure be-
cause of exposure to PBS, which indicates significant adsorption of phosphate compounds
at oxygen-rich sites on the crystalline surface. Such results bring greater clarity to the
nature of phosphate-rich media interactions with ZnO and point to a restriction of specific
surface defects that may be influential for the antimicrobial mechanisms of ZnO.

2. Materials and Methods
2.1. ZnO MP Synthesis and Morphological Characterization

The ZnO MPs utilized here were synthesized via a bottom-up hydrothermal growth
method. An equimolar solution of 1 M zinc acetate dihydrate [Zn(CH3CO2)2·H2O] and
1 M hexamethylenetetramine [(CH2)6N4] (HMTA) was produced in deionized (DI) water.
The HMTA was added to DI water and left to stir continuously for 5 min to begin the
dissociation of the water molecules. After this, zinc acetate dihydrate was added to the
HMTA solution and mixed for 30 min to form ZnO precursors. An additional 1 cm2 strip
of 99.999% pure Zn foil supplied by Sigma Aldrich (St. Louis, MO, USA) was then added
after mixing to serve as an additional source of free Zn. This solution was transferred
into a Teflon container and sealed in a stainless-steel autoclave before undergoing heat
treatment at 100 ◦C for 3 h in a Stabletemp forced air drying oven (Across International,
Sparks, NV, USA). Following this baking period, ZnO was formed as a precipitate, so the
solution went through centrifugation and subsequent removal of the organic supernatant.
The solid material then was rinsed via 7 cycles of alternating DI water and acetone.

The morphology of the resulting ZnO MPs was determined via surface area calcula-
tions performed with ImageJ software (version 1.51) on images of the particles’ surfaces
captured with scanning electron microscopy (SEM) utilizing a JEOL FE-SEM instrument
(JEOL, Peabody, MA, USA) at an operating voltage of 15.0 kV. The ZnO powder was
pelletized and attached to an aluminum SEM mount with carbon tape prior to imaging.

2.2. Biological Exposure

ZnO MPs were exposed to PBS and PBS containing S. aureus by performing minimum
inhibitory concentration (MIC) assays. The details of these studies were described in
depth previously [20]. In short, the PBS utilized in these studies was prepared through the
dissolution of two salts: sodium chloride (NaCl) (4 g) and potassium chloride (KCl) (0.1 g)
in 500 mL of water. An additional 0.72 g of anhydrous sodium phosphate–dibasic was
dissolved as a phosphate source and the pH was adjusted to 7.4. The solution was then
autoclaved prior to the addition of bacteria and usage in biological assays. A methicillin-
susceptible S. aureus strain in the Newman strain was utilized in our studies. Bacteria
were grown to an early log phase with an optical density at 600 nm excitation (OD600) of
0.4 in MHB. The OD600 measurements were performed in a 96-well plate using a Fluostar
Omega plate reader (BMG Labtech, Cary, North Carolina, USA). They were then washed
before suspension in PBS. These cultures were subsequently diluted with ZnO in PBS and
inverted at 37 ◦C.

2.3. Surface Photovoltage Studies

In vacuo surface photovoltage (SPV) characterization was performed on both as-grown
ZnO MPs and those same particles following exposure to S. aureus bacteria in PBS as well
as PBS without bacteria. SPV is a nondestructive and highly surface-sensitive probing
technique in which one monitors the surface potential due to changes in illumination
conditions: incident wavelength (SPV spectroscopy) or time (transient SPV). A Besocke
Delta Phi GmbH (Jülich, Germany) Kelvin Probe S was positioned near the surface of
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a sample forming a parallel plate arrangement between the reference electrode and the
sample. This configuration allows for indirect surface potential measurement via its
relationship with the surface work function. In this arrangement, a contact potential
difference (∆CPD) is generated between the sample surface and the probe resulting in an
electric field arising at the junction. This field is nullified by an external DC bias that is
proportional to the difference in the work functions of the materials. SPV spectral response
was monitored with respect to light supplied by a fiber optic bundle coupled through an
optical feedthrough with an ex vacuo optical train consisting of a 250 W QTH lamp as a
white light source, a pair of fused silica lenses, bandpass filters, and the Oriel Cornerstone
grating monochromator (Newport, Rochester, NY, USA). The surface and near-surface
electronic states are highly sensitive to the environment and the presence of adsorbed
species. For this reason, in our studies, the SPV experiments were performed in a high-
vacuum chamber under 10−8 Torr. In addition to the SPV spectra, transient response curves
were obtained before each run. The samples were illuminated directly with white light
until the SPV saturation was achieved and subsequently quenched in the dark until surface
state equilibrium was achieved.

3. Results and Discussion

The particles used in our studies have dimensions of ca. 1 micron with a well-defined
hexagonal prism structure, as determined by the FE-SEM probe (see Figure 1). These
crystals present a useful platform for our investigations due to the presence of different
surface types. Alternating planes of atoms along the c-axis make the hexagonal polar
faces carry more excess charge and thus undergo significant surface reconstruction in
comparison to the rectangular nonpolar faces [24,25]. This renders the hexagonal faces more
defect-rich with complex electrochemical properties different from those of the rectangular
surfaces [26,27].
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Figure 1. FE-SEM image depicting crystalline ZnO with characteristic hexagonal prism-like structures
on the order of a few micrometers.

A detailed description of the optoelectronic and physicochemical properties of these
crystals as well as their contributions to the antibacterial action of ZnO can be found in
previous work [20,23]. In this paper, we focus primarily on the surface-specific changes
in the charge dynamics and electronic structure of ZnO particles due to their exposure to
S. aureus bacteria in the PBS solution as well as PBS without the presence of bacteria.

Surface charge dynamics of these crystals were investigated by SPV transients utilizing
panchromatic light for the sample depicted in Figure 1, first as-grown and then following
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exposure to PBS alone and PBS containing S. aureus. SPV transients in micro/nanoscale
materials have complex origins due to several factors, including, but not limited to, a large
active surface area, complex geometry, and modified width of the space charge region (SCR).
Despite these challenges, the SPV signal could be comparable to that in bulk materials [28].
The results shown in Figure 2a demonstrate such complex transient behavior in our sample
with multiple characteristic timescales of a negative contact potential difference (CPD)
for all conditions observed (as to be expected in a compound semiconductor with an n-
type conductivity [29,30]). Notable are the significant differences between the curves for
different exposure conditions. The rate and the magnitude of changes in the CPD depend
on the nature of the charge exchange between the surface states and the bulk, for which,
as with an electrical network, the intensity and time of response to a step current can be
approximated by a linear combination of exponential time dependencies, similar to those
of a capacitor charging/discharging in a simple RC-circuit [31]:
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Figure 2. (a) SPV “light-on” transients under exposure to panchromatic light for ZnO MPs of balanced
morphology, as-grown and exposed to indicated environments. (b–d) Fitting of experimental curves
using Equation (1) for (b) as-grown ZnO MPs, (c) ZnO MPs after exposure to PBS solution, and
(d) ZnO MPs after exposure to PBS solution containing S. aureus bacteria. The curves in (b–d) are
shifted by the offset voltage V0.
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We used the model based on (Equation (1)) to fit the transient curves and thus quantify
the observed changes. We applied the Levenburg–Marquardt fitting method [32] and
determined that for all three experimental curves, ∆VCPD(t) is well fitted with four processes
occurring on different timescales.

We compile the results of these fits in Table 1 and Figure 2b–d. It is worth noting that
all the charge exchange processes were well fit with four decaying exponentials except for
the “fastest” process in the sample exposed to PBS alone, which was fitted with a rising
exponential. In comparing the parameters across the samples, it becomes apparent that the
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PBS medium significantly impacts the surface charge dynamics on all the timescales. The
presence of S. aureus bacteria qualitatively alters the results for both Vi and τi compared to
exposure to PBS alone.

Table 1. Fitting parameters for ZnO MPs as-grown and exposed to PBS with and without the presence
of S. aureus bacteria. † Indicates parameters associated with processes described by rising exponentials.

As-Grown PBS PBS + S. aureus

V0(V) −3.96 × 10−1 −1.75 × 10−1 −1.88 × 10−1

±3.04 × 10−4 ±3.56 × 10−4 ±2.42 × 10−4

V1(V) 1.73 × 10−1 1.73 × 10−2 † 3.04 × 10−2

±1.03 × 10−3 ±2.74 × 10−4 ±2.12 × 10−4

τ1(s)
4.09 2.87 † 2.61

±2.95 × 10−1 ±1.02 × 10−1 ±0.04

V2(V) 1.15 × 10−1 1.40 × 10−2 3.97 × 10−2

±1.32 × 10−3 ±2.03 × 10−4 ±3.96 × 10−4

τ2(s) 3.71 × 101 4.48 × 101 5.47 × 101

±9.16 × 10−1 ±1.55 ±1.05

V3(V) 8.73 × 10−2 1.27 × 10−2 6.73 × 10−2

±1.32 × 10−3 ±1.85 × 10−4 ±4.11 × 10−4

τ3(s) 2.77 × 102 9.19 × 102 5.19 × 102

±9.13 ±3.31 × 101 ±7.51

V4(V) 4.93 × 10−2 1.32 × 10−1 5.89 × 10−2

±1.05 × 10−3 ±1.87 × 10−4 ±3.20 × 10−4

τ4(s) 2.53 × 103 2.01 × 104 5.97 × 103

±9.02 × 101 ±1.00 × 102 ±9.50 × 101

When considering the physical origins of these exposure-induced changes in the
charge dynamics, there is a possibility of introducing new surface states and modifying
existing ones. Especially prominent are the changes seen in the normalized V4 parameter
(see Figure 3). Generally, in our fitting model, the Vi parameters represent the effective
charge “reservoir” of these processes analogous to the charge of a capacitive element.

The drastic increase of V4 and τ4 in addition to the change in the direction of the
charge transfer for the fastest process after exposure to PBS indicates that the surface
has drastically changed. The effects of PBS on increasing the characteristic time of the
slowest process by an order of magnitude are well aligned with the results previously
reported by us [20] pointing to the adsorption of phosphate groups at the surface of the
ZnO MPs. The surface charge dynamics depend on the occupation of available energy
states and their position with respect to the Fermi level. Therefore, transient processes
occurring on different timescales could be produced by surface band bending resulting
from the presence of adsorbed species. During illumination, holes are swept towards the
bulk where they may recombine within surface states, thus reducing the band bending
at the surface, allowing for electron tunneling and subsequent charge transfer between
the crystalline bulk and adsorbed species at the surface. Such a process is relatively slow
in comparison to the surface recombination of electrons with accumulated holes as there
exists a surface barrier to overcome, accounting for this significant increase. The likelihood
of such charge transfer occurring is highly dependent on the surface work function and the
electronegativity of the adsorbed species. The abundance of oxygen atoms, as one of the
most electronegative elements, makes such charge transfer probable given the adsorption
of phosphate groups at the ZnO surface defect sites. Occupation of these surface states
would have a significant impact through the distortion of the SCR, modification of existing
surface states, and changing the surface dipole, all of which, in turn, would affect the
surface charge transfer rates.
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Figure 3. Normalized fitting parameters Vi for as-grown ZnO MPs as well as those exposed to PBS
with and without the presence of S. aureus bacteria. They were normalized to the sum of all Vi

for each sample. V1 is plotted negative for the sample exposed to PBS alone to indicate that this
component has a directionality opposite to the others.

Adsorption of phosphate compounds is significant in the context of antibacterial
action, as this phenomenon may limit access to surface sites potentially harmful to bacte-
ria and stabilize the ZnO surfaces slowing their dissolution [21,33]. This adsorption is
consistent with the previously reported [20] blue shift observed in the room-temperature
luminescence spectra of the same ZnO MPs. The change in the direction of the surface
charge flow of the fastest process could be attributed to the flipping of the occupancy of
existing trap states due to the influence of the charges originally present in the molecules
of the adsorbed layer.

Figure 4 shows characteristic times τi for different conditions. One can observe that the
presence of S. aureus mitigates the changes induced by PBS for slow processes, indicating
that the presence of bacteria greatly limits or prevents the formation of the new traps
introduced by PBS, consistent with the changes seen in Figure 3. The effects of bacteria on
short timescales line up with reports of significant surface degradation of ZnO MPs in their
presence [20]. By introducing extended defects at the free crystalline surface, direct bulk-
to-trap recombination can occur, which is a very fast process compared to other possible
surface charge recombination pathways. The effects on the intermediate timescales are
less significant. We suggest that the observed exposure-induced changes are a result of
modification of the existing states stemming from the partial dissolution of the crystal and
adsorption of media components.
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ZnO MPs and those exposed to PBS alone and with S. aureus bacteria. The hash pattern for τ1

indicates a “rising” process.

The mitigation by bacteria of the effects of PBS on slow processes (Figures 3 and 4b,c)
could be explained as follows. The presence of S. aureus may prevent or reverse the adsorption
of phosphates at the ZnO surface. This effect can be attributed to either interaction of bacteria at
potential phosphate adsorption sites or the removal of adsorbed phosphate groups themselves
by bacteria. This, in turn, would indicate either overlapping interaction sites for aqueous
phosphates and S. aureus bacteria or competition between ZnO MPs and media components
for interaction with S. aureus bacteria. Further elucidation of possible mechanisms is provided
by the SPV spectra.

The results of SPV spectroscopy for the as-grown sample are shown in Figure 5 and
summarized in Figure 6. In addition to a strong bandgap transition at ~3.3 eV, we observed
the presence of several states in the bandgap: a ~1.5 eV trap-to-conduction band transition,
a ~2.6 eV trap-to-conduction band transition, and a ~2.4 eV valence band-to-trap transition.
Following theoretical calculations [34], we assign these transitions to oxygen vacancies,
zinc vacancies, and oxygen interstitials, respectively. Assignment of these surface trap
states is important as it allows us to define the initial nature of the free crystalline surface
upon which interactions with bacteria and media components may take place.

SPV spectra collected following the exposure to PBS with and without the presence
of S. aureus bacteria demonstrated the effects on the surface electronic structure of
ZnO. In addition to the anticipated weakening of the bandgap transition due to the
partial dissolution of the surface and adsorption of media components, we find notable
differences in the observed surface states, which we present in Figure 7. Transitions
associated with the oxygen-rich states are suppressed following PBS exposure while
the ~1.5 eV transition associated with the oxygen-deficient states is preserved. There
have been several investigations into the kinetics of phosphate adsorption and it is
widely attributed to the ligand exchange with surface hydroxyl groups resulting in
PO4

3− adsorption [21,35]. Considering the highly reactive nature of an oxygen-rich
surface in aqueous environments, it is clear that the formation of such hydroxyls and
subsequent ligand exchange is a probable explanation for the removal of these states.
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Therefore, phosphate adsorption is likely to take place at these previously oxygenated
sites, thus amplifying the slow charge-exchange processes and reversing the direction
of the fast charge transfer discussed above.
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Considering the results of Lv et al. in tracking Zn2+ ion release as a measure of ZnO
particle solubility in aqueous phosphate environments [21], one can surmise that the high
concentration of phosphates in a solution likely stabilizes the crystalline surface through
the adsorption processes in addition to reacting with the initial rapid release of Zn2+

ions. This would have significant effects on the antibacterial action of these particles and
supports previous studies linking phosphate-rich media with decreased bacterial growth
inhibition [19,36]. Comparing these results with the SPV spectra obtained following the
exposure to PBS containing S. aureus bacteria, we again observe a similar weakening of the
bandgap transition due to the partial dissolution of ZnO crystals and adsorption of media
components. However, we do not see significant changes to the sub-bandgap transitions
observed in the sample exposed to PBS alone. In Figure 8 we see all three transitions that
were originally present in the as-grown ZnO MPs. This lines up with the observed effects
of bacteria containing PBS on the SPV transients discussed above, where we found little
indication of new or suppressed states. The point of interest in these measurements lies
in the apparent inhibition of the effects of PBS alone outlined thus far. The preservation
of the oxygen-rich states is evidence of bacteria limiting phosphate adsorption at the free
crystalline surface. This indicates that either bacteria significantly reduce the concentration
of aqueous phosphates in the local environment or more likely that they promote increased
solubility of the ZnO crystals through interactions at the crystalline surface, thus shifting
the dominant phosphate interactions to reaction with Zn2+ in solution as opposed to surface
adsorption. Such surface interactions are supported by the previously reported surface
degradation and changes in the photoluminescence intensity after exposure to antibacterial
interactions [20]. These findings suggest that bacteria promote Zn2+ ion release and this
release is limited by aqueous phosphates, whereas interaction with the released ions is
competitive in nature between bacteria and environmental phosphates. Bacteria and
phosphates competing for interaction at the surface sites is unlikely due to the difference
in their interactions at these states. Restriction of these sites by adsorbed species could
limit surface reactive oxygen species (ROS) generation. Nevertheless, one would anticipate
observation of a state that is suppressed by PBS but partially restored in the presence of
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S. aureus bacteria under the commonly proposed UV-mediated photocatalysis route of ROS
generation in ZnO.
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4. Conclusions

Nano- and microscale ZnO-based antibacterial agents represent viable and attractive
candidates for novel applications. These include multifunctional dressings [37], nanos-
tructured scaffolds [38], photocatalytic wearables [39], and more [40]. As such, insights
into the fundamental interactions at the interface of the crystalline surface and bacteria cell
wall as well as the solid–liquid interface between the free surface and the local bacterial
environment are necessary to improve both the control and design of potential antibacterial
agents. The findings presented here for the changes in the surface charge dynamics after
exposure to PBS media with and without the presence of S. aureus demonstrate that there
exist significant interactions at the free crystalline surface of ZnO. This surface is a highly
dynamic and complex system with both oxygen-deficient and zinc-deficient defects despite
the relatively high quality of the crystals utilized. The domination of slow processes in
the SPV transients after exposure to PBS indicates that much of the surface interaction
involves phosphate adsorption. The SPV spectra show the removal of oxygen-rich states
after exposure to PBS, which we attribute to ligand exchange with hydroxyl groups at these
oxygen-rich sites. We also provide evidence for the predicted competitive interactions
between bacteria and environmental phosphate species through the preservation of the
oxygen-rich defect states and suppression of the effects of PBS on slow surface charge
exchange processes. The nature of these interactions suggests that the presence of S. aureus
impacts particle solubility which would be influential in antimicrobial properties. Our
results further elucidate the nature of phosphate interactions with ZnO by highlighting
the occupation of zinc-deficient states at the surface that either limits their interaction
with bacteria or stabilizes the surface, preventing further dissolution of the ZnO particles.
The suppression of these effects in the presence of bacteria leads us to conclude that zinc-
deficient surface sites are, likely, not relevant as direct interaction sites for bacteria although
they do influence relevant interactions at the free crystalline surface of ZnO with both PBS
and S. aureus, thus affecting bacterial growth inhibition.
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