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Abstract: Microheaters with long-term stability are crucial for the development of a variety of
microelectronic devices operated at high temperatures. Structured Ta/Pt bilayers, in which the Ta
sublayer ensures high adhesion of the Pt resistive layer, are widely used to create microheaters. Herein,
a comprehensive study of the microstructure of Ta/Pt films using high-resolution transmission
electron microscopy with local elemental analysis reveals the twofold nature of Ta after annealing.
The main fraction of Ta persists in the form of tantalum oxide between the Pt resistive layer and the
alumina substrate. Such a sublayer hampers Pt recrystallization and grain growth in bilayered Ta/Pt
films in comparison with pure Pt films. Tantalum is also observed inside the Pt grains as individual Ta
nanoparticles, but their volume fraction is only about 2%. Microheaters based on the 10 nm Ta/90 nm Pt
bilayers after pre-annealing exhibit long-term stability with low resistance drift at 500 ◦C (less than
3%/month).

Keywords: microheater; adhesion layer; anodic aluminium oxide; thermal stability; resistance drift

1. Introduction

Resistive (Joule) heating elements are widely used in science and technology. The
current trend to thin-film microheaters (microhotplates) has numerous advantages, such
as compact device size, low power consumption, fast response time, and improved repro-
ducibility, owing to the application of well-automated microelectronic fabrication tech-
niques. Thin-film microheaters are used as an integral part of semiconductor [1,2] and
thermocatalytic [3–5] gas sensors, gas flow rate sensors [6,7], and fuel cells [8]; they can be
applied to high-temperature in situ microscopy [9–11], microfluidic chips [12], quartz crys-
tal microbalances [13], micrometer-scale phase modulators [14] and thermoelectrics [15,16].

Typically, the resistive layer of a microheater is made of metals [17–20], titanium
nitride (TiN) [21,22] or polysilicon [23,24]. Among these materials, platinum (Pt) is the
most commonly used one. Pt possesses a high chemical inertness and a high melting point
(1768 ◦C), necessary for stable operation at high temperatures, and a high and constant tem-
perature coefficient of resistance (TCR) (3.9 × 103 ppm/◦C [25]) over a wide temperature
range, which is essential for the accurate control of the microheater temperature.

The direct deposition of Pt on oxide or nitride substrates results in the low stability of
such systems at high temperatures [26,27] due to poor adhesion leading to the delamination
of the metal from the substrate [27,28]. The chemical interaction of Pt with silicon-based
substrates [29,30] is also possible. A thin adhesion layer with a high affinity for oxygen
allows one to solve these problems being introduced between the resistive layer and the
substrate. Usually, high-reactive metals that form strong (chemical) bonds with a non-
conductive substrate and metal-metal bonds with Pt or its alloys serve as effective adhesion
layers. In particular, titanium (Ti) is often used for this purpose [12,31–38] despite some
limitations, e.g., the mutual diffusion between Ti and Pt [39–42] and the formation of a
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Pt3Ti intermetallic compound [43–45]. As a result, significant change in the operating
parameters makes long-term operation of microheaters based on Ti/Pt bilayers impossible.
Similar problems are observed for chromium (Cr) [46–48], aluminum (Al) [47], zirconium
(Zr) [47,49–52], and hafnium (Hf) [47,49] adhesion layer materials. In the case of tantalum
(Ta) adhesion layer [53–56], intermetallic compounds are not observed. However, studies
of the mutual diffusion between Ta and Pt layers and its effect on the operation parameters
of microheaters are scarce [49,57–60].

Thus, the present work focuses on investigating the electrical properties, morphology,
and composition of Ta/Pt bilayer thin films after annealing. Understanding the processes
occurring at the substrate/adhesion layer (Ta)/resistive layer (Pt) interfaces is crucial for
developing reliable, long-life devices. Porous anodic aluminium oxide (AAO), which is
promising in place of the more widespread substrates based on silicon compounds [4,61],
is chosen as a substrate to create microheaters.

2. Materials and Methods

To obtain thin-film microheaters, the experimental approach described in detail in our
previous work [62] was used. Porous AAO was obtained by anodization of aluminium in
0.3 M oxalic acid at 120 V and an electrolyte temperature of 1 ± 1 ◦C. Before anodization,
the aluminium foil (0.5 mm thick, 99.999% purity) was mechanically and electrochemically
polished [63] to a mirror finish. During anodization, the voltage was swept with a rate
of 0.5 V/s up to 120 V and then kept constant until the electric charge density reached
60 C/cm2. The thickness of AAO under these conditions equals 30 µm. On the upper
surface of the AAO substrate, the pore diameter is 32 ± 15 nm (Figure S1).

An array of thin-film microheaters was prepared by lift-off photolithography of DC
magnetron sputtered metal layers. A 90 nm thick Pt film and bilayer 10 nm Ta/90 nm Pt
thin films were sputtered onto the AAO substrate using a Quorum Technologies Q300T
D Plus magnetron deposition system (Lewes, UK). A residual pressure of 10−4 mbar
and working Ar pressure of 10−2 mbar were used. Ta and Pt layers were sputtered
consecutively from the two individual targets without vacuum breaking. Thereafter, the
array of microheaters was separated into individual microchips with an area of 2×2 mm2

by chemical photolithography. A solution of 0.6 M H3PO4 at 60 ◦C was used as an etchant
of AAO substrate. Further, the underlying aluminium foil was selectively dissolved in
0.25 M CuCl2 and 0.68 M HCl solution.

Free-standing AAO chips with microheaters were annealed at 600, 730, and 810 ◦C
(heating rate of 2 ◦C/min) for 12 h in a muffle furnace Nabertherm L5/12 (Lilienthal,
Germany) under a 4 g/cm2 load to prevent bending of the substrate. Finally, the microchips
were mounted in TO-5 packages [64] (Figure 1a). The contact pads of the microheaters
were connected to the package pins by a Kulicke and Soffa Model 4526 (Singapore) wedge
wire bonder using a 25 µm thick Au wire.
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Transmission electron microscopy (TEM) of the samples was realized using a Tecnai
Osiris FEI microscope (Hillsboro, OR, USA). A focused ion beam (FIB) was used to cut the
cross-section lamella of specimens for TEM investigation. Scanning electron microscopy
(SEM) images of the microheaters were collected using a Leo Supra 50 VP instrument
(Oberkochen, Germany).

The active zone of a microheater consists of a two-dimensional metal spiral (Figure 1b).
The spiral track width is 32 µm, and the distance between the tracks is 16 µm. The total
length of the spiral is about 1 mm. TEM measurements of the cross-section of a bilayer thin
film reveal a thickness of 95 ± 9 nm of the bilayer Ta/Pt film (Figure 1c).

3. Results and Discussion

The morphology of as-deposited Ta/Pt films and Ta/Pt films annealed at 600 and
730 ◦C is similar to that of the corresponding Pt films (Figure 2). However, statistical
analysis of the SEM images using ImageJ software [65] elucidated a smaller average grain
size (<d>) for microheaters with a Ta adhesion layer in comparison with pure Pt. Recrys-
tallization at 810 ◦C led to significant degradation of the Pt film and the formation of a
non-conductive structure consisting of the separate metal islands. After annealing under
the same conditions, the Ta/Pt film retained integrity despite the formation of many voids.
Smaller <d> values and a smaller size of the defect areas in the case of thin films with the
Ta adhesion layer was due to a decrease in the diffusion mobility of Pt, indicating greater
high-temperature stability of the bilayer microheaters.
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Figure 2. Scanning electron microscopy images of the surface of thin-film microheaters after annealing
at different temperatures for 12 h at a heating rate of 2 ◦C/min. The average grain size is indicated at
the top of each image.

Table 1 shows the electrical characteristics of the Pt and Ta/Pt microheaters depending
on the annealing temperature. The TCR of the microheaters was obtained by linearization
of the temperature dependence of resistance. For this purpose, the resistance measure-
ments were performed in a Binder FD 23 heating chamber (Tuttlingen, Germany) in the
temperature range from 30 to 90 ◦C with a step of 20 ◦C (Figure S2). The dependencies
of the current, temperature, and power consumption of the microheaters on the applied
voltage were obtained from cyclic voltammograms (Figure S3). A linear voltage sweep with
a rate of 250 mV/s was performed using an Autolab PGSTAT302N (Herisau, Switzerland)
in the range of 0–6 V. The long-term resistance drift was measured at a constant supply



Nanomaterials 2023, 13, 94 4 of 9

voltage corresponding to the active zone temperature of 500 ± 20 ◦C after ageing at this
temperature for 20 h.

Table 1. Parameters of Pt and Ta/Pt microheaters annealed at different temperatures for 12 h. The
data was averaged over at least three microheaters in each case. The duration of the resistance drift
measurement is 1 week.

Characteristic
As-Deposited 600 ◦C 730 ◦C 810 ◦C

Pt Ta/Pt Pt Ta/Pt Pt Ta/Pt Pt Ta/Pt

Resistance, Ω 131 ± 1 86 ± 4 73 ± 3 66 ± 1 68 ± 5 69 ± 4 - 97 ± 10

TCR (×103), ppm/◦C 1.5 ± 0.1 2.0 ± 0.1 2.8 ± 0.1 3.1 ± 0.1 3.1 ± 0.3 3.1 ± 0.2 - 3.3 ± 0.3

Power consumption at 500 ◦C, mW - - 101 ± 3 120 ± 17 99 ± 5 113 ± 10 - 101 ± 8

Supply voltage (500 ◦C), V - - 4.3 ± 0.1 4.4 ± 0.3 4.0 ± 0.1 4.4 ± 0.3 - 5.1 ± 0.2

Resistance drift, %/day - - - 0.19 ± 0.14 - 0.09 ± 0.03 - 0.17 ± 0.07

The recrystallization of thin films at temperatures of 600 and 730 ◦C led to a resistance
decrease due to the growth of Pt grains and, as a consequence, a reduction of electron
scattering at the grain boundaries. The resistance of microheaters increased after annealing
at 810 ◦C due to the formation of large-scale voids (Figure 2, right column). In the case of
Pt microheaters without the Ta adhesion layer, a complete loss of electrical conductivity
was observed after annealing at 810 ◦C. The TCR of thin-film microheaters rose with the
grain growth to about 3 × 103 ppm/◦C. The supply voltage and power consumption
of microheaters are given for the active zone temperature of 500 ◦C, which is a typical
operating temperature of catalytic and semiconductor gas sensors [3,66]. These values are
almost independent of the composition of microheaters and annealing conditions. The
microheaters without an adhesion layer lost conductivity due to continuous recrystalliza-
tion at the ageing stage lasting 20 h. Therefore, it was impossible to study the long-term
resistance drift for a longer period of time. Among the Ta/Pt microheaters, thin films
annealed at 730 ◦C for 12 h demonstrate the best performance: the resistance drift during
continuous operation at the active zone temperature of 500 ◦C is about 3% per month.

From a morphological point of view, the Ta/Pt layer annealed at 730 ◦C for 12 h
consists of large uniform crystallites without voids and abnormally large grains. The
cross-section structure of this sample was studied in detail using TEM-based techniques.
The STEM image (Figure 3a) reveals a columnar structure of the Pt resistive layer, which
consists of grains with height equal to the film thickness. Such a morphology is typical for
Pt films obtained by magnetron sputtering [45,67,68]. Several round-shaped particles are
included inside the grains and are mainly located near the AAO substrate. According to
the Z-contrast, the observed particles possess a lower average atomic number compared to
Pt. Their volume fraction in the Pt matrix is about 2 vol.%. The EDS maps (Figure 3b-d)
indicate the Ta-enrichment of these particles compared to the bulk of the Pt film. In the area
of inclusions, the Ta map does not overlap with the O map, manifesting that the particles
consist of metallic Ta. Any segregation of Ta along the grain boundaries was not observed.
Thus, we can conclude that the effect of the adhesion layer on the electrical properties of
the Pt film should be negligible.

The overlapping of the Ta and O maps in the area of the adhesion layer suggests the
Ta oxidation between Pt resistive layer and AAO substrate. An enlarged image of the Ta
adhesion layer (Figure 4a) shows crystallites with an average size of about 20 nm. FFT
analysis of the selected area of the high-resolution TEM (HRTEM) image (Figure 4b,c)
performed by Gwyddion software [69] allows us to recognize the Ta2O5 phase (ICDD
PDF-2 71-639). Thus, after annealing at 730 ◦C for 12 h in air, the Ta adhesion layer is almost
completely oxidized.
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Figure 4. Cross-sectional high-resolution transmission electron microscopy (HRTEM) images of the
Ta/Pt film annealed at 730 ◦C for 12 h (a,d) with zoomed images showing lattice structure of boxed
area (b,e) and corresponding FFT patterns (c,f).

The Ta inclusions inside the Pt grains are visualized well in the HRTEM images
(Figure 4d). According to the FFT analysis of inclusions (Figure 4e,f), the interplanar
spacing and angles between the lattice vectors correspond to the phase of metallic Ta (ICDD
PDF-2 4-788). Thus, recrystallization of Ta/Pt films leads to the localization of metallic Ta
particles with a deformed crystal lattice inside the Pt grains.

Thus, we found twofold nature of tantalum in Ta/Pt thin-film microheaters. The main
fraction of Ta is located between the Pt resistive layer and the AAO substrate in the form of
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crystalline tantalum oxide, consistent with earlier results [49,58,60,70]. Oxygen diffusion
to the Ta layer may occur both through the Pt film by the mechanism of grain boundary
migration [39] and through the porous AAO substrate. There is no significant diffusion
of the Ta adhesion layer into the Pt resistive layer during recrystallization. It agrees well
with the data reported in Refs. [58,60,71], where bulk analysis of the compositional depth
profiles using Auger electron spectroscopy and Rutherford backscattering spectrometry
were performed.

Additionally, local TEM analysis reveals a small amount of metallic Ta particles,
which are localized mainly in the lower part of the Pt grains after recrystallization. Their
volume fraction is about 2%, and, consequently, the influence of Ta nanoparticles on the
characteristics of the Pt resistive layer is insignificant. It should be noted that the EDS maps
confirm the absence of such particles in the as-deposited Ta/Pt film before recrystallization
(Figure S4). As a probable mechanism of Ta particle incorporation inside Pt grains, we
can assume the following: during magnetron sputtering, high-energy atoms and atomic
clusters of Pt get onto the Ta adhesion layer with the formation of a thin mixed layer
between Ta and Pt atoms and/or atomic clusters. Thus, a certain amount of uniformly
distributed Ta atoms appears in the lower part of the Pt film. Subsequent recrystallization
of Pt leads to the agglomeration of Ta atoms to nanoparticles inside Pt grains.

4. Conclusions

In summary, a comprehensive study of the influence of the Ta adhesion layer on the
microstructure of Pt films and the electrical properties of microheaters was carried out. The
preliminary recrystallization of the bilayered structure, based on the 10 nm Ta adhesion
layer and 90 nm Pt resistive layer, at 730 ◦C for 12 h allows one to obtain microheaters
with long-term operational stability. Resistance drift during operation at 500 ◦C is less
than 3%/month. The Ta adhesion layer after annealing consists of the 20 nm sized Ta2O5
crystallites. Additionally, individual particles of metallic Ta with an average size of 15 nm
were observed inside the 100 nm grains of the resistive Pt layer. These particles are mainly
located near the adhesion layer, and their volume fraction is about 2 vol.%.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13010094/s1, Figure S1: SEM image of the AAO substrate
before metal sputtering, Figure S2: Determination of TCR of microheaters; Figure S3: Dependences of
the active zone temperature and power consumption of microheaters on the supply voltage; Figure
S4: TEM image of the as-deposited Ta/Pt film and EDS maps of Pt and Ta.
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