Optimal Icosahedral Copper-Based Bimetallic Clusters for the Selective Electrocatalytic CO2 Conversion to One Carbon Products
Abstract
:1. Introduction
2. Computational Methods
2.1. Atomistic Models of Clusters and Surfaces
2.2. Density Functional Theory Calculations
2.3. Free Energy Calculations
3. Results and Discussion
3.1. Stability, Structure, and Electronic Properties of the Icosahedral 55-Atom CuM Clusters
3.2. Adsorption and Activation of CO2 on Cu and CuM Clusters
3.3. Mechanism of CO2 Reduction Reaction to C1 Products on Cu-M Clusters and Cu Surfaces
3.3.1. Electrocatalytic CO2 conversion to CO and HCOOH
3.3.2. Electrocatalytic CO2 conversion to CH2O, CH3OH, and CH4
- *COOH → *CO → *CHO → *OCH2→ *OCH3 → *OHCH3;
- *OCHO → *OCH2O → *OCH2OH → *O + CH3OH → *OH → * + H2O;
- *OCHO → *HCOOH → *CHO → *CHOH → *CH2OH → *OHCH3;
- *OCHO → *HCOOH → *CHO → *OCH2 → *OHCH2 → *OHCH3.
- *CHO → *CHOH → *CH → *CH2 → *CH3 → * + CH4;
- *CHO → *CHOH → *CH2OH → *CH2→ *CH3 → * + CH4;
- *CHO → *OCH2 → *OHCH2 → *OHCH3 → *OH + CH4 → * + H2O;
- *CHO → *OCH2 → *OCH3 → *OHCH3 → *OH + CH4 → * + H2O;
- *CHO → *OCH2 → *OCH3 → *O + CH4 → *OH → * + H2O.
3.3.3. Selectivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2022: Mitigation of Climate Change; Working Group III Report; Cambridge University Press: Cambridge, UK, 2022; p. 1454. [Google Scholar]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Bushuyev, O.S.; de Luna, P.; Dinh, C.T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S.O.; Sargent, E.H. What Should We Make with CO2 and How Can We Make It? Joule 2018, 2, 825–832. [Google Scholar] [CrossRef][Green Version]
- Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Adv. Sci. 2018, 5, 1700275. [Google Scholar] [CrossRef] [PubMed]
- Bagger, A.; Ju, W.; Varela, A.S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 Reduction: A Classification Problem. ChemPhysChem 2017, 18, 3266–3273. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Peterson, A.A.; Nørskov, J.K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 2012, 3, 251–258. [Google Scholar] [CrossRef]
- Wu, J.; Huang, Y.; Ye, W.; Li, Y. CO2 Reduction: From the Electrochemical to Photochemical Approach. Adv. Sci. 2017, 4, 1700194. [Google Scholar] [CrossRef]
- He, Z.; Qian, Q.; Ma, J.; Meng, Q.; Zhou, H.; Song, J.; Liu, Z.; Han, B. Water-Enhanced Synthesis of Higher Alcohols from CO2 Hydrogenation over a Pt/Co3O4 Catalyst under Milder Conditions. Angew. Chemie Int. Ed. 2016, 55, 737–741. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Zhang, D.; Su, N.Q.; Yang, W.; Everitt, H.O.; Liu, J. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 2017, 8, 14542. [Google Scholar] [CrossRef][Green Version]
- Park, S.; Bézier, D.; Brookhart, M. An Efficient Iridium Catalyst for Reduction of Carbon Dioxide to Methane with Trialkylsilanes. J. Am. Chem. Soc. 2012, 134, 11404–11407. [Google Scholar] [CrossRef]
- Klinkova, A.; de Luna, P.; Dinh, C.-T.; Voznyy, O.; Larin, E.M.; Kumacheva, E.; Sargent, E.H. Rational Design of Efficient Palladium Catalysts for Electroreduction of Carbon Dioxide to Formate. ACS Catal. 2016, 6, 8115–8120. [Google Scholar] [CrossRef]
- Zhu, W.; Michalsky, R.; Metin, Ö.; Lv, H.; Guo, S.; Wright, C.J.; Sun, X.; Peterson, A.A.; Sun, S. Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135, 16833–16836. [Google Scholar] [CrossRef]
- Xie, H.; Wang, T.; Liang, J.; Li, Q.; Sun, S. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41–54. [Google Scholar] [CrossRef]
- Dickinson, H.L.A.; Symes, M.D. Recent progress in CO2 reduction using bimetallic electrodes containing copper. Electrochem. Commun. 2022, 135, 107212. [Google Scholar] [CrossRef]
- Kitchin, J.R.; Nørskov, J.K.; Barteau, M.A.; Chen, J.G. Role of Strain and Ligand Effects in the Modification of the Electronic and Chemical Properties of Bimetallic Surfaces. Phys. Rev. Lett. 2004, 93, 156801. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sinfelt, J.H.; Carter, J.L.; Yates, D.J.C. Catalytic hydrogenolysis and dehydrogenation over copper-nickel alloys. J. Catal. 1972, 24, 283–296. [Google Scholar] [CrossRef]
- Shen, S.; He, J.; Peng, X.; Xi, W.; Zhang, L.; Xi, D.; Wang, L.; Liu, X.; Luo, J. Stepped surface-rich copper fiber felt as an efficient electrocatalyst for the CO2RR to formate. J. Mater. Chem. A 2018, 6, 18960–18966. [Google Scholar] [CrossRef]
- Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 2002, 106, 15–17. [Google Scholar] [CrossRef]
- Sreejyothi, P.; Mandal, S.K. From CO2 activation to catalytic reduction: A metal-free approach. Chem. Sci. 2020, 11, 10571–10593. [Google Scholar]
- Higham, M.D.; Quesne, M.G.; Catlow, C.R.A. Mechanism of CO2 conversion to methanol over Cu(110) and Cu(100) surfaces. Dalt. Trans. 2020, 49, 8478–8497. [Google Scholar] [CrossRef]
- Studt, F.; Behrens, M.; Kunkes, E.L.; Thomas, N.; Zander, S.; Tarasov, A.; Schumann, J.; Frei, E.; Varley, J.B.; Abild-Pedersen, F.; et al. The Mechanism of CO and CO2 Hydrogenation to Methanol over Cu-Based Catalysts. ChemCatChem 2015, 7, 1105–1111. [Google Scholar] [CrossRef][Green Version]
- Fajín, J.L.C.; Cordeiro, M.N.D.S.; Illas, F.; Gomes, J.R.B. Influence of step sites in the molecular mechanism of the water gas shift reaction catalyzed by copper. J. Catal. 2009, 268, 131–141. [Google Scholar] [CrossRef]
- Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.; et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 759, 893–898. [Google Scholar] [CrossRef]
- Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A Chem. 2003, 199, 39–47. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Shi, L.; Wu, M.; Ouyang, Y.; Wang, J. Dynamic structure change of Cu nanoparticles on carbon supports for CO2 electro-reduction toward multicarbon products. InfoMat 2021, 3, 1285–1294. [Google Scholar] [CrossRef]
- Steinhauer, B.; Kasireddy, M.R.; Radnik, J.; Martin, A. Development of Ni-Pd bimetallic catalysts for the utilization of carbon dioxide and methane by dry reforming. Appl. Catal. A Gen. 2009, 366, 333–341. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Q.; Zhou, Y.; Li, H.; Fu, J.; Liu, M. Cu-based bimetallic catalysts for CO2 reduction reaction. Adv. Sens. Energy Mater. 2022, 1, 100023. [Google Scholar] [CrossRef]
- Zaza, L.; Rossi, K.; Buonsanti, R. Well-Defined Copper-Based Nanocatalysts for Selective Electrochemical Reduction of CO2 to C2Products. ACS Energy Lett. 2022, 7, 1284–1291. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Yu, S.; Louisia, S.; Jin, J.; Li, M.; Ross, M.B.; Yang, P. Cu-Ag Tandem Catalysts for High-Rate CO2 Electrolysis toward Multicarbons. Joule 2020, 4, 1688–1699. [Google Scholar] [CrossRef]
- Alvarez-Garcia, A.; Flórez, E.; Moreno, A.; Jimenez-Orozco, C. CO2 activation on small Cu-Ni and Cu-Pd bimetallic clusters. Mol. Catal. 2020, 484, 110733. [Google Scholar] [CrossRef]
- Xing, M.; Guo, L.; Hao, Z. Theoretical insight into the electrocatalytic reduction of CO2 with different metal ratios and reaction mechanisms on palladium–copper alloys. Dalt. Trans. 2019, 48, 1504–1515. [Google Scholar] [CrossRef]
- Han, L.; Liu, H.; Cui, P.; Peng, Z.; Zhang, S.; Yang, J. Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction. Sci. Rep. 2014, 4, 6414. [Google Scholar] [CrossRef][Green Version]
- Jeon, H.S.; Timosnenko, J.; Scholten, F.; Sinev, I.; Herzog, A.; Haase, F.T.; Cuenya, B.R. Operando insight into the correlation between the structure and composition of CuZn nanoparticles and their selectivity for the electrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 19879–19887. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Jiang, K.; Fan, S.; Kanan, M.W. Grain-Boundary-Dependent CO2 Electroreduction Activity. J. Am. Chem. Soc. 2015, 137, 4606–4609. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Koizumi, N.; Guo, X.; Song, C. Bimetallic Pd-Cu catalysts for selective CO2 hydrogenation to methanol. Appl. Catal. B Environ. 2015, 170–171, 173–185. [Google Scholar] [CrossRef]
- Megha; Mondal, K.; Ghanty, T.K.; Banerjee, A. Adsorption and Activation of CO2 on Small-Sized Cu-Zr Bimetallic Clusters. J. Phys. Chem. A 2021, 125, 2558–2572. [Google Scholar] [CrossRef]
- Muthuperiyanayagam, A.; Azeem, G.N.; -ur-Rehman, A.; Di Tommaso, D. Adsorption, activation, and conversion of carbon dioxide on small copper-tin nanoclusters. ChemRxiv 2022. preprint. [Google Scholar] [CrossRef]
- Kabir, M.; Mookerjee, A.; Bhattacharya, A.K. Structure and stability of copper clusters: A tight-binding molecular dynamics study. Phys. Rev. A-At. Mol. Opt. Phys. 2004, 69, 043203. [Google Scholar] [CrossRef][Green Version]
- Vázquez-Vázquez, C.; Bañobre-López, M.; Mitra, A.; López-Quintela, M.A.; Rivas, J. Synthesis of small atomic copper clusters in microemulsions. Langmuir 2009, 25, 8208–8216. [Google Scholar] [CrossRef]
- Häkkinen, H.; Moseler, M.; Kostko, O.; Morgner, N.; Hoffmann, M.A.; Issendorff, B.V. Symmetry and electronic structure of noble-metal nanoparticles and the role of relativity. Phys. Rev. Lett. 2004, 93, 093401. [Google Scholar] [CrossRef][Green Version]
- Kleis, J.; Greeley, J.; Romero, N.A.; Morozov, V.A.; Falsig, H.; Larsen, A.H.; Lu, J.; Mortensen, J.J.; Dułak, M.; Thygesen, K.S.; et al. Finite Size Effects in Chemical Bonding: From Small Clusters to Solids. Catal. Letters 2011, 141, 1067–1071. [Google Scholar] [CrossRef]
- Austin, N.; Ye, J.; Mpourmpakis, G. CO2 activation on Cu-based Zr-decorated nanoparticles. Catal. Sci. Technol. 2017, 7, 2245–2251. [Google Scholar] [CrossRef]
- Austin, N.; Butina, B.; Mpourmpakis, G. CO2 activation on bimetallic CuNi nanoparticles. Prog. Nat. Sci. Mater. Int. 2016, 26, 487–492. [Google Scholar] [CrossRef]
- Peterson, A.A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J.K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315. [Google Scholar] [CrossRef]
- Rossmeisl, J.; Qu, Z.W.; Zhu, H.; Kroes, G.J.; Nørskov, J.K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89. [Google Scholar] [CrossRef]
- Shin, H.; Hansen, K.U.; Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 2021, 4, 911–919. [Google Scholar] [CrossRef]
- Pickard, C.J.; Needs, R.J. Ab initio random structure searching. J. Phys. Condens. Matter. 2011, 23, 53201. [Google Scholar] [CrossRef][Green Version]
- Xu, Y.; Li, F.; Xu, A.; Edwards, J.P.; Hung, S.F.; Gabardo, C.M.; O’Brien, C.P.; Liu, S.; Wang, X.; Li, Y.; et al. Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly. Nat. Commun. 2021, 12, 4–10. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B-Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T.A.; Hennig, R.G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 84106. [Google Scholar] [CrossRef][Green Version]
- Li, H.; Shen, Y.Y.; Du, H.N.; Li, J.; Zhang, H.X.; Xu, C.X. Insight into the mechanisms of CO2 reduction to CHO over Zr-doped Cu nanoparticle. Chem. Phys. 2021, 540, 111012. [Google Scholar] [CrossRef]
- Chuang, F.C.; Wang, C.Z.; Ho, K.H. Structure of neutral aluminum clusters Aln (2 ≤ n ≤ 23): Genetic algorithm tight-binding calculations. Phys. Rev. B-Condens. Matter Mater. Phys. 2006, 73, 125431. [Google Scholar] [CrossRef]
- Mao, H.Y.; Li, B.X.; Ding, W.F.; Zhu, Y.H.; Yang, X.X.; Li, C.Y.; Ye, G.X. Theoretical study on the aggregation of copper clusters on a liquid surface. Materials 2019, 12, 3877. [Google Scholar] [CrossRef]
- Holec, D.; Dumitraschkewitz, P.; Fischer, F.D.; Vollath, D. Size-dependent surface energies of Au nanoparticles. arXiv 2014, arXiv:1412.7195. [Google Scholar]
- Shin, D.Y.; Won, J.S.; Kwon, J.A.; Kim, M.S.; Lim, D.H. First-principles study of copper nanoclusters for enhanced electrochemical CO2 reduction to CH4. Comput. Theor. Chem. 2017, 1120, 84–90. [Google Scholar] [CrossRef]
- Vogt, C.; Monai, M.; Sterk, E.B.; Palle, J.; Melcherts, A.E.M.; Zijlstra, B.; Groeneveld, E.; Berben, P.H.; Boereboom, J.M.; Hensen, E.J.M.; et al. Understanding carbon dioxide activation and carbon–carbon coupling over nickel. Nat. Commun. 2019, 10, 5330. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Alvarez, S. A cartography of the van der Waals territories. Dalt. Trans. 2013, 42, 8617–8636. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. J. Chem. Soc. Dalt. Trans. 2008, 21, 2832–2838. [Google Scholar] [CrossRef]
Bond Length | Formation Energy | ΔH−L | ∆QM | γ | ||
---|---|---|---|---|---|---|
Pristine Cu55 Nanocluster | ||||||
Cu55 | 2.51 | −2.99 | ― | ― | −0.56 | |
1-atom doping on CN6 | ||||||
Cu54Ag1 | 2.69 | −3.51 | 0.0001 | −0.12 | −0.56 | |
Cu54Cd1 | 2.73 | −3.48 | 0.0412 | 0.16 | −0.54 | |
Cu54Pd1 | 2.59 | −3.53 | 0.1013 | −0.37 | −0.58 | |
Cu54Pt1 | 2.56 | −3.56 | 0.0441 | −0.64 | −0.59 | |
Cu54Zn1 | 2.54 | −3.48 | 0.0005 | 0.13 | −0.58 | |
1-atom doping on CN8 | ||||||
Cu54Ag1 | 2.69 | −3.52 | 0.0488 | −0.08 | −0.56 | |
Cu54Cd1 | 2.73 | −3.49 | 0.0349 | 0.14 | −0.54 | |
Cu54Pd1 | 2.59 | −3.54 | 0.0431 | −0.30 | −0.58 | |
Cu54Pt1 | 2.56 | −3.57 | 0.0481 | −0.63 | −0.59 | |
Cu54Zn1 | 2.54 | −3.49 | 0.0414 | 0.17 | −0.58 | |
12-atom doping on CN6 | ||||||
Cu43Ag12 | 2.67 | −3.30 | 0.0858 | −0.12 | −0.51 | |
Cu43Cd12 | 2.75 | −2.90 | 0.0104 | 0.14 | −0.42 | |
Cu43Pd12 | 2.59 | −3.59 | 0.0682 | −0.32 | −0.64 | |
Cu43Pt12 | 2.56 | −3.96 | 0.0824 | −0.58 | −0.68 | |
Cu43Zn12 | 2.54 | −2.98 | 0.1721 | 0.09 | −0.49 | |
30-atom doping on CN8 | ||||||
Cu-M | M-M | |||||
Cu25Ag30 | 2.65 | 2.81 | −2.93 | 0.0305 | −0.06 | −0.46 |
Cu25Cd30 | 2.67 | 3.01 | −1.95 | 0.0016 | 0.08 | −0.26 |
Cu25Pd30 | 2.59 | 2.70 | −3.49 | 0.0568 | −0.15 | −0.71 |
Cu25Pt30 | 2.59 | 2.69 | −4.45 | 0.0524 | −0.26 | −0.82 |
Cu25Zn30 | 2.53 | 2.75 | −2.12 | 0.0980 | 0.09 | −0.34 |
Core@shell | ||||||
Cu13Ag42 | 2.81 | −2.81 | 0.0835 | −0.14 | −0.40 | |
Cu13Cd42 | 2.95 | −1.31 | 0.0131 | −0.93 | −0.15 | |
Cu13Pd42 | 2.68 | −3.40 | 0.0168 | 0.78 | −0.72 | |
Cu13Pt42 | 2.62 | −4.72 | 0.0527 | 0.69 | −0.86 | |
Cu13Zn42 | 2.56 | −1.53 | 0.0173 | −0.93 | −0.23 |
Eads | θ(O-C-O) | ∆QM | ∆lCO | δd | ||||
---|---|---|---|---|---|---|---|---|
η(Cu,C) | η(M,C) | η(Cu,C) | η(M,C) | η(Cu,C) | η(M,C) | |||
Cu55 | −0.01 | ― | 33.40 | ― | ― | ― | 0.05 | −2.27 |
1-atom doping (CN6) | ||||||||
Cu54Ag1 | −0.20 | −0.20 | 0.340 | 0.460 | 0.04 | 0.04 | 0.00 | −2.28 |
Cu54Cd1 | 0.07 | −0.18 | 43.84 | 0.250 | 0.61 | 0.04 | 0.09 | −2.38 |
Cu54Pd1 | −0.20 | −0.33 | 0.710 | 40.12 | 0.04 | 0.51 | 0.17 | −2.29 |
Cu54Pt1 | −0.19 | −0.56 | 0.750 | 44.67 | 0.04 | 0.57 | 0.21 | −2.29 |
Cu54Zn1 | −0.13 | −0.20 | 47.45 | 0.300 | 0.70 | 0.04 | 0.23 | −2.36 |
1-atom doping (CN8) | ||||||||
Cu54Ag1 | −0.18 | −0.19 | 0.65 | 0.42 | 0.04 | 0.04 | 0.00 | −2.28 |
Cu54Cd1 | 0.14 | −0.17 | 41.3 | 0.41 | 0.58 | 0.05 | 0.15 | −2.34 |
Cu54Pd1 | −0.18 | −0.22 | 0.72 | 45.52 | 0.05 | 0.63 | 0.17 | −2.28 |
Cu54Pt1 | −0.21 | −0.43 | 1.28 | 50.97 | 0.63 | 0.71 | 0.24 | −2.26 |
Cu54Zn1 | 0.05 | 0.26 | 48.8 | 52.21 | 0.76 | 0.86 | 0.27 | −2.34 |
12-atom doping (CN6) | ||||||||
Cu43Ag12 | −0.21 | −0.21 | 0.660 | 0.300 | 0.04 | 0.04 | 0.01 | −2.67 |
Cu43Cd12 | −0.44 | −0.23 | 48.50 | 45.60 | 0.75 | 0.68 | 0.23 | −4.03 |
Cu43Pd12 | −0.22 | −0.25 | 0.470 | 38.02 | 0.04 | 0.49 | 0.19 | −2.12 |
Cu43Pt12 | −0.07 | −0.34 | 1.260 | 42.38 | 0.78 | 0.53 | 0.29 | −2.05 |
Cu43Zn12 | −0.22 | 0.13 | 49.22 | 49.30 | 0.75 | 0.77 | 0.27 | −3.72 |
30-atom doping (CN8) | ||||||||
Cu25Ag30 | −0.22 | −0.23 | 0.490 | 0.620 | 0.04 | 0.04 | 0.00 | −3.12 |
Cu25Cd30 | −0.09 | −0.64 | 32.19 | 0.240 | 0.65 | 0.05 | 0.27 | −5.27 |
Cu25Pd30 | 0.00 | −0.52 | 35.30 | 42.33 | 0.38 | 0.48 | 0.25 | −1.49 |
Cu25Pt30 | −0.34 | −0.56 | 1.070 | 44.72 | 0.02 | 0.49 | 0.29 | −1.75 |
Cu25Zn30 | −0.50 | −0.37 | 49.68 | 50.85 | 0.75 | 0.82 | 0.23 | −4.61 |
42-atom doping (core@shell) | ||||||||
Cu13Ag42 | −0.15 | −0.21 | 0.37 | 0.34 | 0.03 | 0.04 | 0.00 | −3.56 |
Cu13Cd42 | −0.11 | −0.20 | 0.75 | 0.46 | 0.04 | 0.06 | 0.00 | −7.29 |
Cu13Pd42 | −0.13 | −0.22 | 1.96 | 2.04 | 0.04 | 0.04 | 0.00 | −1.58 |
Cu13Pt42 | −0.10 | −0.17 | 0.82 | 1.09 | 0.02 | 0.03 | 0.00 | −1.92 |
Cu13Zn42 | −0.20 | −0.18 | 0.10 | 0.41 | 0.02 | 0.04 | 0.00 | −6.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabi, A.G.; Aman-ur-Rehman; Hussain, A.; Chass, G.A.; Di Tommaso, D. Optimal Icosahedral Copper-Based Bimetallic Clusters for the Selective Electrocatalytic CO2 Conversion to One Carbon Products. Nanomaterials 2023, 13, 87. https://doi.org/10.3390/nano13010087
Nabi AG, Aman-ur-Rehman, Hussain A, Chass GA, Di Tommaso D. Optimal Icosahedral Copper-Based Bimetallic Clusters for the Selective Electrocatalytic CO2 Conversion to One Carbon Products. Nanomaterials. 2023; 13(1):87. https://doi.org/10.3390/nano13010087
Chicago/Turabian StyleNabi, Azeem Ghulam, Aman-ur-Rehman, Akhtar Hussain, Gregory A. Chass, and Devis Di Tommaso. 2023. "Optimal Icosahedral Copper-Based Bimetallic Clusters for the Selective Electrocatalytic CO2 Conversion to One Carbon Products" Nanomaterials 13, no. 1: 87. https://doi.org/10.3390/nano13010087